Automatic Stones Classification through a CNN-Based Approach
<p>Location of the studied quarries in Calabria Region (Southern Italy). The legend shows the historical name of the stone materials studied.</p> "> Figure 2
<p>Macroscopic photos of the studied stone materials representative of each quarry. The photos were collected in reflected light using a flatbed scanner. The sizes of each photo are 5 cm × 5 cm.</p> "> Figure 3
<p>Example of CNN architecture.</p> "> Figure 4
<p>VGG-16 architectural model.</p> "> Figure 5
<p>VGG-19 architectural model.</p> "> Figure 6
<p>Inception-V3 architectural model.</p> "> Figure 7
<p>ResNet50 architectural model.</p> "> Figure 8
<p>Two-Stage Hybrid Model used for stone classification.</p> "> Figure 9
<p>Example of data augmentation used in our experiments.</p> "> Figure 10
<p>Total number of CNN parameters (<b>left</b>) and Inference time (seconds) (<b>right</b>) of each CNN model used in the hybrid architecture.</p> "> Figure 11
<p>Confusion matrix for (<b>left</b>) Softmax (MLR) and (<b>right</b>) SVM classifiers with ResNet50 CNN model.</p> "> Figure 12
<p>Confusion matrix for (<b>left</b>) kNN and (<b>right</b>) RF classifiers with ResNet50 CNN model.</p> "> Figure 13
<p>Confusion matrix for GNB classifier with ResNet50 CNN model.</p> "> Figure 14
<p>Accuracy (<b>left</b>) and precision (<b>right</b>) comparison.</p> "> Figure 15
<p>Recall (<b>left</b>) and F1-score (<b>right</b>) comparison.</p> ">
Abstract
:1. Introduction
- The paper proposes a methodology to be used in the stone recognition context of the main Calabrian quarries that, to the best of our knowledge, represents the first attempt in the stone literature;
- The paper proposes to use in the context of stone classification a Two-Stage Hybrid Model that joins the DL approaches with ML algorithms;
- The paper shows a set of experiments by which it is possible to take out some considerations on the best combination of DL plus ML techniques to be used in the stone recognition task.
2. Related Work
2.1. Convolutional Neural Network (CNN) for Classification
2.2. Stone Classification
2.3. Main Paper Contributions
- Stone recognition of the main Calabrian quarries that, to the best of our knowledge, represents the first attempt in the stone literature;
- Two-Stage Hybrid Model proposal able to join the DL approaches with ML algorithms;
- Methodology for stone classification purpose giving indications to face with this specific task;
- Experimental tests for providing the best combination of DL and ML techniques to be used in the stone recognition task.
3. Materials
3.1. Stone Materials in Calabrian Provinces
3.2. Image Acquisition System
- 1.
- The first typology of images was acquired using a smartphone Samsung Galaxy Note 4, with 16 Mpixel camera and a resolution of 4608 × 3456 pixels. The acquisition was performed under standard conditions, illuminating the sample with an LED illuminator, inserting the flash of the smartphone and always keeping constant the distance between the smartphone and the sample surface (10 cm).
- 2.
- The second typology of images was acquired by flatbed scanner, with reflected light, using an Epson Perfection 2400 Photo scanner, with a resolution of 600 dpi (image type: 24-bit colors). During the acquisition, all the filters were removed and the samples were carefully covered with a synthetic black and thermal cloth to normalize the acquisition and to perform it in standard condition.
- 3.
- The third typology of images was acquired using the same flatbed scanner and the same conditions of the previous typology, the only difference is that the acquisition was made on the wet surface of the samples, in order to simulate a polished effect of the stone.
4. Pre-Trained CNN Models and Classification Algorithms
- 1.
- Train a model from scratch;
- 2.
- Using a pre-trained DL model (Transfer Learning (TL) technique [1]).
4.1. ImageNet Dataset
4.2. CNN Models
4.3. Classification Techniques
5. Two-Stage Hybrid Model
6. Experiments: Results and Discussion
6.1. Experimental Environment
6.2. Our Dataset
6.3. Augmentation of Our Dataset
6.4. Classification Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DNN | Deep Neural Network |
FC | Fully Connected |
GNB | Gaussian Naive Bayes |
kNN | k-Nearest Neighbors |
LR | Logistic Regression |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
MLR | Multinomial Logistic Regression |
PR | Pattern Recognition |
RF | Random Forest |
SVM | Support Vector Machine |
TL | Transfer Learning |
References
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Umaashankar, V. Effectiveness of Hierarchical Softmax in Large Scale Classification Tasks. In Proceedings of the 2018 IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 1090–1094. [Google Scholar]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [PubMed] [Green Version]
- Ma, H.; Gou, J.; Wang, X.; Ke, J.; Zeng, S. Sparse coefficient-based k-nearest neighbor classification. IEEE Access 2017, 5, 16618–16634. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, A.H.; Taheri, M. A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features. In Proceedings of the 2017 IEEE Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, Iran, 25–27 October 2017; pp. 209–212. [Google Scholar]
- De Luca, R.; Barca, D.; Bloise, A.; Cappa, M.; De Angelis, D.; Fedele, G.; Mariottini, S.; Micieli, D.; Muto, F.; Piluso, E.; et al. RecoStones: A New Tool to Identify Calabrian Stone Materials Through Image Processing. Geoheritage 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Penta, F. Marmi graniti e porfidi della Calabria. In Marmi Pietre e Graniti Nell’Arte Nell’Industria nel Commercio, Rassegna Bimestrale Ufficiale Della Federazione Nazionale Fascista dell’Industria del Marmo Graniti e Pietre; Università della Sapienza: Roma, Italy, 1932; Volume 2, pp. 30–39. [Google Scholar]
- Dumon, P. Les materiaux naturels de decoration en Italie depuis un siecle. In Edité par Givors: Le Mausolee; CNRS: Givors, France, 1975. [Google Scholar]
- Cuteri, F.; Iannelli, M.; Mariottini, S. Cave costiere in Calabria tra Ionio e Tirreno. Montagne incise. Pietre incise. In Atti del convegno. Cave: Censimenti, Indagini di superficie, Valorizzazione; All’Insegna del Giglio" Sesto Fiorentino: Firenze, Italy, 2011; p. 25. [Google Scholar]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Lorente, Ò.; Riera, I.; Rana, A. Image classification with classic and deep learning techniques. arXiv 2021, arXiv:2105.04895. [Google Scholar]
- Tiwari, V.; Pandey, C.; Dwivedi, A.; Yadav, V. Image classification using deep neural network. In Proceedings of the 2020 2nd IEEE International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 18–19 December 2020; pp. 730–733. [Google Scholar]
- Gao, F.; Hsieh, J.G.; Jeng, J.H. A Study on Combined CNN-SVM Model for Visual Object Recognition. J. Inf. Hiding Multim. Signal Process. 2019, 10, 479–487. [Google Scholar]
- Tang, Y. Deep learning using linear support vector machines. arXiv 2013, arXiv:1306.0239. [Google Scholar]
- He, Y.; Qin, Q.; Vychodil, J. A Pedestrian Detection Method Using SVM and CNN Multistage Classification. J. Inf. Hiding Multim. Signal Process. 2018, 9, 51–60. [Google Scholar]
- Vo, A.T.; Tran, H.S.; Le, T.H. Advertisement image classification using convolutional neural network. In Proceedings of the 2017 9th IEEE International Conference on Knowledge and Systems Engineering (KSE), Hue, Vietnam, 19–21 October 2017; pp. 197–202. [Google Scholar]
- Cheng, G.; Ma, C.; Zhou, P.; Yao, X.; Han, J. Scene classification of high resolution remote sensing images using convolutional neural networks. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 767–770. [Google Scholar]
- Mujawar, S.; Kiran, D.; Ramasangu, H. An Efficient CNN Architecture for Image Classification on FPGA Accelerator. In Proceedings of the 2018 Second IEEE International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bangalore, India, 9–10 February 2018; pp. 1–4. [Google Scholar]
- Han, S.H.; Lee, K.Y. Implemetation of image classification cnn using multi thread gpu. In Proceedings of the 2017 IEEE International SoC Design Conference (ISOCC), Seoul, Korea, 5–8 November 2017; pp. 296–297. [Google Scholar]
- Zhang, Y.; Sun, X.; Sun, H.; Zhang, Z.; Diao, W.; Fu, K. High Resolution SAR Image Classification with Deeper Convolutional Neural Network. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2374–2377. [Google Scholar]
- Abdullah; Hasan, M.S. An application of pre-trained CNN for image classification. In Proceedings of the 2017 20th IEEE International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; pp. 1–6. [Google Scholar]
- Suganthi, M.; Sathiaseelan, J. An exploratory of hybrid techniques on deep learning for image classification. In Proceedings of the 2020 4th IEEE International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 22–23 April 2020; 2020; pp. 1–4. [Google Scholar]
- Fauzi, F.; Permanasari, A.E.; Setiawan, N.A. Butterfly Image Classification Using Convolutional Neural Network (CNN). In Proceedings of the 2021 3rd IEEE International Conference on Electronics Representation and Algorithm (ICERA), Yogyakarta, Indonesia, 29–30 July 2021; pp. 66–70. [Google Scholar]
- Ghosh, S.; Singh, A.; Kavita; Jhanjhi, N.; Masud, M.; Aljahdali, S. SVM and KNN Based CNN Architectures for Plant Classification. CMC-Comput. Mater. Contin. 2022, 71, 4257–4274. [Google Scholar] [CrossRef]
- Bianconi, F.; González, E.; Fernández, A.; Saetta, S.A. Automatic classification of granite tiles through colour and texture features. Expert Syst. Appl. 2012, 39, 11212–11218. [Google Scholar] [CrossRef]
- Bianconi, F.; Bello, R.; Fernández, A.; González, E. On comparing colour spaces from a performance perspective: Application to automated classification of polished natural stones. In Proceedings of the International Conference on Image Analysis and Processing, Genoa, Italy, 7–11 September 2015; pp. 71–78. [Google Scholar]
- Araújo, M.; Martínez, J.; Ordóñez, C.; Vilán, J.A. Identification of granite varieties from colour spectrum data. Sensors 2010, 10, 8572–8584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ershad, S.F. Color texture classification approach based on combination of primitive pattern units and statistical features. arXiv 2011, arXiv:1109.1133. [Google Scholar]
- Riaz, F.; Hassan, A.; Rehman, S.; Qamar, U. Texture classification using rotation-and scale-invariant gabor texture features. IEEE Signal Process. Lett. 2013, 20, 607–610. [Google Scholar] [CrossRef]
- Zand, M.; Doraisamy, S.; Halin, A.A.; Mustaffa, M.R. Texture classification and discrimination for region-based image retrieval. J. Vis. Commun. Image Represent. 2015, 26, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Chow, B.H.Y.; Reyes-Aldasoro, C.C. Automatic Gemstone Classification Using Computer Vision. Minerals 2022, 12, 60. [Google Scholar] [CrossRef]
- Ather, M.; Khan, B.; Wang, Z.; Song, G. Automatic recognition and classification of granite tiles using convolutional neural networks (CNN). In Proceedings of the 2019 3rd International Conference on Advances in Artificial Intelligence, Istanbul, Turkey, 26–28 October 2019; pp. 193–197. [Google Scholar]
- Tereso, M.; Rato, L.; Gonçalves, T. Automatic classification of ornamental stones using Machine Learning techniques A study applied to limestone. In Proceedings of the 2020 15th IEEE Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 24–27 June 2020; pp. 1–6. [Google Scholar]
- Zhang, Y.; Li, M.; Han, S.; Ren, Q.; Shi, J. Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms. Sensors 2019, 19, 3914. [Google Scholar] [CrossRef] [Green Version]
- Iannelli, M.; Mariottini, S.; Vivacqua, P. Indagini geoarcheologiche nel tratto della costa tirrenica calabrese compreso tra Nicotera e Pizzo Calabro. In I° Convegno Regionale di Geoarcheologia, Geologia e Geoarcheologia: La Calabria, la Protezione dei Beni Culturali, il Turismo; Sala congressi di Palazzo Sersale: Cerisano, Italy, 2015. [Google Scholar]
- Gonzalez, R.C. Deep Convolutional Neural Networks. IEEE Signal Process. Mag. 2018, 35, 79–87. [Google Scholar] [CrossRef]
- Tensorflow Website. 2018. Available online: https://www.tensorflow.org/ (accessed on 10 April 2022).
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- ImageNet Website. 2022. Available online: http://image-net.org/about-overview/ (accessed on 10 April 2022).
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015; Volume 25. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Tropea, M.; Fedele, G. Classifiers comparison for convolutional neural networks (CNNs) in image classification. In Proceedings of the 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza, Italy, 7–9 October 2019; pp. 1–4. [Google Scholar]
- Cui, Y.; Song, Y.; Sun, C.; Howard, A.; Belongie, S. Large scale fine-grained categorization and domain-specific transfer learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4109–4118. [Google Scholar]
Short Code of the Quarry | Historic Name of the Stone | Name of the City Where the Quarry Is Located | Geological Classification of the Stone |
---|---|---|---|
ASL | Calcarenite di San Lucido (Calcare di Mendicino) | San Lucido (Cosenza) | Calcarenite |
CAG | Rosa di Gimigliano (o marmo persichino) | Gimigliano (Catanzaro) | Dolomitic Limestone |
CAP | Calcarenite di Piedigrotta | Pizzo Calabro (Vibo Valenzia) | Calcarenite |
CAS | Calcare di Arcomano | San Donato di Ninea (Cosenza) | Limestone |
CIR | Calcarenite di Crotone | Crotone (Crotone) | Biocalcarenite |
CIS | Calcarenite di Isola Capo Rizzuto | Isola Capo Rizzuto (Crotone) | Calcarenite |
CM | Calcare di San Lucido (Calcare di Mendicino) | San Lucido (Cosenza) | Variable from limestone to dolomitic limestone |
CMS | Calcare rosato di Monte Stella | Pazzano (Reggio Calabria) | Oolitic limestone (oosparite) |
CPS | Calcare di Policastrello | San Donato di Ninea (Cosenza) | Evaporitic limestone |
GRB | Granito di Serra San Bruno | Serra San Bruno (Vibo Valentia) | Granodiorite |
GRD | Granito di Drapia | Drapia (Vibo Valentia) | Granodiorite |
GRS1 | Granito silano (varietà grigio-giallina) | San Giovanni in Fiore (Cosenza) | Granodiorite |
GRS2 | Granito silano (varietà nerastra) | San Giovanni in Fiore (Cosenza) | Diorite |
GRS3 | Granito silano (varietà grigia) | San Giovanni in Fiore (Cosenza) | Granodiorite |
MBR | Metabasite di Monte Reventino (Pietra verde di Calabria) | Platania (Catanzaro) | Metabasite o greenschist |
PG | Calcare di Grisolia | Grisolia (Cosenza) | Limestone |
POG | Porfido verde di Catanzaro | Catanzaro (Catanzaro) | Dioritic green porphyry |
POR | Porfido rosso di Catanzaro | Catanzaro (Catanzaro) | Monzonitic red porphyry |
PRM | Pietra Reggina | Motta San Giovanni (Reggio Calabria) | Calcarenite |
RCSL | Pietra rosa di San Lucido (Calcare di Mendicino) | San Lucido (Cosenza) | Variable from limestone or dolomitic limestone to calcarenite |
RMM | Marmo rosa brecciato di Calabria | Montalto Uffugo (Cosenza) | Fine marble |
SMR | Serpentinite di Monte Reventino (Pietra verde di Calabria) | Platania (Catanzaro) | Serpentinite |
TP | Petri i mulinu | Tropea (Vibo Valentia) | Calcarenite |
WCSL | Pietra bianca di San Lucido (Calcare di Mendicino) | San Lucido (Cosenza) | Biocalcarenite |
WMG | Marmo bianco di Gimigliano | Gimigliano (Catanzaro) | Calce-schist |
MLR | SVM | kNN | RF | GNB | |
---|---|---|---|---|---|
VGG-16 (%) | 99.0 | 99.3 | 97.8 | 98.3 | 91.4 |
VGG-19 (%) | 99.0 | 99.1 | 98.4 | 98.2 | 93.0 |
Inception-V3 (%) | 96.0 | 91.4 | 93.8 | 91.4 | 78.9 |
ResNet50 (%) | 99.7 | 99.8 | 99.9 | 99.7 | 88.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropea, M.; Fedele, G.; De Luca, R.; Miriello, D.; De Rango, F. Automatic Stones Classification through a CNN-Based Approach. Sensors 2022, 22, 6292. https://doi.org/10.3390/s22166292
Tropea M, Fedele G, De Luca R, Miriello D, De Rango F. Automatic Stones Classification through a CNN-Based Approach. Sensors. 2022; 22(16):6292. https://doi.org/10.3390/s22166292
Chicago/Turabian StyleTropea, Mauro, Giuseppe Fedele, Raffaella De Luca, Domenico Miriello, and Floriano De Rango. 2022. "Automatic Stones Classification through a CNN-Based Approach" Sensors 22, no. 16: 6292. https://doi.org/10.3390/s22166292
APA StyleTropea, M., Fedele, G., De Luca, R., Miriello, D., & De Rango, F. (2022). Automatic Stones Classification through a CNN-Based Approach. Sensors, 22(16), 6292. https://doi.org/10.3390/s22166292