Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks
<p>Yearly distribution of selected papers.</p> "> Figure 2
<p>Number of WSN simulators/emulators citations.</p> "> Figure 3
<p>Technological distribution of installed LPWANs technologies base in 2021.</p> "> Figure 4
<p>LoRaWAN protocol stack.</p> "> Figure 5
<p>A typical LoRaWAN network architecture.</p> "> Figure 6
<p>LoRa frame structure.</p> "> Figure 7
<p>LoRa packet duration in air comparison.</p> "> Figure 8
<p>PDR vs. number of nodes.</p> "> Figure 9
<p>CPU utilization vs. number of nodes.</p> "> Figure 10
<p>Execution time vs. number of nodes.</p> "> Figure 11
<p>Memory usage vs. number of nodes.</p> "> Figure 12
<p>Number of collisions vs. number of nodes.</p> ">
Abstract
:1. Introduction
- We present a chronological survey of available IoT and WSNs network simulators.
- We analyze and categorize recent studies between 2011 and mid-2021 with a focus on IoT and WSNs network simulation tools by highlighting the discussed simulators, study type, scope and performance measures of the studies.
- We examine and compare three popular open-source simulation tools/frameworks for the simulation of LoRaWAN networks in terms of packet delivery ratio (PDR), CPU utilization, memory usage, execution time and the number of collisions.
2. Related Work
2.1. IoT: State-of-the-Art
2.2. Systematic Literature Review (SLR)
- Search for the works in the domain of WSNs simulation tools: This step involves searching for published papers that discussed or mentioned WSNs simulation tools. The search was conducted on some of the most popular academic databases such as ACM, Elsevier, MDPI, Springer, IEEE Xplore and other digital libraries. In addition, the search used the following keywords: survey, comparison, review, simulator-specific, simulation tools, analytical studies, case studies, analytical study, qualitative analysis, technical report and evaluation with a focus on IoT and WSNs simulation tools. This step helps with retrieving and finding relevant papers from the pool of available scientific literature.
- Manually select the relevant papers: For this step, we manually select papers between 2011 and mid-2021, considering their relevance to the subject matter. All abstracts and conclusions sections were read to select the most relevant papers for the SLR process.
- Read and evaluate selected papers: For the third step, we carefully analyzed and examined the contents of the selected papers. This includes the year of publication, references, discussed or cited network simulators/emulators, type of study, scope and performance measures.
- Collect the most relevant data using the data extraction table: Finally, the most relevant data were collected using the data extraction table.
2.3. Categories of Selected Scientific Papers
2.4. Statistical Analysis of Selected Papers
3. Low Power Wide Area Networks (LPWANs) Technologies
3.1. Long Range (LoRa)
3.2. LoRa Transmission Parameters
3.2.1. Transmission Power (TP)
3.2.2. Spreading Factor (SF)
3.2.3. Coding Rate (CR)
3.2.4. Carrier Frequency (CF)
3.2.5. Bandwidth (BW)
3.3. An Overview of LoRa/LoRaWAN Simulation Tools
3.3.1. LoRaSim
3.3.2. Framework for LoRa (FLoRa)
3.3.3. LoRaWAN Module for NS-3
4. Methodological Approach
- The free availability of the simulator for academic and research purposes.
- The active development of new models and protocols by the practitioners and the research community.
- The availability of supporting documentation for the simulators.
- The general purpose of the simulator(s) with respect to the IoT and WSNs applications.
- The growing popularity of the simulators among academics and research communities for the simulation of LoRa/LoRaWAN network.
- Packet Delivery Ratio (PDR): This can be defined as the total number of received packets by the network server divided by the total number of packets sent by the end nodes. The PDR can be computed per node or for the whole network. It is one of the well-known performance metrics in the sensor networks literature. For the entire network, this can be computed as shown by Equation (9):
- CPU Utilization: This refers to the amount of work a Central Processing Unit (CPU) handles. It is used to estimate the system’s performance. Because some tasks require a lot of CPU time while others require less, CPU utilization can vary depending on the type and amount of computing task.
- Memory Usage: This is the memory requirement used by an application while the program executes. It is critical to keep track of memory usage to ensure peak performance.
- Execution Time: This refers to the end-to-end time to perform one single simulation run, i.e., the interval between the start and the end time of the simulation scenario.
- Collisions: With collision, we refer to the phenomenon that occurs when two or more devices or stations attempt to transmit a packet (data) simultaneously, resulting in the possible loss of transmitted data. Note that the concept of collision or how it is detected may vary depending on how the simulator defines the collision criteria.
5. Analysis and Discussion of Results
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of Things (IoT): Research, Simulators, and Testbeds. IEEE Internet Things J. 2018, 5, 1637–1647. [Google Scholar] [CrossRef]
- Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330. [Google Scholar] [CrossRef]
- Zhang, Z.; Mehmood, A.; Shu, L.; Huo, Z.; Zhang, Y.; Mukherjee, M. A Survey on Fault Diagnosis in Wireless Sensor Networks. IEEE Access 2018, 6, 11349–11364. [Google Scholar] [CrossRef]
- Sohraby, K.; Minoli, D.; Znati, T. Wireless Sensor Networks: Technology, Protocols, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 1–31. [Google Scholar]
- Förster, A. Introduction to Wireless Sensor Networks; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–30. [Google Scholar]
- Bhattacharyya, D.; Kim, T.H.; Pal, S. A comparative study of wireless sensor networks and their routing protocols. Sensors 2010, 10, 10506–10523. [Google Scholar] [CrossRef]
- Ketshabetswe, L.K.; Zungeru, A.M.; Mangwala, M.; Chuma, J.M.; Sigweni, B. Communication protocols for wireless sensor networks: A survey and comparison. Heliyon 2019, 5, e01591. [Google Scholar] [CrossRef] [Green Version]
- Milarokostas, C.; Tsolkas, D.; Passas, N.; Merakos, L. A Comprehensive Study on LPWANs With a Focus on the Potential of LoRa/LoRaWAN Systems. TechRxiv 2021, 1–38. [Google Scholar] [CrossRef]
- Karunathilake, T.; Udugama, A.; Förster, A. LoRa-DuCy: Duty Cycling for LoRa-Enabled Internet of Things Devices. In Proceedings of the 12th International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Korea, 17–20 August 2021; pp. 283–288. [Google Scholar]
- Silva, J.d.C.; Rodrigues, J.J.P.C.; Alberti, A.M.; Solic, P.; Aquino, A.L.L. LoRaWAN—A low power WAN protocol for Internet of Things: A review and opportunities. In Proceedings of the 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12–14 July 2017; pp. 1–6. [Google Scholar]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Lu, T.-J.; Ling, F.-Y.; Sun, J.; Du, H.-Y. Research on the architecture of Internet of Things. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; pp. V5-484–V5-487. [Google Scholar]
- Said, O.; Masud, M. Towards internet of things: Survey and future vision. Int. J. Comput. Netw. 2013, 5, 1–17. [Google Scholar]
- Wang, B.; Liu, X.; Zhang, Y. Internet of Things and BDS Application; Springer: Singapore, 2022; pp. 71–85. [Google Scholar]
- Abdullah, A.; Kaur, H.; Biswas, R. Universal Layers of IoT Architecture and Its Security Analysis. In New Paradigm in Decision Science and Management; Springer: Singapore, 2020; pp. 293–302. [Google Scholar]
- Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges. In Proceedings of the 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2012; pp. 257–260. [Google Scholar]
- Ning, H.; Wang, Z. Future Internet of Things Architecture: Like Mankind Neural System or Social Organization Framework? IEEE Commun. Lett. 2011, 15, 461–463. [Google Scholar] [CrossRef]
- Campanile, L.; Gribaudo, M.; Iacono, M.; Marulli, F.; Mastroianni, M. Computer Network Simulation with ns-3: A Systematic Literature Review. Electronics 2020, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Yu, F. A Survey of Wireless Sensor Network Simulation Tools; Department of Science and Engineering, Washington University: St. Louis, MO, USA, 2011. [Google Scholar]
- Musznicki, B.; Zwierzykowski, P. Survey of Simulators for Wireless Sensor Networks. J. Grid Distrib. Comput. 2012, 5, 23–50. [Google Scholar]
- Siraj, S.; Gupta, A.K.; Badgujar, R. Network Simulation Tools Survey. Int. J. Adv. Res. Comp. Communi. Eng. 2012, 1, 201–210. [Google Scholar]
- Paul, D.C. A computational investigation of wireless sensor network simulation. In Proceedings of the 50th Annual Southeast Regional Conference—ACM-SE 12, New York, NY, USA, 29 March 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 401–402. [Google Scholar]
- Abuarqoub, A.; Al-Fayez, F.; Alsboui, T.; Hammoudeh, M.; Nisbet, A. Simulation issues in wireless sensor networks: A survey. In Proceedings of the 6th International Conference on Sensor Technologies and Applications, SENSORCOMM, Rome, Italy, 19–24 August 2012; pp. 222–228. [Google Scholar]
- Pujeri, U.; Palanisamy, V. Survey of Various Open Source Network Simulators. Int. J. Sci. Res. 2014, 3, 2319–7064. [Google Scholar]
- Sethi, A.; Saini, J.P.; Bisht, M. Wireless adhoc network simulators: Analysis of characteristic features, scalability, effectiveness and limitations. Int. J. Appl. Inf. Syst. (IJAIS) 2013, 5, 17–22. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Lay-Ekuakille, A.; Derbel, F.; Kanoun, O.; Abid, M. Choice of efficient simulator tool for wireless sensor networks. In Proceedings of the IEEE International Workshop on Measurements & Networking (M&N), Naples, Italy, 7–8 October 2013; pp. 210–213. [Google Scholar]
- Gupta, S.G.; Ghonge, M.M.; Thakare, P.D.; Jawandhiya, P.M. Open-Source Network Simulation Tools: An Overview. Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1629–1635. [Google Scholar]
- Chand, B.S.; Rao, K.R.; Babu, S.S. Exploration of New Simulation Tools for Wireless Sensor Networks. Int. J. Sci. Res. (IJSR) 2013, 2, 269–273. [Google Scholar]
- Chandrasekaran, V.; Anitha, S.; Shanmugam, A. A research survey on experimental tools for simulating wireless sensor networks. Int. J. Comput. Appl. 2013, 79, 1–9. [Google Scholar] [CrossRef]
- Al-Fayez, F.; Abuarqoub, A.; Hammoudeh, M.; Nisbet, A. Wireless sensor network simulation: The current state and simulation tools. Sens. Transd. J. 2013, 18, 145–155. [Google Scholar]
- Lakshmanarao, K.; VinodKumar, C.R.; Kanakavardhini, K. Survey on Simulation Tools for Wireless Networks. Int. J. Eng. Res. Technol. (IJERT) 2013, 2, 608–612. [Google Scholar]
- Sharma, R.; Sharma, P.; Athavale, V.A.; Kaushik, S. Simulators for Wireless Sensor Network: A review. Int. J. Comput. Appl. 2013, 5, 39–46. [Google Scholar] [CrossRef]
- Abu Salem, A.O.; Awwad, H. Mobile ad-hoc network simulators, a survey and comparisons. Int. J. P2P Netw. Trends Technol. (IJPTT) 2014, 9, 12–17. [Google Scholar]
- Balaji, K.; Jai Vidhya, B. Survey On Simulation And Emulation Tools In Wireless Sensor Network. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 2014, 5, 1034–1037. [Google Scholar]
- Roy, A.; Jain, A.K. A Survey of Wireless Network Simulators. J. Multimed. Technol. Recent Adv. 2015, 2, 12–16. [Google Scholar]
- Das, A.P.; Thampi, S.M. Simulation tools for underwater sensor networks: A survey. Netw. Protoc. Algorithms 2016, 8, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Abuarqoub, A.; Hammoudeh, M.; Alfayez, F.; Aldabbas, O. A survey on wireless sensor networks simulation tools and testbeds. Sens. Transducers Signal Cond. Wirel. Sens. Netw. Adv. Sens. Rev. 2016, 3, 283–302. [Google Scholar]
- Toor, A.S.; Jain, A. A survey on wireless network simulators. Bull. Electr. Eng. Inform. 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Mouiz, A.; Badri, A.; Baghdad, A.; Ballouk, A.; Sahel, A. Analysis of Modeling Performance and Simulation Tools for Wireless Sensor Networks. Int. J. Comput. Appl. Technol. Res. (JCATR) 2017, 6, 9–12. [Google Scholar] [CrossRef]
- Pesic, D.; Radivojevic, Z.; Cvetanovic, M. A survey and evaluation of free and open source simulators suitable for teaching courses in wireless sensor networks. In Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 895–900. [Google Scholar]
- Vasanthi, V. Simulators and emulators used for wireless sensor network. J. Adv. Res. Comput. Comm. Eng. 2017, 6, 171–175. [Google Scholar]
- Dorathy, I.; Chandrasekaran, M. Simulation tools for mobile adhoc networks: A survey. J. Appl. Res. Technol. 2018, 16, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.L.; Pathak, M.J.; Nayak, A.J. Survey on Network Simulators. Int. J. Comput. Appl. 2018, 182, 23–30. [Google Scholar]
- Gnanaselvi, S. A Study on Various Simulation Tools for Wireless Sensor Networks. Int. J. Eng. Res. Manag. (IJERM) 2018, 5, 1–3. [Google Scholar]
- Dhinnesh, A.D.C.N. Wireless Sensor Networks and its Tools for Simulation. GRD J.-Glob. Res. Dev. J. Eng. 2019, 4, 45–48. [Google Scholar]
- Abdullahi, S. A Survey On Existing Network Simulators. J. Multidiscip. Eng. Sci. Technol. (JMEST) 2019, 6, 10373–10380. [Google Scholar]
- Priyadarshi, R.; Gupta, B.; Anurag, A. Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. J. Supercomput. 2020, 79, 7333–7373. [Google Scholar] [CrossRef]
- Onuekwusia, N.C.; Okpara, C.R. Wireless Sensor Networks (WSN): An Overview. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2020, 64, 53–63. [Google Scholar]
- Mishra, J.; Bagga, J.; Choubey, S.; Choubey, A. Survey of Various Simulator Tools for Wireless Sensor Network. I-Manag. J. Comput. Sci. 2020, 8, 16–23. [Google Scholar]
- Murgod, T.R.; Sundaram, S.M. A comparative study of different network simulation tools and experimentation platforms for underwater communication. Bull. Electr. Eng. Inform. 2021, 10, 879–885. [Google Scholar] [CrossRef]
- Richards, V.; Gamess, E.; Thornton, D. A survey of wireless network simulation and/or emulation software for use in higher education. In Proceedings of the 2021 ACM Southeast Conference (ACM SE ’21), New York, NY, USA, 15–17 April 2021; pp. 63–70. [Google Scholar]
- Sarkar, N.I.; Halim, S.A. A review of simulation of telecommunication networks: Simulators, classification, comparison, methodologies, and recommendations. Cyber J. Multidiscip. J. Sci. Technol. Spec. Issue J. Sel. Areas Telecommun. (JSAT) 2011, 2, 10–17. [Google Scholar]
- Moravek, P.; Komosny, D.; Simek, M. Specifics of WSN simulations. ElektroRevue 2011, 2, 15–21. [Google Scholar]
- Fahmy, H.M.A. Simulators and emulators for wsns. In Wireless Sensor Networks; Springer: Singapore, 2016; pp. 381–491. [Google Scholar]
- Khan, M.Z.; Askwith, B.; Bouhafs, F.; Asim, M. Limitations of Simulation Tools for Large-Scale Wireless Sensor Networks. In Proceedings of the IEEE Workshops of International Conference on Advanced Information Networking and Applications, Biopolis, Singapore, 22–25 March 2011; pp. 820–825. [Google Scholar]
- Zivković, M.; Nikolić, B.; Protić, J.; Popović, R. A survey and classification of wireless sensor networks simulators based on the domain of use. Adhoc Sens. Wirel. Netw. 2014, 20, 1–30. [Google Scholar]
- Owczarek, P.; Zwierzykowski, P. Review of simulators for wireless mesh networks. J. Telecommun. Inf. Technol. 2014, 3, 82–89. [Google Scholar]
- Nayyar, A.; Singh, R. A comprehensive review of simulation tools for wireless sensor networks (wsns). J. Wirel. Netw. Commun. 2015, 5, 19–47. [Google Scholar]
- Sharif, M.; Sadeghi-Niaraki, A. Ubiquitous Sensor Network Simulation and Emulation Environments: A Survey. J. Netw. Comput. Appl. 2017, 93, 150–181. [Google Scholar] [CrossRef] [Green Version]
- Ojie, E.; Pereira, E. Simulation tools in internet of things: A review. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning, Liverpool, UK, 17–18 October 2017; pp. 1–7. [Google Scholar]
- Pandey, D.; Kushwaha, V. Experimental Tools and Techniques for Wireless Sensor Networks. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 1674–1684. [Google Scholar]
- Kulkarni, V.; Narayana, V.L.; Sahoo, S.K. A Survey on Interference Avoiding Methods for Wireless Sensor Networks Working in the 2.4 GHz Frequency Band. J. Eng. Sci. Technol. Rev. 2020, 13, 59–81. [Google Scholar] [CrossRef]
- Lohier, S.; Rachedi, A.; Livolant, E.; Salhi, I. Wireless Sensor Network simulators relevance compared to a real IEEE 802.15.4 Testbed. In Proceedings of the 7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 1347–1352. [Google Scholar]
- Sundani, H.; Li, H.; Devabhaktuni, V.K.; Alam, M.; Bhattacharya, P. Wireless sensor network simulators a survey and comparisons. Int. J. Comput. Netw. 2021, 2, 249–265. [Google Scholar]
- Stetsko, A.; Stehlik, M.; Matyas, V. Calibrating and Comparing Simulators for Wireless Sensor Networks. In Proceedings of the IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October 2011; pp. 733–738. [Google Scholar]
- Kumar, A.; Kaushik, S.K.; Sharma, R.; Raj, P. Simulators for Wireless Networks: A Comparative Study. In Proceedings of the International Conference on Computing Sciences, Phagwara, India, 14–15 September 2012; pp. 338–342. [Google Scholar]
- Patil, A.K.; Hadalgi, P.M. Evaluation of Discrete Event Discrete Event Wireless Sensor Network Simulators. Int. J. Comp. Sci. Net. (IJCSN) 2012, 1, 1–10. [Google Scholar]
- Chaudhary, R.; Sethi, S.; Keshari, R.; Goel, S. A study of comparison of Network Simulator-3 and Network Simulator-2. IJCSIT Int. J. Comput. Sci. Inf. Technol. 2012, 3, 3085–3092. [Google Scholar]
- Lahmar, K.; Cheour, R.; Abid, M. Wireless Sensor Networks: Trends, Power Consumption and Simulators. In Proceedings of the Sixth Asia Modelling Symposium, Bali, Indonesia, 29–31 May 2012; pp. 200–204. [Google Scholar]
- Khan, A.R.; Bilal, S.M.; Othman, M. A performance comparison of open source network simulators for wireless networks. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 23–25 November 2012; pp. 34–38. [Google Scholar]
- Chhimwal, P.; Rai, D.S.; Rawat, D. Comparison between different wireless sensor simulation tools. IOSR J. Electron. Commun. Eng. 2013, 5, 54–60. [Google Scholar] [CrossRef]
- Khan, M.A.; Hasbullah, H.; Nazir, B. Recent open source wireless sensor network supporting simulators: A performance comparison. In Proceedings of the International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, Malaysia, 2–4 September 2014; pp. 324–328. [Google Scholar]
- Kabir, M.H.; Islam, S.; Hossain, M.J.; Hossain, S. Detail Comparison of Network Simulators. Int. J. Sci. Eng. Res. 2014, 5, 203–218. [Google Scholar]
- Minakov, I.; Passerone, R.; Rizzardi, A.; Sicari, S. A comparative study of recent wireless sensor network simulators. ACM Trans. Sens. Netw. (TOSN) 2016, 12, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, M.L.; Kougianos, E.; Mohanty, S.P.; Choppali, U. Wireless sensor network simulation frameworks: A tutorial review: MATLAB/Simulink bests the rest. IEEE Consum. Electron. Mag. 2016, 5, 63–69. [Google Scholar] [CrossRef]
- Helkey, J.; Holder, L.; Shirazi, B. Comparison of simulators for assessing the ability to sustain wireless sensor networks using dynamic network reconfiguration. Sustain. Comput. Inform. Syst. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Katkar, P.S.; Ghorpade, D.V.R. Comparative study of network simulator: Ns2 and ns3. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2016, 6, 608–612. [Google Scholar]
- Saidallah, M.; Fergougui, A.; Elalaoui, A.E. A Survey and Comparative Study of Open-Source Wireless Sensor Network Simulators. Int. J. Adv. Res. Comput. Sci. (IJARCS) 2017, 7, 1–7. [Google Scholar]
- Augustine, A. A Comparison of Network Simulators for Wireless Networks. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2017, 6, 1111–1115. [Google Scholar]
- Sudha, C.; Suresh, D.; Nagesh, A. A Review on Wireless Sensor Network Simulation Tools. Asian J. Comput. Sci. Technol. (AJCST) 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Fakhar, F. Comparative study of computer simulation softwares. J. Artif. Intell. Electr. Eng. 2019, 7, 1–19. [Google Scholar]
- Silmi, S.; Doukha, Z.; Kemcha, R.; Moussaoui, S. Wireless sensor networks simulators and testbeds. In Proceedings of the 9th International Conference on Advanced Information Technologies and Applications (ICAITA 2020), Toronto, ON, Canada, 11–12 July 2020; pp. 141–159. [Google Scholar]
- Sharma, R.; Vashisht, V.; Singh, U. Modelling and simulation frameworks for wireless sensor networks: A comparative study. IET Wirel. Sens. Syst. 2020, 10, 181–197. [Google Scholar] [CrossRef]
- Cao, N.; Yu, P. A Review of Wireless Sensor Network Simulation Tools. In Artificial Intelligence and Security; Communications in Computer and Information Science; Sun, X., Wang, J., Bertino, E., Eds.; Springer: Singapore, 2020; Volume 1253, pp. 210–220. [Google Scholar]
- Xie, D.; Li, J.; Gao, H. Comparison and Analysis of Simulation methods for TSN Performance. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 052061. [Google Scholar] [CrossRef] [Green Version]
- Whichi, A.; Weber, M.; Ketata, I.; Sahnoun, S.; Derbel, F. Simulation of Wireless Sensor Nodes based on Wake-Up Receivers. In Proceedings of the 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 235–240. [Google Scholar]
- Onuora, A.C.; Njoku, C.C.; Ogbunude, F.O.; Osu, C.M. A Comparative Study of Simulation Tools for Ad hoc Networks. In Proceedings of the Evaluating the Policies and Funding for Engineering Sustenance: A Panacea for Functional Engineering Product for Economic Emancipation, International Conference, Ebonyi State, Nigeria, 2021; pp. 1–11. [Google Scholar]
- Garg, K.; Förster, A.; Puccinelli, D.; Giordano, S. Towards realistic and credible wireless sensor network evaluation. In Ad Hoc Networks; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Simplot-Ryl, D., de Amorim, M.D., Giordano, S., Helmy, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 89, pp. 49–64. [Google Scholar]
- Cheour, R.; Jmal, M.W.; Kanoun, O.; Abid, M. Evaluation of simulator tools and power aware scheduling model for wireless sensor networks. IET Comput. Digit. Tech. 2017, 11, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Pavon, C.; Sendra, S.; Valenzuela-Valdes, J.F. Evaluation of CupCarbon network simulator for wireless sensor networks. Netw. Protoc. Algorithms 2018, 10, 1–27. [Google Scholar] [CrossRef]
- Bakni, M.; Manuel, L.; Chacón, M.; Cardinale, Y.; Terrasson, G.; Curea, O. Wsn simulators evaluation: An approach focusing on energy awareness. Int. J. Wirel. Mob. Netw. (IJWMN) 2020, 11, 1–20. [Google Scholar] [CrossRef]
- Minakov, I.; Passerone, R.; Rizzardi, A.; Sicari, S. Routing behavior across WSN simulators: The AODV case study. In Proceedings of the IEEE World Conference on Factory Communication Systems (WFCS), Aveiro, Portugal, 3–6 May 2016; pp. 1–8. [Google Scholar]
- Cuzme-Rodriguez, F.; Umaquinga-Criollo, A.; Suárez-Zambrano, L.; Farinango-Endara, H.; Domínguez-Limaico, H.; Mediavilla-Valverde, M. Simulation Tools for Solving Engineering Problems. Case Study; Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B., Eds.; Springer: Cham, Switzerland, 2020; Volume 1193, pp. 271–285. [Google Scholar]
- Dwivedi, A.; Vyas, O. Recent developments in simulation tools for wsns an analytical study. In Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test; CRC Press: Boca Raton, FL, USA, 2014; pp. 495–518. [Google Scholar]
- Mishra, D.; Kumar, R. Qualitative analysis of wireless sensor network simulators. Int. J. Comput. Appl. 2015, 2, 11–18. [Google Scholar]
- Gamess, E.; Mahgoub, I.; Rathod, M. Scalability evaluation of two network simulation tools for Vehicular Ad hoc Networks. In Proceedings of the Wireless Advanced (WiAd), London, UK, 25–27 June 2012; pp. 58–63. [Google Scholar]
- Haghighi, M. An Agent-Based Multi-Model Tool for Simulating Multiple Concurrent Applications in WSNs. J. Adv. Comput. Netw. 2013, 1, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Kabalcı, Y.; Ali, M. Emerging LPWAN Technologies for Smart Environments: An Outlook. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 24–29. [Google Scholar]
- Liya, M.L.; Arjun, D. A Survey of LPWAN Technology in Agricultural Field. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; pp. 313–317. [Google Scholar]
- Firdaus, R.; Murti, M.A.; Alinursafa, I. Air Quality Monitoring System Based Internet of Things (IoT) Using LPWAN LoRa. In Proceedings of the 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 5–7 November 2019; pp. 195–200. [Google Scholar]
- Guibene, W.; Nowack, J.; Chalikias, N.; Fitzgibbon, K.; Kelly, M.; Prendergast, D. Evaluation of LPWAN Technologies for Smart Cities: River Monitoring Use-Case. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–5. [Google Scholar]
- IoT Analytics. Available online: https://iot-analytics.com/5-things-to-know-lpwan-market/ (accessed on 10 February 2022).
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.; Rodrigues, J.; Kozlov, S.; Rabêlo, R.; Albuquerque, V. MAC Layer Protocols for Internet of Things: A Survey. Future Internet 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Khalifeh, A.; Aldahdouh, K.A.; Darabkh, K.A.; Al-Sit, W. A survey of 5G emerging wireless technologies featuring LoRaWAN, Sigfox, NBIoT and LTE-M. In Proceedings of the International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 561–566. [Google Scholar]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Exp. ScienceDirect 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Semtech. What is LoRa? Available online: https://www.semtech.com/lora/what-is-lora (accessed on 10 February 2022).
- Khanderay, R.B.; Kemkar, O. Analysis of LoRa framework in IoT Technology. In Proceedings of the International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; pp. 1–4. [Google Scholar]
- Wixted, A.J.; Kinnaird, P.; Larijani, H.; Tait, A.; Ahmadinia, A.; Strachan, N. Evaluation of LoRa and LoRaWAN for wireless sensor networks. In Proceedings of the IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Proc. Lett. 2017, 24, 1818–1821. [Google Scholar] [CrossRef]
- Lavric, A.; Popa, V. Internet of Things and LoRa™ Low-Power Wide-Area Networks: A survey. In Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–5. [Google Scholar]
- Zourmand, A.; Kun Hing, A.L.; Wai Hung, C.; AbdulRehman, M. “Internet of Things (IoT) using LoRa technology. In Proceedings of the IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 324–330. [Google Scholar]
- Khutsoane, O.; Isong, B.; Abu-Mahfouz, A.M. IoT devices and applications based on LoRa/LoRaWAN. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6107–6112. [Google Scholar]
- Saari, M.; bin Baharudin, A.M.; Sillberg, P.; Hyrynsalmi, S.; Yan, W. LoRa—A survey of recent research trends. In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0872–0877. [Google Scholar]
- Devalal, S.; Karthikeyan, A. LoRa Technology—An Overview. In Proceedings of the Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [Google Scholar]
- Xu, W.; Jha, S.; Hu, W. LoRa-Key: Secure Key Generation System for LoRa-Based Network. IEEE Internet Things J. 2019, 6, 6404–6416. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, K.; Hou, L.; Xing, J.; Xu, R. Design and Implementation of Open LoRa for IoT. IEEE Access 2019, 7, 100649–100657. [Google Scholar] [CrossRef]
- Semtech. A Brief History of LoRa®. Available online: https://blog.semtech.com/a-brief-history-of-lora-three-inventors-share-their-personal-story-at-the-things-conference (accessed on 10 February 2022).
- LoRa®. What are LoRa® and LoRaWAN®? Available online: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan (accessed on 10 February 2022).
- LoRaWAN™. What Is It? Available online: https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf (accessed on 10 February 2022).
- Almuhaya, M.A.M.; Jabbar, W.A.; Sulaiman, N.; Abdulmalek, S. A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics 2020, 11, 164. [Google Scholar] [CrossRef]
- Slabicki, M.; Premsankar, G.; Di Francesco, M. Adaptive configuration of LoRa networks for dense IoT deployments. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar]
- RP2-1.0.3 LoRaWAN® Regional Parameters. Available online: https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/ (accessed on 8 April 2022).
- Kjendal, D. LoRa-Alliance Regional Parameters Overview. J. ICT 2021, 9, 35–46. [Google Scholar] [CrossRef]
- Marquez, L.E.; Osorio, A.; Calle, M.; Velez, J.C.; Serrano, A.; Candelo-Becerra, J.E. On the Use of LoRaWAN in Smart Cities: A Study With Blocking Interference. IEEE Internet Things J. 2020, 7, 2806–2815. [Google Scholar] [CrossRef]
- Iqbal, M.A. A Fully Automatic Transport System with LoRa and Renewable Energy Solution. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1160–1163. [Google Scholar]
- Petrariu, A.I.; Lavric, A.; Coca, E.; Popa, V. Hybrid Power Management System for LoRa Communication Using Renewable Energy. IEEE Internet Things J. 2021, 8, 8423–8436. [Google Scholar] [CrossRef]
- Mdhaffar, A.; Chaari, T.; Larbi, K.; Jmaiel, M.; Freisleben, B. IoT-based health monitoring via LoRaWAN. In Proceedings of the IEEE EUROCON 2017-17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 519–524. [Google Scholar]
- Raju, V.; Varma, A.S.N.; Raju, Y.S. An environmental pollution monitoring system using LORA. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 3521–3526. [Google Scholar]
- Davcev, D.; Mitreski, K.; Trajkovic, S.; Nikolovski, V.; Koteli, N. IoT agriculture system based on LoRaWAN. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–4. [Google Scholar]
- The Things Networks. Device Classes. Available online: https://www.thethingsnetwork.org/docs/lorawan/classes/ (accessed on 8 April 2022).
- LoRa General Presentation. Available online: https://docs.loriot.io/display/LNS/LoRa+General+Presentation (accessed on 29 March 2022).
- Nolan, K.E.; Guibene, W.; Kelly, M.Y. An evaluation of low power wide area network technologies for the Internet of Things. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 439–444. [Google Scholar]
- Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M. Low-power wide area network technologies for internet-of-things: A comparative review. IEEE Internet Things J. 2019, 6, 2225–2240. [Google Scholar] [CrossRef] [Green Version]
- Sisinni, E.; Ferrari, P.; Carvalho, D.F.; Rinaldi, S.; Marco, P.; Flammini, A.; Depari, A. LoRaWAN Range Extender for Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 5607–5616. [Google Scholar] [CrossRef]
- Cheikh, I.; Aouami, R.; Sabir, E.; Sadik, M.; Roy, S. Multi-Layered Energy Efficiency in LoRa-WAN Networks: A Tutorial. IEEE Access 2022, 10, 9198–9231. [Google Scholar] [CrossRef]
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Floriana, Malta, 13–17 November 2016; pp. 59–67. [Google Scholar]
- Bor, M.; Roedig, U. LoRa Transmission Parameter Selection. In Proceedings of the 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), Ottawa, ON, Canada, 5–7 June 2017; pp. 27–34. [Google Scholar]
- Liando, J.C.; Gamage, A.; Tengourtius, A.W.; Li, M. Known and unknown facts of lora: Experiences from a large-scale measurement study. ACM Trans. Sens. Netw. (TOSN) 2019, 15, 1–35. [Google Scholar] [CrossRef]
- Jebril, A.; Sali, A.; Ismail, A.; Rasid, M. Overcoming Limitations of LoRa Physical Layer in Image Transmission. Sensors 2018, 18, 3257. [Google Scholar] [CrossRef] [Green Version]
- Semtech Corporation. AN1200.22 LoRa® Modulation Basics; Semtech: Camarillo, CA, USA, 2015; Available online: http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf (accessed on 29 March 2022).
- Bor, M.; Vidler, J.E.; Roedig, U. Lora for the internet of things. In Proceedings of the EWSN ’16 2016 International Conference on Embedded Wireless Systems and Networks, Graz, Austria, 15–17 February 2016; pp. 361–366. [Google Scholar]
- Davoli, L.; Pagliari, E.; Ferrari, G. Hybrid LoRa-IEEE 802.11s Opportunistic Mesh Networking for Flexible UAV Swarming. Drones 2021, 5, 26. [Google Scholar] [CrossRef]
- Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet 2019, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Bouras, C.; Gkamas, A.; Katsampiris Salgado, S.A.; Kokkinos, V. Comparison of LoRa Simulation Environments, Proceedings of the Advances on Broad-Band Wireless Computing, Communication and Applications, BWCCA 2019, Antwerp, Belgium, 7–9 November 2020; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2020; Volume 97, pp. 374–385. [Google Scholar]
- Khan, F.H.; Portmann, M. Experimental Evaluation of LoRaWAN in NS-3. In Proceedings of the 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–8. [Google Scholar]
- Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wirel. Commun. Mob. Comput. 2018, 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Marais, J.M.; Abu-Mahfouz, A.M.; Hancke, G.P. A Review of LoRaWAN Simulators: Design Requirements and Limitations. In Proceedings of the International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Vanderbijlpark, South Africa, 21–22 November 2019; pp. 1–6. [Google Scholar]
- Magrin, D.; Centenaro, M.; Vangelista, L. Performance evaluation of LoRa networks in a smart city scenario. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Reynders, B.; Wang, Q.; Pollin, S. A LoRaWAN module for ns-3. In Proceedings of the 10th Workshop on ns-3-WNS3 ’18, Surathkal, India, 13–14 June 2018; ACM Press: New York, NY, USA, 2018; pp. 61–68. [Google Scholar]
- Van den Abeele, F.; Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Scalability analysis of large-scale LoRaWAN networks in ns-3. IEEE Internet Things J. 2017, 4, 2186–2198. [Google Scholar] [CrossRef] [Green Version]
- To, T.-H.; Duda, A. Simulation of LoRa in NS-3: Improving LoRa performance with CSMA. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- FLoRa. Available online: https://flora.aalto.fi/ (accessed on 10 February 2022).
- Bounceur, A.; Marc, O.; Lounis, M.; Soler, J.; Clavier, L.; Combeau, P.; Vauzelle, R.; Lagadec, L.; Euler, R.; Bezoui, M.; et al. Cupcarbon-lab: An iot emulator. In Proceedings of the 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–2. [Google Scholar]
- Croce, D.; Gucciardo, M.; Mangione, S.; Santaromita, G.; Tinnirello, I. Impact of LoRa imperfect orthogonality: Analysis of link-level performance. IEEE Commun. Lett. 2018, 22, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Abdelfadeel, K.Q.; Zorbas, D.; Cionca, V.; O’Flynn, B.; Pesch, D. FREE—Fine-grained Scheduling for Reliable and Energy Efficient Data Collection in LoRaWAN. IEEE Internet Things J. 2020, 7, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Callebaut, G.; Ottoy, G.; van der Perre, L. Cross-Layer Framework and Optimization for Efficient Use of the Energy Budget of IoT Nodes. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Marini, R.; Mikhaylov, K.; Pasolini, G.; Buratti, C. LoRaWANSim: A Flexible Simulator for LoRaWAN Networks. Sensors 2021, 21, 695. [Google Scholar] [CrossRef]
- Zorbas, D.; Kotzanikolaou, P.; Pesch, D. TS-LoRa: Time-slotted LoRaWAN for the industrial internet of things. Comput. Commun. 2020, 153, 1–10. [Google Scholar] [CrossRef]
- Zorbas, D.; Caillouet, C.; Hassan, K.A.; Pesch, D. Optimal data collection time in LoRa networks—A time-slotted approach. Sensors 2021, 21, 1193. [Google Scholar] [CrossRef]
- Beltramelli, L.; Mahmood, A.; Osterberg, P.; Gidlund, M.; Ferrari, P.; Sisinni, E. Energy Efficiency of Slotted LoRaWAN Communication With Out-of-Band Synchronization. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Ta, D.T.; Khawam, K.; Lahoud, S.; Adjih, C.; Martin, S. LoRa-MAB: A flexible simulator for decentralized learning resource allocation in IoT networks. In Proceedings of the 12th IFIP Wireless and Mobile Networking Conference (WMNC), Paris, France, 1–13 September 2019; pp. 55–62. [Google Scholar]
- Pop, A.-I.; Raza, U.; Kulkarni, P.; Sooriyabandara, M. Does bidirectional traffic do more harm than good in LoRaWAN based LPWA networks? In Proceedings of the GLOBECOM2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Loh, F.; Mehling, N.; Metzger, F.; Hoßfeld, T.; Hock, D. LoRaPlan: A Software to Evaluate Gateway Placement in LoRaWAN. In Proceedings of the 2021 17th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 25–29 October 2021; pp. 385–387. [Google Scholar]
- Casals, L.; Gomez, C.; Vidal, R. The SF12 Well in LoRaWAN: Problem and End-Device-Based Solutions. Sensors 2021, 21, 6478. [Google Scholar] [CrossRef] [PubMed]
- Moysiadis, V.; Lagkas, T.; Argyriou, V.; Sarigiannidis, A.; Moscholios, I.D.; Sarigiannidis, P. Extending ADR mechanism for LoRa enabled mobile end-devices. Simul. Model. Pract. Theory 2021, 113, 102388. [Google Scholar] [CrossRef]
- Triantafyllou, A.; Sarigiannidis, P.; Lagkas, T.; Sarigiannidis, A. A Novel LoRaWAN Scheduling Scheme for Improving Reliability and Collision Avoidance. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4. [Google Scholar]
- Griva, A.; Boursianis, A.D.; Wan, S.; Sarigiannidis, P.; Karagiannidis, G.; Goudos, S.K. Performance Evaluation of LoRa Networks in an Open Field Cultivation Scenario. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–5. [Google Scholar]
- Ksiazek, K.; Grochla, K. Flexibility Analysis of Adaptive Data Rate Algorithm in LoRa Networks. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June 2021–2 July 2021; pp. 1393–1398. [Google Scholar]
- Bouras, C.; Gkamas, A.; Salgado, S.A.K.; Papachristos, N. Spreading Factor Selection Mechanism for Transmission over LoRa Networks. In Proceedings of the 2021 28th International Conference on Telecommunications (ICT), London, UK, 1–3 June 2021; pp. 1–5. [Google Scholar]
- López Escobar, J.J.; Gil-Castiñeira, F.; Díaz Redondo, R.P. JMAC Protocol: A Cross-Layer Multi-Hop Protocol for LoRa. Sensors 2020, 20, 6893. [Google Scholar] [CrossRef] [PubMed]
- ns-3 Manual. Available online: https://www.nsnam.org/docs/release/3.35/manual/ns-3-manual.pdf (accessed on 10 February 2022).
- Silva, J.; Flor, D.; Junior, V.A.de.; Bezerra, N.; Medeiros, A. A Survey of LoRaWAN Simulation Tools in ns-3. J. Commun. Inf. Syst. 2021, 36, 17–30. [Google Scholar] [CrossRef]
- Capuzzo, M.; Magrin, D.; Zanella, A. Confirmed traffic in LoRaWAN: Pitfalls and countermeasures. In Proceedings of the 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri, Italy, 20–22 June 2018; pp. 1–7. [Google Scholar]
- Finnegan, J.; Brown, S.; Farrell, R. Modeling the Energy Consumption of LoRaWAN in ns-3 Based on Real World Measurements. In Proceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25 October 2018; pp. 1–4. [Google Scholar]
- Finnegan, J.; Brown, S.; Farrell, R. Evaluating the Scalability of LoRa WanGateways for Class B Communication in ns-3. In Proceedings of the 2018 IEEE Conference on Standards for Communications and Networking (CSCN), Paris, France, 29–31 October 2018; pp. 1–6. [Google Scholar]
- Sari, E.K.; Wirara, A.; Harwahyu, R.; Sari, R.F. Lora Characteristics Analysis for IoT Application using NS3 Simulator. In Proceedings of the 2019 IEEE R10 Humanitarian Technology Conference (R10-HTC)(47129), Depok, West Java, Indonesia, 12–14 November 2019; pp. 205–210. [Google Scholar]
- Capuzzo, M.; Magrin, D.; Zanella, A. Mathematical Modeling of LoRa WAN Performance with Bi-directional Traffic. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar]
- Priyanta, I.F.; Golatowski, F.; Schulz, T.; Timmermann, D. Evaluation of LoRa Technology for Vehicle and Asset Tracking in Smart Harbors. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 4221–4228. [Google Scholar]
- Dawaliby, S.; Bradai, A.; Pousset, Y. Adaptive dynamic network slicing in LoRa networks. Future Gener. Comput. Syst. 2019, 98, 697–707. [Google Scholar] [CrossRef]
- Oukessou, Y.; Baslam, M.; Oukessou, M. LPWAN IEEE 802.11ah and LoRaWAN capacity simulation analysis comparison using NS-3. In Proceedings of the 2018 4th International Conference on Optimization and Applications (ICOA), Mohammedia, Morocco, 26–27 April 2018; pp. 1–4. [Google Scholar]
- Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet Things J. 2019, 6, 3097–3109. [Google Scholar] [CrossRef] [Green Version]
- Reynders, B.; Meert, W.; Pollin, S. Power and spreading factor control in low power wide area networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Hariprasad, S.; Deepa, T. Improving Unwavering Quality and Adaptability Analysis of LoRaWAN. Procedia Comput. Sci. 2020, 171, 2334–2342. [Google Scholar] [CrossRef]
- Tiurlikova, A.; Stepanov, N.; Mikhaylov, K. Method of Assigning Spreading Factor to Improve the Scalability of the LoRaWan Wide Area Network. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–4. [Google Scholar]
- Hasegawa, Y.; Suzuki, K. A Multi-User ACK-Aggregation Method for Large-Scale Reliable LoRaWAN Service. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Marais, J.M.; Abu-Mahfouz, A.M.; Hancke, G.P. Improving the FLoRa Simulation Framework for the Performance Evaluation of IoT Scenarios. In Proceedings of the Thirteenth International Conference on Sensor Technologies and Applications, SENSORCOMM 2019, Nice, France, 27–31 October 2019; pp. 27–33. [Google Scholar]
Year [Ref.] | Simulators/Emulators | Study Type | Scope of Study |
---|---|---|---|
2011 [88] | COOJA, MiXiM, NS-3, OMNeT++, QualNet, Shawn, TOSSIM | Evaluation | Overview, evaluation environment, evaluation approaches and requirements, comparative study of wireless link properties (case study) and comparison table in terms of the simulation model |
2011 [52] | AKAROA, GloMoSim, GTNetS, NetSim, NS-2, OMNeT++, OPNET, P2PRealm, QualNet, Shunra VE | Review | Review, classification, comparison, methodologies, techniques and comparison table |
2011 [19] | ATEMU, Avrora, EmStar, J-Sim, NS-2, OMNeT++, TOSSIM | Survey | Overview, merits, limitations and comparison table |
2011 [55] | GloMoSim, GTSNetS, NS-2, OMNeT++, OPNET, SENSE, TOSSIM | Review | State of-the-art, features, limitations and comparison table |
2011 [53] | Castalia, J-Sim, Mixim, NRL, NS-2, OMNeT++, PAWiS, SENSE, SenSim, SensorSim, TOSPIE2 | Review | Overview, state-of-art, features and requirements |
2011 [63] | NS-2, OPNET, QualNet | Comparative study | Relevance of WSN simulators compared to the IEEE 802.15.4 standard Testbed |
2011 [64] | Avrora, Castalia, Cooja, EmStar, GloMoSim, J-Sim, (J)Prowler, NS-2, SENS, SENSE, Shawn, TOSSIM, UWSim, VisualSense | Comparison | Overview, environment, features, simulation/ programming language, limitations and comparison table |
2011 [65] | Castalia, MiXiM, TOSSIM, WSNet | Comparison | Examine realistic models topology, energy consumption model, antenna setting, MAC, noise and radio propagation of the simulators/emulators |
2012 [20] | AlgoSenSim, Atarraya, ATEMU, Avrora, COOJA, EmSim, Sensor Network Package, Freemote, J-Sim, MSPsim, NetTopo, NS-2 based (NRL Sensorsim, RTNS, Mannasim), OMNeT++ based (PAWiS, MiXiM, SENSIM, NesCT, Castalia), Prowler, Ptolemy II based (VisualSense, Viptos), SENS, SENSE, Sensor Security Simulator (S3), Shawn, TOSSIM, SIDnet-SWANS, TRMSim-WSN, VMNet, Sinalgo, Wireless Sensor Network Localization Simulator, Wireless Sensor Network Simulator, WSim, WSN-Sim, WSNet, WsnSimPy | Survey | Overview, classification, features, applications and comparison table |
2012 [21] | J-SIM, NetSim, NS-2, OMNET++, OPNET, NS-3, QualNet, REAL | Survey | Overview, features, advantages and disadvantages |
2012 [66] | GloMoSim, J-SIM, NS-2, OMNeT++, OPNET, QualNet | Comparison | Overview, performance comparison, and comparison table |
2012 [67] | ATEMU, Avrora, Castalia, J-Sim, NS-2, OMNeT++, OPNET, TOSSIM | Comparison | Overview, merits, limitations and comparison table |
2012 [22] | ATEMU, AVRORA, Castalia, (J)Prowler, SENSE | Survey | Brief overview |
2012 [23] | Dingo, EmStar, GloMoSim, J-Sim, NS-3, OPNET, QualNet, SENS, SensorSim, Shawn, TOSSF, TOSSIM | Survey | Overview, modeling, methodologies and comparison table |
2012 [68] | NS-2, NS-3 | Comparison | Overview, features, differences, advantages and disadvantages |
2012 [69] | MATSNL, NS-2, OMNeT++, NS-3, PowerTOSSIM, PowerTOSSIM-z | Comparison | Features, performance, reliability, energy consumption, techniques and comparison table |
2012 [24] | Glomosim, J-Sim, NS-2, NS-3, OMNeT++ | Survey | Overview, features, advantages, disadvantages, future work, limitations and comparison table |
2013 [70] | GloMoSiM, NS-2, NS-3, OMNET++ | Comparison | Performance comparison |
2013 [25] | COOJA, GloMoSim, J-Sim, (J)Prowler, NS-2, OMNeT++ based (Castalia), SENS, SENSE, Shawn, TOSSIM, UWSim, VisualSense | Survey | Overview, classification, features, scalability, effectiveness, limitations and comparison table |
2013 [26] | ATEMU, Avrora, J-Sim, NS-2, OMNeT++, Sense, Sensorsim, TOSSIM | Survey | Comprehensive overview and energy/power consumption |
2013 [71] | Castalia, J-Sim, TOSSIM, NS-2, QualNet, NS-3 | Comparison | Overview, limitation, model, merits and demerits |
2013 [27] | J-Sim, NS-2, OMNeT++, NS-3 | Comprehensive Survey | Overview, features, architecture, advantages, disadvantages and comparison table |
2013 [28] | Avrora, Castalia, GloMoSim, J-Sim, MiXiM, NS-3, OPNET | Survey | Overview and features |
2013 [30] | Dingo, EmStar, GloMoSim, GTSNetS, J-Sim, SensorSim, NS-2, TOSSIM, NS-3, Qualnet, SENS, Shawn, TOSSF, OPNET | Survey | Overview, modeling, simulation methodologies, features, drawbacks and comparison table |
2013 [31] | J-SIM, NS-2, TINYOS, NS-3, NetSim, OMNeT++, OPNET, SimPy, QualNet | Survey | Overview, advantages and disadvantages |
2013 [32] | ATEMU, EmStar/EmSim/EmTOS, J-Sim, GloMoSim, OMNeT++, NCTUns2.0, NS-2, JiST/SWANS, Prowler/(J)Prowler, Ptolemy II, SENS, SNAP, SSFNet, TOSSIM | Survey | Overview, WSN model, framework choice, simulation software package (general and specific) and comparison table |
2014 [56] | ATEMU, Avrora, Castalia, COOJA, Dingo, EmStar, GloMoSim, J-Sim, JiST/SWANS, NS-2, NS-3, OMNeT++, SENS, SENSE, SensorSim Shawn, ShoX, Sidh, WsnSimPy, TOSSF, TOSSIM, VisualSense | Review | Overview, features, advantages and disadvantages and comparison table |
2014 [33] | GloMoSim, NS-2, OMNET++, NS-3 | Survey | Characteristics, limitations, availability (site), applications to MANET, advantages and disadvantages |
2014 [72] | NS-2, OMNeT++ (Castalia), NS-3, J-Sim, TOSSIM | Comparison | Overview and performance comparison (CPU utilization, memory usage, computational time period) |
2014 [57] | GloMoSim, J-Sim, OPNET, NS-2, OMNET++, NS-3, QualNet | Review | Overview, evaluation methods, routing protocols, advantages and drawbacks, selection criteria, popularity and comparison table |
2014 [34] | Castalia, EmPro, EmStar, Freemote Emulator, GloMoSim, MiXiM, MSPSim, NS-3 | Survey | Overview, features, types and limitations |
2014 [73] | DRMSim, GloMoSim, GrooveNet, J-SIM, NCTUns, NetSim, NS-2, NS-3, OMNeT++, OPNET, QualNet, SSFNet, TOSSIM, TraNS | Comparison | Overview, features, advantages, limitations and comparison table |
2014 [94] | AEON, AlgoSenSim, Atarraya, ATEMU, Avrora, Boris, Capricorn, Castalia, CaVi, COOJA, DiSenS, EmStar/Em*, EmTOS, EnergySim, GloMoSim, GTNetS, H-MAS, J-Sim, JiST/SWANS++, JiST/SWANS, (J)Prowler, LecsSim, LSUSensorSimulator, Mannasim, Maple, MOB-TOSSIM, motesim, Mule, NetTopo, NAB, NS-2, OLIMPO, OMNeT++, OPNET, PAWiS, PowerTOSSIMZ, Prowler, Ptolemy, QualNet, SenQ, Sensor security simulator (S3), SENS, SENSE, Sensoria, SensorMaker, SensorSim, Shawn, Sidh, SimGate, SimPy, SimSync, Sinalgo, SmartSim, SIDnet-SWANS, SNAP, SNetSim, SNIPER-WSNim, SNSim, SSFNet, Starsim, TikTak, TOSSF, TOSSIM, TRMSim-WSN, UWSim, VisualSense, Wireless Sensor network localization simulator, WISDOM, WISENES, WiseNet, WSim, WSNet-Worldsens, WSNGE, WSNsim, Xen WSN simulator | Analytical Study | Evaluation criteria, type of simulation, classification/categorization, recent developments, designed or modified and nearby realistic experimental results |
2015 [58] | DRMSim, GloMoSim, J-Sim, LabVIEW, Mannasim, MATLAB/Simulink, NCTUns 6.0, NetSim, NetTopo, NRL Sensorsim, NS-2, NS-3, OMNeT++, OPNET, PiccSIM, Prowler, Ptolemy II, QualNet 7.0 and EXata 5, SENS, SENSE, SensorSim, SHAWN, SIDH, SIDnet-SWANS, sQualNet, SSFNet, UWSim, Viptos, Visual Sense, WSim/WorldSen/s/WSNet, WSN Localization | Review | Comprehensive review, architecture, features, interface/GUI, and comparison table |
2015 [35] | J-Sim, NetSim, NS-2, OPNET, NS-3, QualNet, OMNeT++ | Survey | Overview |
2015 [35] | J-Sim, NetSim, NS-2, OPNET, NS-3, QualNet, OMNeT++ | Survey | Overview |
2015 [95] | ATEMU, AVRORA, Castalia, Emsim, Free Emulator, J-SIM, MPSim, NS-2, QualNet, OMNeT++, Prowler, NS-3, TOSSIM, WSim, WSN Localization Simulator | Qualitative analysis | Overview, classification, features, limitation, pros and cons, and comparison table |
2016 [54] | ATEMU, Avrora, Castalia, EmStar, GloMoSim, J-Sim, MiXiM, MSPsim, NesCT, NRL SensorSim, NS-2, NS-3, OMNeT++, OPNET, PAWiS, Prowler/(J)Prowler, SENS, SENSE, SenSim, SensorSim, Shawn, SUNSHINE, TOSSIM | Review | Overview, features, implementation, usage (general networking or for WSNs), techniques, structure and short comparison table |
2016 [74] | Avrora, Castalia, COOJA/MSPSim, DANSE, MiXiM, NetTopo, NS-2, NS-3, PASES, PAWiS, Sense, TOSSIM, VIPTOS, WSNet | Comparative study | Overview, categorization, different mainstream simulation environments and comparison table |
2016 [75] | Atarraya, MATLAB/Simulink, NS-2, OMNeT++, PiccSIM, Prowler, TrueTime | Comparison | Analyzed and compared various simulation frameworks and comparison table |
2016 [36] | Aqua-glomo, Aqua-netmate, Aqua-Sim, Aqua-tools, AUVNetSim, Desert, NS-2, NS-3, OPNET, QualNet, UNSET, USNet, UWSim, WOSS | Survey | Overview, Underwater Sensor Network (UWSN), features, pre-requirements and comparison table |
2016 [76] | Castalia, NS-3, TOSSIM | Comparison | Overview, features, power consumption and comparison analysis |
2016 [77] | NS-2, NS-3 | Comparison | Overview, features, architecture, merits, demerits, models and comparison table |
2016 [37] | CNET, Dingo, EmStar, GloMoSim, GTSNetS, J-Sim, TOSSIM, NS-2, OPNET, SENS, SensorSim, Shawn, NS-3, TOSSF, TRMSim, Qualnet | Comprehensive survey | Overview, features, limitations, methodology, test-beds, hardware platforms and comparison table |
2016 [92] | Castalia, MiXiM, PASES, WSNet, COOJA | Case study | Routing behavior, protocols, models and accuracy performance |
2017 [38] | J-Sim, MATLAB, NS-2, NS-3, OMNeT++, OPNET, QualNet | Survey | Taxonomy on simulation, overview, features, limitations and comparison table |
2017 [39] | NS-2, OMNeT++, OPNET Modeler | Survey | Overview, performance analysis and comparison table |
2017 [59] | Simulators: Ptolemy II and its derivatives (Ptolemy II, Viptos, VisualSense), NS-2 and its derivatives (NS-2, Mannasim, NRL Sensorsim, RTNS, TRAILS, PiccSIM), NS-3 (NS-3, Symphony), OMNeT++ and its derivatives (OMNeT++, SENSIM, LSU SensorSimulator, Castalia, SolarCastalia, MiXiM, NesCT, PAWiS), GloMoSim and its derivatives (GloMoSim, QualNet, SenQ), Worldsens and its derivative (Worldsens, WSNet), Other general-purpose simulators (AlgoSenSim, NetTopo, SENSE, JiST/SWANS, Sinalgo, SimPy, MSPSim, COOJA, J-Sim, NetSim, OPNET, SSFNeT, NCTUns, SystemC, Wireshark, MATLAB SIMULINK, LabVIEW), Specific-purpose simulators (Atarraya, Cell-DEVS), Agent-based simulators (ABMQ, MASON, RepastSNS, NetLOGO, SXCS), Ubiquitous computing simulators (4UbiWise, UbikSim, TATUS), Underwater simulators (UWSim, SUNSET, SUNRISE, DESERT, RECORDS, Aqua-Net, SeaLinx, Aqua-Net Mate, Aqua-Lab, Aqua-Sim, Aqua-Tune, Aqua-GloMo, Aquatools, UANT, WOSS, AUWCN, SAMON, UsNeT), specific-purpose simulators (SIDnet-SWANS, Wireless Sensor Network Localization Simulator, Sensor Security Simulator (S3), Prowler/(J)Prowler, Shawn, TRMSim-WSN, WSNimPy, SENS, IFAS, Sidh, SenSor, Dingo, SNAP, GTSNetS, IDEA1, WiseNet, SimGate, SimSync, SensorMaker, OLIMPO, WISENES, DiSenS, Sensoria, Capricorn, WISDOM, H-MAS, TikTak, SnSim, SNIPER-WSNim, WSNGE, ShoX, PASENS, CaVi, Glonemo, Maestro, CupCarbon, TimSim, JSensor) Emulators: TOSSIM and its derivatives (TOSSIM, PowerTOSSIM z, TOSSF, TYTHON, Mule), Avrora and its derivative (Avrora, AEON), Other emulators (ATEMU, EmPro, OCTAVEX, SensEH, HarvWSNet, UbiSec & Sens, Emuli, MEADOWS, Freemote Emulator, VMNet, WSim, EmStar, WiEmu, WiSeREmulator, SUNSHINE, CORE) | Review | Overview, features, evaluation techniques, environments, requirements, operating systems, limitations, frameworks, performance comparison and comparison table |
2017 [78] | ATEMU, Avrora, Castalia, COOJA, Dingo, EmStar, GlomoSim, J-Sim, OMNeT++, JiST/SWANS, NS-2, SENS, SENSE, SensorSim, NS-3, Shawn, ShoX, Sidh, TOSSF, TOSSIM, VisualSense, WsnSimPy | Comparative study | Overview, characteristics, modeling energy consumption, modeling mobility, scalability, extensibility and comparison table |
2017 [89] | AEON, ATEMU, Avrora, Castalia, COOJA, EmStar, EnergySim, GloMoSim, IDEA1, J-Sim, NS-2, OMNeT++, OPNET, PAWiS, PowerTOSSIM, Prowler, Ptolemy, QualNet, SENSE, Sensim, SensorSim, Shawn, STORM, TOSSIM, UWSim | Evaluation | Overview, energy-aware scheme, features, advantages, limitations, classification method, power consumption model and comparison table |
2017 [40] | Avrora, Castalia, Contiki, Prowler, Riot, Shawn, Shox, TinyOS, TRMSim-WSN | Survey | Overview, features, software evaluation and comparison table |
2017 [41] | ATEMU, Avrora, Castalia, COOJA, EmStar, J-Sim, NS-2, OMNeT++, SENS, TOSSIM | Survey | Overview, features, advantage, disadvantages, limitations and comparison table |
2017 [60] | Castalia, Cupcarbon, J-Sim, NS-2, TOSSIM, OMNeT++, NS-3 | Review | Overview, state of art, IoT applications, architectures, simulation tools in IoT, advantages, disadvantages and comparison tables |
2017 [79] | NS-2, OMNeT++ | Comparison | Brief overview, advantage, limitation and performance comparison |
2018 [42] | GloMoSim, NS-3, J-Sim, NetSim, NS-2, OMNeT++, OPNET, JiST/SWANS, QualNet | Survey | Overview, features, protocols, merits, demerits and comparison tables |
2018 [90] | CupCarbon, NC-Tuns, NS-2, NS-3, OMNeT++, OPNET Modeler/ Riverbed Modeler, TOSSIM | Evaluation | Overview, features, routing algorithm (modified Dijkstra algorithm) and comparison tables |
2018 [43] | NetSim, QualNet, NS-2, OMNeT++, OPNET, NS-3, REAL | Survey | Overview, features, advantages, disadvantages, backend environment, supporting operating system, and minimum hardware requirement |
2018 [80] | Avrora, EmStar, J-Sim, NS-2, NS-3, NS4, OMNeT++, QualNet, SENS, TOSSIM | Comparison | Overview, features, limitation, and comparison table |
2018 [44] | J-Sim, MATLAB, NS-2, OPNET, QualNet, TOSSIM | Survey | Overview, selection criteria, merits and demerits |
2019 [61] | ATEMU, Avrora, Castalia, Cooja, Emsim, Emstar, Freemote, GloMoSim, J-Sim, Mannasim, MSPSim, NS-2, NS-3, OMNeT++, OPNET, Prowler, QualNet, TOSSIM, VMNET | Review | Overview, features, necessity and limitation of testbeds and comparison table |
2019 [45] | MATLAB / Simulink, NS-2, NS-3, Prowler | Survey | Overview |
2019 [81] | AVRORA, CloudSim, GloMoSim, GNS3, J-Sim, NetSim, NS-2, OPNET Modeler, NS-3, OptSim, Packet tracer, OMNeT++, QualNet, REAL | Comparative study | Overview, features, benefits, disadvantages, limitations and comparison tables |
2019 [46] | GloMosim, J-Sim, OPNET, NS-2, OMNeT++, Qualnet | Survey | Overview, features, recent developments and comparison table |
2020 [82] | Avrora, NS-2, TOSSIM, OMNeT++, NS-3 | Comparative study | Implementation and evaluation process, different testbeds, features, limitations and comparison table |
2020 [18] | NetSim, NS-2, QualNet, OMNeT++, NS-3, SWANS | Review | Focus on NS-3 (popularity and flexibility) and comparison table |
2020 [91] | NS-2, OMNeT++, TOSSIM | Evaluation | Overview, methodology, application, energy model, performance comparison (CPU consumption, memory usage, execution time, scalability) and comparison table |
2020 [62] | COOJA, J-Sim, LabView, MATLAB/Simulink, Mixim or Castlia, NetSim, NS-2, NS-3, OMNeT++, OPNET, TOSSIM, QualNet | Comprehensive review | Experimental analysis, modeling, estimation, interference avoidance, merits, demerits and comparison table |
2020 [83] | GloMoSim, MATLAB/Simulink, NetSim, NS-2, TOSSIM, NS-3, SENSE, OMNeT++, OPNET, QualNet | Comparative study | Overview, classification, methodology, Adhoc on Demand Vector Protocol (AODV), clustering protocol, simulation run-time comparison, merits, shortcomings and comparison table |
2020 [47] | MATLAB, NetSim, NS-2, OMNeT++, NS-3 | Survey | Overview, coverage techniques, comparisons, classification of coverage and practical challenges performance metrics |
2020 [84] | ATEMU, EmStar, J-Sim, NS-2, OMNeT++, TOSSIM | Comparison | Overview, advantages and disadvantages and comparison table |
2020 [93] | GNS3, MATLAB, NS-2, NS-3, OMNET++, OPNET IT Guru | Case study | Overview, features, evaluation indicators, measurement and valuation levels, and comparison table |
2020 [85] | MATLAB/Simulink, NS-2, OPNET, NS-3, OMNeT++ | Comparison | Brief description, network simulation methods, classification, time-sensitive Networking (TSN), comparative analysis |
2020 [48] | NS-2, TOSSIM, OMNeT++ | Survey | Brief overview, mechanism, transmission technologies, challenges, applications of WSN |
2020 [49] | cnet, Dingo, EmStar, GloMoSim, J-Sim, NS-2, QualNet, GTSNetS, OPNET, SENS, SensorSim, NS-3, SensorSim-II, TOSSIM, TRMSim-WSN | Survey | Brief review and feasibility analysis |
2021 [50] | J-Sim, MATLAB, NetSim, NS-2, NS-3, OMNeT++, OPNET, QualNet | Survey | Short description, different experimental platforms, architecture, features, limitations and comparison table |
2021 [51] | CORE, Komondor, Mininet-WiFi, NS-3, OMNeT++/INET, Packet Tracer | Survey | Overview and recommended usage (in terms of mobility, handover, configuration of network devices, wireless packet simulation, signal range, WEP, WPA, 4-way handshake data exchange (RTS/CTS/Data/Ack) and interference) |
2021 [86] | MATLAB, NS-2, NetSim, OMNeT++, NS-3 | Comparison | Overview, statistical analysis and comparison with respect to Wake-up Receivers |
2021 [87] | GloMoSim, J-Sim, JiST/SWANS, MATLAB/Simulink, NetSim, NS-2, QualNet, OMNeT++, OPNET, NS-3 | Comparative Study | Reviews on areas of strength, operating system, supported ad hoc technologies, degree of usability and comparison table |
Ref. | Compared Simulators/ Emulators | Simulation Parameters | Performance Measures | Scenario/Comment |
---|---|---|---|---|
[64] | NS-2, Shawn, TOSSIM | • Simulation Time: 60 s • Number of nodes: 10,000 • X, Y Dimensions: 500 m × 500 m • Rate of sending packet: 250 ms | • Number of nodes vs. Memory usage • Number of nodes vs. Abstraction level • Number of nodes vs. CPU time | Presented a case study of a simple broadcast message application. |
[70] | NS-2, OMNeT++, NS-3, GloMoSim | • Simulation Time: 500 s • Number of nodes: 400–2000 • Packet size: 512 kb • X, Y Dimensions: 1000 m× 1000 m • Routing protocol: AODV | • Number of nodes vs. Computational time • Number of nodes vs. CPU utilization • Number of nodes vs. Memory usage | Compared simulators using AODV routing protocol. |
[72] | NS-2, TOSSIM, NS-3, J-Sim OMNeT++/ Castalia | • Simulation Time: 500 s • Number of nodes: 400–2000 • Routing protocol: LEACH • X, Y Dimensions: 1000 m× 1000 m • Packet size: 512 kb | • Number of nodes vs. Memory usage • Number of nodes vs. CPU utilization • Number of nodes vs. Computational time | Compared simulators using LEACH routing protocol. |
[82] | Avrora, NS-2 | • Nodes number: 100 • Com. range: 10,15,20 m • Sensor type: MicaZ • Topology: Static | • Localization accuracy vs Com. range | Implemented QLoP as a case study to study the effectiveness of simulators and testbeds. |
[83] | NS-2, OMNeT++, NS-3, MATLAB | • Number of nodes: 50 & 100 • Routing protocol: AODV | • Simulation run-time comparison | Compared simulators using AODV routing protocol. |
[91] | TOSSIM, NS2, OMNeT++/INET | • Simulation time: 100 s • Network area: 10 m× 10 m • Sensor nodes: 4, 8, 16… • No. of BC: 1, 2, 4, 8, 16, 32… • Frequency: 1 Hz • Wireless protocols: 802.11b and 802.15.4 • Payload length: 10–90 bytes • Bitrate: 11 Mbps and 250 Kbps | • Time vs. CPU consumption • Number of BCs vs. Memory usage • Number of BCs vs. Execution time • Energy consumption vs. Payload size | Performance scenarios: CPU utilization evaluation Energy consumption scenarios Energy consumption evaluation using 802.11b and 802.15.4. |
[92] | Castalia, MiXiM, WSnet, PASES, COOJA | • Simulation time: 3600 s • Network area: 40 m × 60 m • Traffic type/rate (pkt/min): CBR/1 • Network size: 25 • Number of senders: 1, 2, 5, 10, 24 • PHY models: NXP JN5148 • Receiver sensitivity: −85 dBm • Routing protocol: AODV • MAC: IEEE802.15.4 • Data packet size: 64 bytes • RF output power: −3 dBm • Communication channel Model: log-normal shadowing = 4.0, = 20 | • Number of nodes vs. Simulation time • Number of nodes vs. Delay • Number of nodes vs. Received packets | Scenario: A multi-hop scenario for analyzing the performance of AODV protocol. |
[96] | OMNeT++/INET, JiST/SWANS | • VANET scalability: Circular & rectangular road • Time interval: 0.1 s • Number of Vehicles: >5000 • Routing protocol: AODV • Simulation time: 10 s • Execution times: 3 to 10 | • Number of vehicles vs. Time for simulations • Number of vehicles vs. Memory consumption | Scalability study focused on VANETs |
[97] | OMNeT++, SXCS | • Number of nodes: 10–1000 | • Remaining energy vs. Time • Memory usage vs. Number of nodes • Agents proces. time vs. Number of nodes • Remaining energy vs. Time • Packet Loss vs. Number of nodes | Proposed SXCS, a standalone generic simulator for densely distributed embedded systems. |
Country/Region | Band/Channels (MHz) | Channel Plan |
---|---|---|
Europe | 433.05–434.79, 863–870 | EU433, EU863–870 |
USA, Canada, Mexico | 902–928 | US902-928 |
China | 779–787, 470–510 | CN779–787, CN470–510 |
Japan | 920.6–928.0 | AS923-1 |
Australia | 915–928 | AS923-1, AU915–928 |
United Kingdom | 863–873, 915–918 | EU863–870, AS923-3 |
India | 865–867 | IN865–867 |
South Korea | 917–923.5 | KR920-923 |
Russia | 864–869.2 | RU864–870 |
Class Type | Features | Common Applications |
---|---|---|
Class A | • Are often battery-powered sensors • Most energy-efficient communication class • In sleeping mode most of the time • Usually keep long intervals between uplinks • No latency constraint • Uplink message can be sent at any time • Must be supported by all devices | • Environmental monitoring • Location tracking • Fire detection • Animal tracking • Earthquake early detection • Water leakage detection |
Class B | • An extension of Class A • Lower latency than Class A • Are battery-powered actuators • Do not need to send an uplink to receive a downlink • Shorter battery life than Class A • Synchronized to the network using periodic beacons • Energy-efficient communication class for latency-controlled downlink | • Utility meters • Temperature reporting |
Class C | • An extension of Class A devices • Are main powered actuators • Consumes higher power than Class A and B • No latency for downlink communication • Usually runs on mains power • Devices which can afford to listen continuously | • Streetlights • Utility meters with cut-off valves/switches |
Parameter | Higher SF | Lower SF |
---|---|---|
Data rate | Lower | Higher |
Distance | Travel longer | Travel shorter |
ToA | Longer | Shorter |
Receiver Sensitivity | Higher | Lower |
Battery Life | Shorter | Longer |
SF | 125 kHz | 250 kHz | 500 kHz |
---|---|---|---|
7 | 5.47 | 10.94 | 21.88 |
8 | 3.13 | 6.25 | 12.50 |
9 | 1.76 | 3.52 | 7.03 |
10 | 0.98 | 1.95 | 3.91 |
11 | 0.54 | 1.07 | 2.15 |
12 | 0.29 | 0.59 | 1.17 |
Data Rate | SF | BW (kHz) | Bit Rate (bit/s) | Payload Size (Bytes) |
---|---|---|---|---|
0 | 12 | 125 | 250 | 51 |
1 | 11 | 125 | 440 | 51 |
2 | 10 | 125 | 980 | 51 |
3 | 9 | 125 | 1760 | 115 |
4 | 8 | 125 | 3125 | 242 |
5 | 7 | 125 | 5470 | 242 |
6 | 7 | 250 | 11,000 | 242 |
Ref. | Simulation Environment | Type | Language | Target Domain | Operating System | GUI |
---|---|---|---|---|---|---|
[137] | LoRaSIM | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[149,150,151,152] | NS-3 | Discrete-event | C++, Python | Generic, specific | Linux, Windows | Yes |
[153] | OMNeT++(FLoRa) | Discrete-event | C++ | Generic, specific | Linux, macOS, Windows | Yes |
[154] | CupCarbon | Discrete-event | Java, SenScript | Zigbee, WiFi, LoRa radio | macOS | Yes |
[155] | PhySimulator | Discrete-event | MATLAB | Specific | macOS, Windows | No |
[156] | LoRaFREE | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[157] | LoRaEnergySim | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[158] | LoRaWANSIM | Discrete-event | MATLAB | Specific | Linux, macOS, Windows | No |
[159] | TS-LoRa | Discrete-event | Micropython | Specific | Linux, macOS, Windows | No |
[160] | LoRaWAN-SIM | Discrete-event | Perl | Specific | Linux, macOS, Windows | No |
[161] | LoRaMACSim | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[162] | LoRa-MAB | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[163] | LoRaWANSim | Discrete-event | Python | Specific | Linux, macOS, Windows | No |
[164] | LoRaPlan | Discrete-event | Python | Specific | Linux, Windows | Yes |
[165] | AFLoRa | Discrete-event | C++ | Specific | Linux, macOS, Windows | Yes |
Features | NS-3 LoRaWAN Module | FLoRa Framework | LoRaSim |
---|---|---|---|
Base Simulator | NS-3 | OMNeT++ | Python |
Language | C++ and Pyhton | C++ | Python |
Event | Discrete | Discrete | Discrete |
License | Open source | Open source | Open source |
Native GUI Support | No | Yes | Only plot |
Power Awareness | Yes | Yes | Yes |
Low-Power Protocols | Yes | Yes | Yes |
Additional Frameworks | Import all libraries online | INET | SimPy, NumPy, matplotlib |
Energy Model | Yes | Yes | Yes |
ADR Support | Yes | Yes | No |
Examples | Yes | Yes | Yes |
ACK Support | Yes | Yes | No |
Imperfect SF | Yes | No | No |
Capture Effect | Yes | Yes | Yes |
Device Class | A | A | A |
Multi-GW Support | Yes | Yes | Yes |
Uplink Confirmed | No | Yes | Yes |
Downlink Traffic | Yes | Yes | No |
Network Server | Simple | Through IP | Simple |
Urban Propagation Models | Yes | Yes | Yes |
Popularity in Literature | High | Medium | High |
Documentation | Excellent | Good | Good |
Community Support | Very Good | Limited | Limited |
Energy Consumption | Yes | Yes | Yes |
Latest Version /Year | 0.3.0/2021 | 1.0.0/2021 | 0.2.1/2017 |
Parameters | Values |
---|---|
Simulation Time | 10,000 s |
X, Y Dimensions | 100 m × 100 m |
Number of Gateway(s) | 1 |
Packet Size | 51 bytes |
Network Topology | star-of-stars |
Spreading Factor (SF) | 7 & 12 |
Number of End-Devices (EDs) | 50–400 |
Bandwidth (B) | 125 kHz |
Time between Packets | 100s |
Transmission Power (TP) | 14 dBm |
Carrier Frequency | 868 MHz |
Code Rate (CR) | 4/5 |
Simulator | Versions |
---|---|
LoRaSim | 0.2.1 |
NS-3/ NS-3 LoRaWAN Module | 3.29/0.3.0 |
OMNeT++/INET/FLoRa | 6.0rc1/4.3.7/1.0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, S.; Karunathilake, T.; Förster, A. Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks. Sensors 2022, 22, 5546. https://doi.org/10.3390/s22155546
Idris S, Karunathilake T, Förster A. Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks. Sensors. 2022; 22(15):5546. https://doi.org/10.3390/s22155546
Chicago/Turabian StyleIdris, Sadiq, Thenuka Karunathilake, and Anna Förster. 2022. "Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks" Sensors 22, no. 15: 5546. https://doi.org/10.3390/s22155546
APA StyleIdris, S., Karunathilake, T., & Förster, A. (2022). Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks. Sensors, 22(15), 5546. https://doi.org/10.3390/s22155546