1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter
<p>Schematic diagram of an experimental setup, in which two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer.</p> "> Figure 2
<p>ASE spectra of two SOAs.</p> "> Figure 3
<p>(<b>a</b>) Optical spectrum of the WSL when only SOA 1 was connected in the Mach-Zehnder interferometer; (<b>b</b>) optical spectrum of the WSL when only SOA 2 was connected in the Mach-Zehnder interferometer; (<b>c</b>) optical spectra output and (<b>d</b>) corresponding temporal output from the WSL by combining two SOAs in parallel in the Mach-Zehnder interferometer.</p> "> Figure 4
<p>Optical spectrum of WSL with a linear scale (<b>a</b>) when only SOA 1 was connected, (<b>b</b>) when only SOA 2 was connected, and (<b>c</b>) when SOA1 and SOA2 were combined in a Mach-Zehnder interferometer configuration. (<b>d</b>–<b>f</b>) Output pulses in the temporal domain corresponding to (<b>a</b>–<b>c</b>).</p> "> Figure 5
<p>(<b>a</b>) Optical spectra, (<b>b</b>) 10-dB bandwidth, and (<b>c</b>) average optical power with respect to the WSL scanning speed.</p> "> Figure 6
<p>Photograph of the output signal of the WSL on an oscilloscope.</p> "> Figure 7
<p>Optical spectra of the first-order reflection band from the CLC cell when the electric field was (<b>a</b>) 2.70, (<b>b</b>) 3.42, and (<b>c</b>) 3.77 V<sub>rms</sub>/µm, and (<b>d</b>–<b>f</b>) the oscilloscope displays of the first-order reflection band corresponding to the applied electric fields in (<b>a</b>–<b>c</b>), respectively [<a href="#app1-sensors-21-03053" class="html-app">Supplementary Videos S1 and S2</a>].</p> "> Figure 8
<p>Wavelength shift of the short-band edge on the OSA and oscilloscope when a pitch jump occurs according to the electric field applied to the CLC cell.</p> ">
Abstract
:1. Introduction
2. Experiments
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yun, S.H.; Richardson, D.J.; Kim, B.Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Opt. Lett. 1998, 23, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Boudoux, C.; Tearney, G.J.; Bouma, B.E. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 2003, 28, 1981–1983. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.Y.; Yun, S.H.; Tearney, G.J.; Bouma, B.E. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett. 2005, 30, 3159–3161. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.Y.; Yun, S.H.; Tearney, G.J.; Bouma, B.E. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 2005, 17, 678–680. [Google Scholar] [CrossRef]
- Huber, R.; Wojtkowski, M.; Fujimoto, J.G. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express 2006, 14, 3225–3237. [Google Scholar] [CrossRef]
- Eigenwillig, C.M.; Wieser, W.; Todor, S.; Biedermann, B.R.; Klein, T.; Jirauschek, C.; Huber, R. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers. Nat. Commun. 2013, 4, 1848. [Google Scholar] [CrossRef]
- Jirauschek, C.; Huber, R. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers. Biomed. Opt. Express 2015, 6, 2448–2465. [Google Scholar] [CrossRef]
- Kassani, S.H.; Villiger, M.; Uribe-Patarroyo, N.; Jun, C.; Khazaeinezhad, R.; Lippok, N.; Bouma, B.E. Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging. Opt. Express 2017, 25, 8255–8266. [Google Scholar] [CrossRef]
- Jun, C.; Villiger, M.; Oh, W.-Y.; Bouma, B.E. All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging. Opt. Express 2014, 22, 25805–25814. [Google Scholar] [CrossRef]
- Huber, R.; Wojtkowski, M.; Taira, K.; Fujimoto, J.G. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: Design and scaling principles. Opt. Exp. 2005, 13, 3513–3528. [Google Scholar] [CrossRef]
- Eigenwilling, C.M.; Biedermann, B.R.; Palte, G.; Huber, R. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Exp. 2008, 16, 8916–8937. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Zhang, J.; Wang, Q.; Chen, Z. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs. Opt. Express 2008, 16, 2547–2554. [Google Scholar] [CrossRef]
- Jung, E.J.; Kim, C.-S.; Jeong, M.Y.; Kim, M.K.; Jeon, M.Y.; Jung, W.; Chen, Z. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Opt. Express 2008, 16, 16552–16560. [Google Scholar] [CrossRef]
- Isago, R.; Nakamura, K. A high reading rate fiber Bragg grating sensor system using a high-speed swept light source based on fiber vibrations. Meas. Sci. Technol. 2009, 20, 034021. [Google Scholar] [CrossRef]
- Nakazaki, Y.; Yamashita, S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing. Opt. Express 2009, 17, 8310–8318. [Google Scholar] [CrossRef]
- Lee, B.C.; Jung, E.-J.; Kim, C.-S.; Jeon, M.Y. Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 μm Fourier domain mode-locked wavelength-swept laser. Meas. Sci. Technol. 2010, 21, 094008. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Ko, M.O.; Jung, M.S.; Park, I.G.; Kim, N.; Han, S.P.; Ryu, H.C.; Park, K.H.; Jeon, M.Y. Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter. Sensors 2013, 13, 9669–9678. [Google Scholar] [CrossRef]
- Ko, M.O.; Kim, S.-J.; Kim, J.-H.; Lee, B.W.; Jeon, M.Y. Dynamic measurement for electric field sensor based on wavelength-swept laser. Opt. Express 2014, 22, 16139–16147. [Google Scholar] [CrossRef]
- Ko, M.O.; Kim, S.-J.; Kim, J.-H.; Jeon, M.Y. In situ observation of dynamic pitch jumps of in-planar cholesteric liquid crystal layers based on wavelength-swept laser. Opt. Express 2018, 26, 28751–28762. [Google Scholar] [CrossRef]
- Ahn, S.; Ko, M.O.; Kim, J.-H.; Chen, Z.; Jeon, M.Y. Characterization of second-order reflection bands from a cholesteric liquid crystal cell based on a wavelength-swept laser. Sensors 2020, 20, 4643. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.-J.; Ko, M.O.; Kim, J.-H.; Jeon, M.Y. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor. Opt. Commun. 2018, 410, 637–642. [Google Scholar] [CrossRef]
- Park, J.; Kwon, Y.S.; Ko, M.O.; Jeon, M.Y. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement. Opt. Fiber Technol. 2017, 38, 147–153. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Kim, N.; Han, S.-P.; Ko, H.; Ryu, H.-C.; Yee, D.-S.; Park, K.H. Rapidly frequency-swept optical beat source for continuous wave terahertz generation. Opt. Express 2011, 19, 18364–18371. [Google Scholar] [CrossRef] [PubMed]
- Han, G.-H.; Cho, S.-W.; Park, N.S.; Kim, C.-S. Electro-optic swept source based on AOTF for wavenumber-linear interferometric sensing and imaging. Fibers 2016, 4, 14. [Google Scholar] [CrossRef]
- Park, N.S.; Chun, S.K.; Han, G.-H.; Kim, C.-S. Acousto-optic-based wavelength-comb-swept laser for extended displacement measurements. Sensors 2017, 17, 740. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Chen, R. Swept laser source based on acousto-optic tunable filter. Proc. SPIE 2014, 9297, 2071321. [Google Scholar] [CrossRef]
- Srinivasan, V.J.; Huber, R.; Gorczynska, I.; Fujimoto, J.G.; Jiang, J.Y.; Reisen, P.; Cable, A.E. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett. 2007, 32, 361–363. [Google Scholar] [CrossRef]
- Goda, K.; Fard, A.; Malik, O.; Fu, G.; Quach, A.; Jalali, B. High-throughput optical coherence tomography at 800 nm. Opt. Express 2012, 20, 19612–19617. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Jeon, M.; Kim, J. 850 nm centered wavelength-swept laser based on a wavelength selection galvo filter. Chin. Opt. Lett. 2016, 14, 011401. [Google Scholar] [CrossRef]
- Lee, S.-W.; Song, H.-W.; Jung, M.-Y.; Kim, S.-H. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt. Express 2011, 19, 21227–21237. [Google Scholar] [CrossRef]
- Shramenko, M.V.; Chamorovskiy, A.; Lyu, H.C.; Lobintsov, A.A.; Karnowski, K.; Yakubovich, S.D.; Wojtkowski, M. Tunable semiconductor laser at 1025–1095 nm range for OCT applications with an extended imaging depth. Proc. SPIE 2015, 9312, 93123B. [Google Scholar] [CrossRef]
- Cao, J.; Wang, P.; Zhang, Y.; Shi, G.; Wu, B.; Zhang, S.; Liu, Y. Methods to improve the performance of the swept source at 1.0 μm based on a polygon scanner. Photonics Res. 2017, 5, 245–250. [Google Scholar] [CrossRef]
- Wang, L.; Wan, M.; Shen, Z.; Wang, X.; Cao, Y.; Feng, X.; Guan, B. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating. Photonics Res. 2017, 5, 219–223. [Google Scholar] [CrossRef]
- Cao, J.; Wang, L.; Lu, Z.; Wang, G.; Wang, X.; Ran, Y.; Feng, X.; Guan, B. High-speed refractive index sensing system based on Fourier domain mode locked laser. Opt. Express 2019, 27, 7988–7996. [Google Scholar] [CrossRef]
- Sung, J.-Y.; Chen, J.-K.; Liaw, S.-K.; Kishikawa, H.; Goto, N. Fiber Bragg grating sensing system with wavelength-swept laser distribution and self-synchronization. Opt. Lett. 2020, 45, 5436–5439. [Google Scholar] [CrossRef]
- Tokurakawa, M.; Daniel, J.M.O.; Chenug, C.S.; Liang, H.; Clarkson, W.A. Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band. Opt. Express 2014, 22, 20014–20019. [Google Scholar] [CrossRef]
- Tokurakawa, M.; Daniel, J.M.O.; Chenug, C.S.; Liang, H.; Clarkson, W.A. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages. Opt. Express 2015, 23, 471–476. [Google Scholar] [CrossRef]
- Tan, S.; Yang, L.; Wei, X.; Li, C.; Chen, N.; Tsia, K.K.; Wong, K.K.Y. High-speed wavelength-swept source at 2.0 μm and its application in imaging through a scattering medium. Opt. Lett. 2017, 42, 1540–1543. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Xu, J.; Wong, K.K.Y.; Tsia, K.K. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch. Opt. Lett. 2014, 39, 622–625. [Google Scholar] [CrossRef]
- Wei, X.; Lay, A.K.S.; Xu, Y.; Tsia, K.K.; Wong, K.K.Y. 28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging. Biomed. Opt. Express 2015, 6, 3855–3864. [Google Scholar] [CrossRef]
- Huang, D.; Li, F.; Shang, C.; Cheng, Z.; Wai, P.K.A. Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range. Photonics Res. 2020, 8, 1360–1367. [Google Scholar] [CrossRef]
- Huang, D.; Li, F.; He, Z.; Cheng, Z.; Shang, C.; Wai, P.K.A. 400 MHz ultrafast optical coherence tomography. Opt. Lett. 2020, 45, 6675–6678. [Google Scholar] [CrossRef]
- Li, B.; Zhang, C.; Kang, J.; Wei, X.; Tan, S.; Wong, K.K.Y. 109 MHz optical tomography using temporal magnification. Opt. Lett. 2015, 40, 2965–2968. [Google Scholar] [CrossRef]
- Kang, J.; Feng, P.; Wei, X.; Lam, E.Y.; Tsia, K.K.; Wong, K.K.Y. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Opt. Express 2018, 26, 4370–4381. [Google Scholar] [CrossRef]
- Gerguis, J.O.; Sabry, Y.M.; Omran, H.; Khalil, D. Spectroscopic Gas Sensing Based on a MEMS-SOA Swept Fiber Laser Source. J. Light. Technol. 2019, 37, 5354–5360. [Google Scholar] [CrossRef]
- Tsai, T.H.; Potsaid, B.; Tao, Y.K.; Jayaraman, V.; Jiang, J.; Heim, P.J.S.; Kraus, M.F.; Zhou, C.; Hornegger, J.; Mashimo, H.; et al. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed. Opt. Express 2013, 4, 1119. [Google Scholar] [CrossRef]
- Yamashita, S.; Asano, M. Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Opt. Express 2006, 14, 9299–9306. [Google Scholar] [CrossRef]
- Takubo, Y.; Yamashita, S. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Opt. Express 2013, 21, 5130–5139. [Google Scholar] [CrossRef]
- Takubo, Y.; Shirahata, T.; Yamashita, S. Optinization of a dispersion-tuned wavelength-swept fiber laser for optical coherence tomography. Appl. Opt. 2016, 55, 7749–7755. [Google Scholar] [CrossRef]
- Cao, J.; Wang, P.; Zhang, Y.; Shi, G.; Liu, Y. Experimental and theoretical investigation of polygon-based swept source with continuous adjustable free spectral range. Opt. Commun. 2021, 478, 126401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.H.; Ahn, S.; Gene, J.; Jeon, M.Y. 1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter. Sensors 2021, 21, 3053. https://doi.org/10.3390/s21093053
Lee GH, Ahn S, Gene J, Jeon MY. 1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter. Sensors. 2021; 21(9):3053. https://doi.org/10.3390/s21093053
Chicago/Turabian StyleLee, Gi Hyen, Soyeon Ahn, Jinhwa Gene, and Min Yong Jeon. 2021. "1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter" Sensors 21, no. 9: 3053. https://doi.org/10.3390/s21093053
APA StyleLee, G. H., Ahn, S., Gene, J., & Jeon, M. Y. (2021). 1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter. Sensors, 21(9), 3053. https://doi.org/10.3390/s21093053