Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations
<p>Front and back view of blocks analyzed by DE-, ME-XRT and CT: (<b>a</b>) banded iron oxide ore sample I (No. 23); (<b>b</b>) banded iron oxide ore sample II (No. 23); (<b>c</b>) nodular iron ore (No. 24); (<b>d</b>) silica-rich rock hosting disseminated iron oxide grains (No. 5.3). Scale bars are 10 mm. Samples from the Takab complex, NW Iran.</p> "> Figure 2
<p>Images obtained by scanning electron microscope (SEM): (<b>a</b>) magnetite, partly transformed into hematite showing zircon inclusion; (<b>b</b>) magnetite with uraninite inclusion; (<b>c</b>) Mn–Ba oxide interstitial to hematitized magnetite; (<b>d</b>) monazite inclusion in hematitized magnetite.</p> "> Figure 3
<p>(<b>a</b>) Scheme of XRT system consisting of X-ray source, line detector and manipulator for moving the sample in between; (<b>b</b>) scheme of computed tomography (CT) system with X-ray source, flat panel detector and manipulator to rotate the sample between them. A simultaneous vertical translation of the sample results in a helical trajectory.</p> "> Figure 4
<p>The reconstruction of the projection data with the filtered backprojection algorithm results in a 3D volume. Virtual cross sections through this volume can be created in any arbitrary direction and reveal, for instance, the internal orientation of bands. The shown sample is the banded iron oxide sample II in <a href="#sensors-21-02455-f001" class="html-fig">Figure 1</a>a. Scale bars (bottom left) are 2 mm.</p> "> Figure 5
<p>Multi energy X-ray transmission imaging (ME-XRT) examination of rock samples in (<b>a</b>) upright and (<b>b</b>) flat orientation. From left to right: silica-rich rock with disseminated oxides, banded iron ore I, banded iron ore II, nodular ore. While all samples appear in the image showing light material content <span class="html-italic">C<sub>l</sub></span> (middle), the silica-rich rock with disseminated oxides hardly shows up in the heavy material content (<span class="html-italic">C<sub>h</sub></span>) image (bottom). Layers in the banded iron ore samples are visible for the flat sample orientation (<b>b</b>) and are averaged out when turning the sample upright (<b>a</b>). Scale bars are 10 mm.</p> "> Figure 6
<p>Dual energy X-ray transmission imaging (DE-XRT) examination of banded iron ore. Left rock is sample I, right rock is sample II: (<b>a</b>) photo of the samples in flat and upright orientation; (<b>b</b>) ratio of background material (Z<sub>eff</sub> = 13) within the samples for both orientations; (<b>c</b>) ratio of heavy material (Z<sub>eff</sub> = 26) within the samples for both orientations. Scale bars are 10 mm.</p> "> Figure 7
<p>CT examination of banded iron ores: (<b>a</b>) virtual cross section through reconstruction in XZ‑plane of sample I; (<b>b</b>) results of blob analysis of sample I, identified blobs are labeled green, orange and yellow (colors are related to blob size); (<b>c</b>) virtual cross section through reconstruction in XZ‑plane of sample II; (<b>d</b>) results of blob analysis of sample II. Scale bars are 2 mm.</p> "> Figure 8
<p>(<b>a</b>) Histogram and boxplot of the blob size of sample I. The black line in the middle of the box indicates the median (1234), while the black lines framing the box are the lower (324.8) and upper quartile (3439.2); (<b>b</b>) histogram and boxplot of the blob size of sample II. The black line in the middle of the box indicates the median (1135), while the black lines framing the box are the lower (296) and upper quartile (3426).</p> "> Figure 9
<p>DE-XRT examination of nodular ore: (<b>a</b>) photo of the sample in flat and upright orientation; (<b>b</b>) ratio of background material (<span class="html-italic">Z</span><sub>eff</sub> = 13) within the sample for both orientations; (<b>c</b>) ratio of heavy material (<span class="html-italic">Z</span><sub>eff</sub> = 26) within the sample for both orientations. The scale bars are 10 mm.</p> "> Figure 10
<p>CT examination of nodular iron ore: (<b>a</b>) virtual cross section through reconstruction in XZ‑plane. Nodules (bright) and pores (black) are visible; (<b>b</b>) results of blob analysis, identified blobs are labelled green, orange and yellow (colors are related to blob size). Scale bars are 2 mm.</p> "> Figure 11
<p>Histogram and boxplot of the blob size of nodular iron ore. The black line in the middle of the box indicates the median (2746), while the black lines framing the box are the lower (369) and upper quartile (14,941).</p> "> Figure 12
<p>Virtual cross section through reconstruction in XZ-plane of nodular ore: (<b>a</b>) inclusions inside the nodules are visible; (<b>b</b>) inclusions inside the background material are visible. Scale bars are 2 mm.</p> "> Figure 13
<p>DE-XRT examination of silica-rich rock with disseminated iron oxides: (<b>a</b>) photo of the sample in flat and upright orientation; (<b>b</b>) ratio of background material (<span class="html-italic">Z</span><sub>eff</sub> = 13) within the sample for both orientations; (<b>c</b>) ratio of heavy material (<span class="html-italic">Z</span><sub>eff</sub> = 26) within the sample for both orientations. The scale bars are 10 mm.</p> "> Figure 14
<p>CT examination of silica-rich rock with disseminated iron oxides: (<b>a</b>) virtual cross section through reconstruction in XZ-plane; (<b>b</b>) results of blob analysis, identified blobs are labelled green, orange and yellow (colors are related to blob size). Scale bars are 2 mm.</p> "> Figure 15
<p>Histogram and boxplot of the blob size of nodular iron ore. The black line in the middle of the box indicates the median (1747), while the black lines framing the box are the lower (409) and upper quartile (4778).</p> "> Figure 16
<p>Photograph and DE-XRT analysis of the banded iron drill core: (<b>a</b>) the layering of the sample is revealed for suitable orientation; (<b>b</b>) after rotation of the core by 90° the structure is obscured. Scale bars are 20 mm.</p> "> Figure 17
<p>Virtual cross sections along different directions through the reconstructed CT volume of the banded iron drill core: (<b>a</b>) XY-plane; (<b>b</b>) XZ-plane; (<b>c</b>) YZ-plane. Highly absorbing inclusions (bright spots) are visible at the left end of (<b>b</b>) and (<b>c</b>). The left part also reveals microfaults (white arrows). Scale bars are 10 mm.</p> "> Figure 18
<p>Virtual cross sections along different directions through the reconstructed CT volume of the banded iron drill core after blob analysis. Identified blobs are labelled green, orange and yellow (colors are related to blob size). Orientation was chosen to be the same as in <a href="#sensors-21-02455-f017" class="html-fig">Figure 17</a>a,b. Scale bars are 2 mm.</p> "> Figure 19
<p>Histogram and boxplot of the blob size of the banded iron drill core. The black line in the middle of the box indicates the median (257), while the black lines framing the box are the lower (76) and upper quartile (1110).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.2. Sample Chemistry
2.3. X-ray Transmission Measurements
2.3.1. Dual Energy X-ray Transmission
2.3.2. Multi Energy X-ray Transmission
2.4. Computed Tomography Scans
2.5. Image Processing of CT Data
3. Results
3.1. Banded Ore
3.2. Nodular Ore
3.3. Silica-Rich Rock with Disseminated Iron Oxides
3.4. Drill Core
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botelho, M.; Künzel, R.; Okuno, E.; Levenhagen, R.; Basegio, T.; Bergmann, C. X-ray transmission through nanostructured and microstructured CuO materials. Appl. Radiat. Isot. 2011, 69, 527–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- X-Mine Project: Real-Time Mineral X-ray Analysis for Efficient and Sustainable Mining. Available online: http://www.xmine.eu/ (accessed on 8 October 2020).
- Firsching, M.; Lucic, J.; Ennen, A.; Uhlmann, N. Concentration determination for sorting applications using dual energy X-ray transmission imaging. In OCM 2017—Optical Characterization of Materials-Conference Proceedings; KIT Scientific Publishing: Karlsruhe, Deutschland, 2017. [Google Scholar]
- Firsching, M.; Nachtrab, F.; Uhlmann, N.; Hanke, R. Multi-Energy X-ray Imaging as a Quantitative Method for Materials Characterization. Adv. Mater. 2011, 23, 2655–2656. [Google Scholar] [CrossRef] [PubMed]
- Firsching, M.; Nachtrab, F.; Mühlbauer, J.; Uhlmann, N. Detection of enclosed diamonds using dual energy X-ray imaging. In Proceedings of the 18th World Conference on Nondestructive Testing, Durban, South Africa, 16–20 April 2012. [Google Scholar]
- Firsching, M.; Bauer, C.; Wagner, R.; Ennen, A.; Ahsan, A.; Kampmann, T.C.; Tiu, G.; Valencia, A.; Casali, A.; Atenas, M.G. REWO-SORT Sensor Fusion for Enhanced Ore Sorting: A Project Overview. In Proceedings of the Procemin-Geomet Conference 2019, Santiago de Chile, Chile, 20–22 November 2019. [Google Scholar]
- Korenblum, B.I.; Tetelbaum, S.I.; Tyutin, A.A. Translation: About one scheme of tomography. arXiv 1958, arXiv:2004.03750v11. [Google Scholar]
- Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 1973, 46, 1016–1022. [Google Scholar] [CrossRef]
- Tanaka, A.; Nakano, T.; Ikehara, K. X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland. Earth Planets Space 2011, 63, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Mees, F.; Swennen, R.; Van Geet, M.; Jacobs, P. Applications of X-ray computed tomography in the geosciences. Geol. Soc. London Spec. Publ. 2003, 215, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tonai, S.; Kubo, Y.; Tsang, M.Y.; Bowden, S.; Ide, K.; Hirose, T.; Kamiya, N.; Yamamoto, Y.; Yang, K.; Yamada, Y. A new method for quality control of geological cores by X-ray computed tomography: Application in IODP expedition 370. Front. Earth Sci. 2019, 7, 117. [Google Scholar] [CrossRef]
- Godel, B. High-Resolution X-ray Computed Tomography and Its Application to Ore Deposits: From Data Acquisition to Quantitative Three-Dimensional Measurements with Case Studies from Ni-Cu-PGE Deposits. Econ. Geol. 2013, 108, 2005–2019. [Google Scholar] [CrossRef]
- Chisambi, J.; Von Der Heyden, B.; Tshibalanganda, M.; Le Roux, S. Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-ray Computed Tomography. Minerals 2020, 10, 476. [Google Scholar] [CrossRef]
- Pyrak-Nolte, J.L.; Montemagno, C.D.; Nolte, D.D. Volumetric imaging of aperture distributions in connected fracture net-works. Geophys. Res. Lett. 1997, 24, 2343–2346. [Google Scholar] [CrossRef]
- Tivey, M.K.; Singh, S. Nondestructive imaging of fragile sea-floor vent deposit samples. Geology 1997, 25, 931–934. [Google Scholar] [CrossRef]
- Orsi, T.H.; Anderson, A.L. Bulk density calibration for X-ray tomographic analyses of marine sediments. Geo-Mar. Lett. 1999, 19, 270–274. [Google Scholar] [CrossRef]
- Ashi, J. Computed tomography scan image analysis of sediments. In Proceedings of the Ocean Drilling Program, Scientific Results; Texas A&M University: College Station, TX, USA, 1997; Volume 156, pp. 151–159. [Google Scholar]
- Tanaka, A.; Nakano, T. Data report: Three-dimensional observation and quantification of internal structure of sediment core from Challenger Mound area in the Porcupine Seabight off western Ireland using a medical X-ray CT. In Proceedings of the Integrated Ocean Drilling Program (IODP); Ferdelman, T.G., Kano, A., Williams, T., Henriet, J.-P., Eds.; Integrated Ocean Drilling Program Management International, Inc.: Washington, DC, USA, 2009. [Google Scholar]
- Iturrino, G.J.; Ketcham, R.A.; Christiansen, L.; Boitnott, G. Data report: Permeability, resistivity, and X-ray computed tomography measurements in samples from the PACMANUS hydrothermal system. In Proceedings of the Ocean Drilling Program: Scientific Results; Barriga, F.J.A.S., Binns, R.A., Miller, D.J., Herzig, P.M., Eds.; Ocean Drilling Program: College Station, TX, USA, 2004. [Google Scholar]
- Case Story—Hellas Gold. 11 November 2020. Available online: https://orexplore.com/case-story-hellas-gold/ (accessed on 11 November 2020).
- Morgan, R.; Orberger, B.; Rosière, C.A.; Wirth, R.; Carvalho, C.D.M.; Bellver-Baca, M.T. The origin of coexisting carbonates in banded iron formations: A micro-mineralogical study of the 2.4Ga Itabira Group, Brazil. Precambrian Res. 2013, 224, 491–511. [Google Scholar] [CrossRef]
- Orberger, B.; Miska, S.; Tudryn, A.; Wagner, C.; Fialin, M.; Boudouma, O.; Derré, C.; Nabatian, G.; Honarmand, M.; Monsef, I. Iron-oxide mineralogy of banded iron formations in the Takab region, North Western Iran. In Proceedings of the 14th Biennial SGA Meeting, Mineral Resources to Discover, Quebec, QC, Canada, 20–23 August 2017. [Google Scholar]
- Platts. Methodology and Specification Guide: Iron Ore; The McGraw Hill Companies: New York, NY, USA, 2010. [Google Scholar]
- Sparks, B.; Sirianni, A. Beneficiation of a phosphoriferous iron ore by agglomeration methods. Int. J. Miner. Process. 1974, 1, 231–241. [Google Scholar] [CrossRef]
- Rosière, C.A.; Siemes, H.; Quade, H.; Brokmeier, H.-G.; Jansen, E.M. Microstructures, textures and deformation mechanisms in hematite. J. Struct. Geol. 2001, 23, 1429–1440. [Google Scholar] [CrossRef]
- Spier, C.A.; de Oliveira, S.M.; Sial, A.N.; Rios, F.J. Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res. 2007, 152, 170–206. [Google Scholar] [CrossRef]
- Adomako-Ansah, K.; Mizuta, T.; Hammond, N.Q.; Ishiyama, D.; Ogata, T.; Chiba, H. Gold Mineralization in Banded Iron Formation in the Amalia Greenstone Belt, South Africa: A Mineralogical and Sulfur Isotope Study. Resour. Geol. 2013, 63, 119–140. [Google Scholar] [CrossRef]
- Kolb, J.; Dziggel, A.; Bagas, L. Hypozonal lode gold deposits: A genetic concept based on a review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and The Granites deposits. Precambrian Res. 2015, 262, 20–44. [Google Scholar] [CrossRef]
- Orberger, B.; Wagner, C.; Boudouma, O.; Derré, C.; Fialin, M.; Neuville, J.; Deloule, E.; Nabatian, G.; Honarmand, M.; Monsef, I. Iron-oxide ores in the Takab region, North Western Iran. In Proceedings of the 15th SGA Biennial Meeting 2019, Glasgow, Scotland, 27–30 August 2019; MDPI: Basel, Switzerland. [Google Scholar]
- Orberger, B.; Wagner, C.; Tudryn, A.; Baptiste, B.; Wirth, R.; Morgan, R.; Miska, S. Iron (oxy)hydroxide and hematite micro- to nano-inclusions in diagenetic dolomite from a 2.4 Ga banded iron formation (Minas Gerais, Brazil). Eur. J. Miner. 2017, 29, 971–983. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Stockli, D.F.; Horton, B.K.; Axen, G.J.; Stockli, L.D.; Grove, M.; Schmitt, A.K.; Walker, D. U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleo-geography, magmatism, and exhumation history of Iranian basement. Tectonophysics 2008, 451, 71–96. [Google Scholar] [CrossRef]
- Ghorbani, M. Economic Geology of Iran; Springer: Berlin/Heidelberg, Germany, 2013; Volume 581. [Google Scholar]
- Nabatian, G.; Rastad, E.; Neubauer, F.; Honarmand, M.; Ghaderi, M. Iron and Fe–Mn mineralisation in Iran: Implications for Tethyan metallogeny. Aust. J. Earth Sci. 2015, 62, 211–241. [Google Scholar] [CrossRef]
- Smith, J.A.; Beukes, N.J. Palaeoproterozoic Banded Iron formationhosted High-Grade Hematite Iron Ore Deposits of the Trans-vaal Supergroup, South Africa. Episodes 2016, 39, 269–284. [Google Scholar] [CrossRef]
- Carney, M.; Mienie, P. A geological comparison of the Sishen and Sishen South (Welgevonden) iron ore deposits, Northern Cape Province, South Africa. Appl. Earth Sci. 2003, 112, 81–88. [Google Scholar] [CrossRef]
- Mühlbauer, J.; Firsching, M.; Nachtrab, F.; Jobst, A. Basis Material Decomposition—A Quantitative X-ray Imaging Method and its Application in Industrial Sorting. In Proceedings of the International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, 20–22 June 2011. [Google Scholar]
- Heismann, B.; Leppert, J.; Stierstorfer, K. Density and atomic number measurements with spectral X-ray attenuation method. J. Appl. Phys. 2003, 94, 2073–2079. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.E. Estimator for photon counting energy selective X-ray imaging with multibin pulse height analysis. Med. Phys. 2011, 38, 2324–2334. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.E. Efficient, Non-Iterative Estimator for Imaging Contrast Agents with Spectral X-ray Detectors. IEEE Trans. Med. Imaging 2015, 35, 1138–1146. [Google Scholar] [CrossRef]
- Aloisi, V.; Carmignato, S.; Schlecht, J.; Ferley, E. Investigation on metrological performances in CT helical scanning for dimensional quality control. In Proceedings of the 6th Conference on Industrial Computed Tomography, Wels, Austria, 9–12 February 2016. [Google Scholar]
- Bauer, C.; Wagner, R.; Firsching, M.; Orberger, B.; Lucic, J.; Ennen, A.; Wörlein, N.; Dubos, J.L.; Banchet, J.; Milazzo, J.-M.; et al. Recycling of Mn-processing dusts: Quality control through 3D computed tomography. In Proceedings of the IMPC 2020: International Mineral Processing Congress, Town, South Africa, 18–22 October 2020. in press. [Google Scholar]
- Bharodiya, A.K.; Gonsai, A.M. An intelligent assistive algorithm for bone tumor detection from human X-ray images based on binary Blob analysis. Int. J. Inf. Technol. 2020, 1–7. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef] [Green Version]
Elemental Composition | Unit | Banded Ore | Nodular Ore | Silica Rich Rock + Iron Oxides |
---|---|---|---|---|
SiO2 | wt % | 43.7 | 30.4 | 70.1 |
Al2O3 | wt % | 0.17 | 0.14 | 13.72 |
Fe2O3 (total) | wt % | 54.58 | 66.77 | 5.73 |
MnO | wt % | 0.05 | 2.01 | <D.L. 1 |
MgO | wt % | <D.L. | <D.L. | 0.58 |
CaO | wt % | 0.06 | 0.14 | 0.05 |
Na2O | wt % | <D.L. | <D.L. | 0.25 |
K2O | wt % | <D.L. | <D.L. | 7.64 |
TiO2 | wt % | <D.L. | <D.L. | 0.42 |
P2O5 | wt % | 0.12 | <D.L. | <D.L. |
LOI 2 | wt % | 0.8 | −1.390 | 1.54 |
Total | wt % | 99.45 | 98.11 | 100.04 |
CO2 (total) | wt % | 0.14 | 0.30 | 0.17 |
FeO | wt % | 0.56 | 16.69 | 0.88 |
S (total) | wt % | 0.02 | 0.04 | <0.01 |
As | ppm | 19.8 | 8.3 | 30.5 |
Ba | ppm | 11.6 | 1991 | 2448 |
Cd | ppm | <D.L. | 59.5 | 0.2 |
Co | ppm | 5.2 | 1.2 | <D.L. |
Cr | ppm | 8.8 | 7.8 | 18.9 |
Mo | ppm | 11.6 | 5.4 | <D.L. |
Nb | ppm | 0.1 | 0.25 | 10.3 |
Ni | ppm | <D.L. | <D.L. | <D.L. |
Pb | ppm | 4.8 | 1026 | 19.5 |
Th | ppm | 0.5 | 0.1 | 16 |
U | ppm | 0.8 | 1.8 | 1.9 |
V | ppm | 84 | 64 | 39 |
W | ppm | <D.L. | <D.L. | 38 |
Zn | ppm | 24 | 936 | 16 |
Zr | ppm | 6 | 3 | 250 |
Fe (total) | wt % | 38.2 | 46.7 | 4 |
Fe 2 3 | wt % | 0.44 | 12.97 | 0.7 |
Silica Rich Layers | Iron Rich Bands | ||||
---|---|---|---|---|---|
Point | Si wt. % | Fe wt. % | Point | Si wt. % | Fe wt. % |
1 | 48.3 | 5.2 | 1 | 23.1 | 42.3 |
2 | 52.7 | 4.2 | 2 | 7.9 | 41.9 |
3 | 54.0 | 3.1 | 3 | 29.0 | 40.4 |
4 | 50.7 | 2.6 | 4 | 23.5 | 32.1 |
5 | 53.1 | 6.2 | 5 | 38.2 | 21.8 |
6 | 55.1 | 2.0 | 6 | 6.2 | 53.8 |
7 | 48.1 | 4.6 | 7 | 9.2 | 44.3 |
8 | 55.3 | 2.3 | 8 | 23.9 | 45.3 |
9 | 54.3 | 2.4 | 9 | 8.0 | 58.0 |
10 | 51.9 | 3.2 | 10 | 17.3 | 44.1 |
Average | 52.35 | 3.58 | Average | 18.63 | 42.4 |
Sample | Number of Blobs | Number of Blobs (≤5 Voxels) | Sum of Blob Size (Voxels) | Rock Size (Voxels) | Volume Fraction |
---|---|---|---|---|---|
I | 10,107 | 9900 | 27,425,752 | 70,544,776 | 39% |
II | 19,136 | 18,739 | 52,684,052 | 129,794,691 | 41% |
Number of Blobs | Number of Blobs (≤5 Voxels) | Sum of Blob Size (Voxels) | Rock Size (Voxels) | Volume Fraction |
---|---|---|---|---|
5697 | 5557 | 91,319,546 | 227,064,431 | 40% |
Number of Blobs | Number of Blobs (≤5 Voxels) | Sum of Blob Size (Voxels) | Rock Size (Voxels) | Volume Fraction |
---|---|---|---|---|
872 | 847 | 2,671,441 | 140,002,072 | 2% |
Number of Blobs | Number of Blobs (≤5 Voxels) | Sum of Blob Size (Voxels) | Rock Size (Voxels) | Volume Fraction |
---|---|---|---|---|
101,595 | 91,649 | 349,083,989 | 882,009,034 | 40% |
Sample | Chemistry | DE-XRT (Upright) | DE-XRT (Flat) | ME-XRT (Upright) | ME-XRT (Flat) | CT |
---|---|---|---|---|---|---|
Disseminated | 4% | 12% | 8% | 4% | 6% | 2% |
Banded I | 38.2% | 38% | 42% | 24% | 37% | 39% |
Banded II | 38.2% | 39% | 38% | 29% | 32% | 41% |
Nodular | 46.7% | 39% | 41% | 31% | 32% | 40% |
Drill core | 23% 1 | 20% | 17% | n.a. 2 | n.a. | 40% 3, 19% 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, C.; Wagner, R.; Orberger, B.; Firsching, M.; Ennen, A.; Garcia Pina, C.; Wagner, C.; Honarmand, M.; Nabatian, G.; Monsef, I. Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations. Sensors 2021, 21, 2455. https://doi.org/10.3390/s21072455
Bauer C, Wagner R, Orberger B, Firsching M, Ennen A, Garcia Pina C, Wagner C, Honarmand M, Nabatian G, Monsef I. Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations. Sensors. 2021; 21(7):2455. https://doi.org/10.3390/s21072455
Chicago/Turabian StyleBauer, Christine, Rebecca Wagner, Beate Orberger, Markus Firsching, Alexander Ennen, Carlos Garcia Pina, Christiane Wagner, Maryam Honarmand, Ghasem Nabatian, and Iman Monsef. 2021. "Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations" Sensors 21, no. 7: 2455. https://doi.org/10.3390/s21072455
APA StyleBauer, C., Wagner, R., Orberger, B., Firsching, M., Ennen, A., Garcia Pina, C., Wagner, C., Honarmand, M., Nabatian, G., & Monsef, I. (2021). Potential of Dual and Multi Energy XRT and CT Analyses on Iron Formations. Sensors, 21(7), 2455. https://doi.org/10.3390/s21072455