A Highly Sensitive and Miniature Optical Fiber Sensor for Electromagnetic Pulse Fields
<p>Configuration of the proposed sensor system.</p> "> Figure 2
<p>The electro-optic modulation circuit.</p> "> Figure 3
<p>DC path of electro-optic modulation circuit (<b>a</b>) and the static operating point (<b>b</b>).</p> "> Figure 4
<p>The physical diagram (<b>a</b>) and its output characteristic curve (<b>b</b>) of the semiconductor laser.</p> "> Figure 5
<p>Equivalent circuit of the sensor.</p> "> Figure 6
<p>High frequency response curve.</p> "> Figure 7
<p>Frequency characteristic curve of the sensor under different load resistances (<b>a</b>) and different sizes of antenna (<b>b</b>).</p> "> Figure 8
<p>The simulation model of optical-fiber EMP field measurement system (<b>a</b>) and the input EMP field waveform (<b>b</b>).</p> "> Figure 9
<p>Time domain response waveform of the sensor under (<b>a</b>) different resistances <span class="html-italic">R</span><sub>L</sub> when <span class="html-italic">C</span><sub>L</sub> is 50 pF (<span class="html-italic">h</span> = 30 mm, <span class="html-italic">a</span> = 3 mm); (<b>b</b>) the different capacitance <span class="html-italic">C</span><sub>L</sub> when <span class="html-italic">R</span><sub>L</sub> is 1 MΩ (<span class="html-italic">h</span> = 30 mm, <span class="html-italic">a</span> = 3 mm); (<b>c</b>) the different length <span class="html-italic">h</span> of antenna when <span class="html-italic">a</span> is 1 mm (<span class="html-italic">R</span><sub>L</sub> = 1 MΩ, <span class="html-italic">C</span><sub>L</sub> = 10 pF); and (<b>d</b>) the different radius <span class="html-italic">a</span> of antenna when <span class="html-italic">h</span> is 50 mm (<span class="html-italic">R</span><sub>L</sub> = 1 MΩ, <span class="html-italic">C</span><sub>L</sub> = 10 pF).</p> "> Figure 10
<p>Photographs of the electro-optic modulation circuit (<b>a</b>), weak field sensor (<b>b</b>) and strong field sensor (<b>c</b>).</p> "> Figure 11
<p>The test configuration diagram of low frequency (100 kHz–450 MHz) (<b>a</b>) and high frequency (450 MHz–1 GHz) (<b>b</b>) and the location photo of EMR200 and the sensor in GTEM cell (<b>c</b>).</p> "> Figure 12
<p>Frequency response of the sensors.</p> "> Figure 13
<p>The time domain test configuration diagram of the weak field strength test (<b>a</b>) and strong field strength test (<b>b</b>).</p> "> Figure 14
<p>Time domain response of the sensor with the applied square wave is 8366 V/m.</p> "> Figure 15
<p>The relationship between the electric field and output voltage of the weak field sensor (<b>a</b>) and the strong field sensor (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Operational Principles
2.1. Sensor Design
2.2. Analytic Model
2.3. Simulation Nalysis
2.4. Selection of Key Parameters
3. Experimental Results
3.1. Frequency Domain
3.2. Time Domain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carl, B.; Edward, B.; Joseph, G.; John, O.; Gary, S. Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions. IEEE Trans. Electromagn. Compat. 1978, 20, 22–35. [Google Scholar]
- Wang, J.; Gao, C.; Yang, J. Design, experimental and simulation of voltage transformers on the basis of a differential input D-dot sensor. Sensors 2014, 14, 12771–12783. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C. A Research on Test and Measurement Theory and Technology of Pulsed Electromagnetic Fields. Ph.D. Dissertation, Ordance Engineering College, Shijiazhuang, China, 2005. [Google Scholar]
- Tokuda, M.; Kuwabara, N. Recent progress in fiber optic antennas for EMC measurement. IEICE Trans. Comm. B 1992, 75, 107–114. [Google Scholar]
- Liu, W.; Liu, S. Dynamic performance analysis and experimental research of active transient electric field test system. J. Microw. 2019, 35, 12–17. [Google Scholar] [CrossRef]
- Wu, I.; Ishigami, S.; Gotoh, K.; Matsumoto, Y. Development of three-antenna method measurement system for low-sensitivity optical electric field sensor. IEICE Electron. Expr. 2010, 7, 1265–1270. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Wang, B.; Yu, Z.; Chen, W. Design and application of an integrated electro-optic sensor for intensive electric field measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 312–319. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y.; Kwon, J.; Jung, J. Simple optical transformer system for intense electric field and voltage sensing. IEICE Electron. Expr. 2015, 12, 20141090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Luo, C.; Zhao, Z. Design and application of integrated optics sensor for measurement of intense pulsed electric field. J. Lightw. Technol. 2019, 37, 1440–1448. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, Y.; Wan, X.; Zhao, Z. An isotropic intense electromagnetic impulse (EMP) sensor using integrated electro-optic (EO) probe. Optik 2017, 147, 385–390. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Zhao, Z. Study of integrated optical waveguide sensor with a tapered antenna for measurement of intense pulsed electric field. Opt.-Int. J. Light Electron Opt. 2020, 218, 164837. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Zhang, C.; Zhao, Z. A single chip LiNbO3 Photonic 2D electric field sensor using two perpendicular electrodes. IEEE Photonic. Tech. 2020, 32, 1501–1504. [Google Scholar] [CrossRef]
- Kuwabara, N.; Tajima, K.; Kobayashi, R.; Amemiya, F. Development and analysis of electric field sensor using LiNbO3 optical modulator. IEEE Trans. Electromagn. Compat. 1992, 34, 391–396. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, C.; Wang, J. Research and development of transient pulsed electric field sensor. Nuclear Electron. Det. Tech. 2019, 39, 356–362. [Google Scholar]
- Zeng, R.; Yu, J.; Niu, B.; Wang, B.; Chen, W. Integrated optical sensors for wide band time domain electric field measurement. Proc. CSEE. 2012, 34, 5234–5243. [Google Scholar]
- Zhang, J. Research on Integrated Optical Waveguide Three-Dimensional Pulsed Electric Field Sensing System. Ph.D. Dissertation, University of Electronic Science and Technology of China, Chengdu, China, 2012. [Google Scholar]
- Lee, T.; Hwang, F.; Shay, W.; Lee, C. Electromagnetic field sensor using Mach-Zehnder waveguide modulator. Microw. Opt. Technol. Lett. 2006, 48, 1897–1899. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, C. Simulation and design of three-dimensional pulsed electric field sensor. High Vol. Eng. 2018, 44, 275–281. [Google Scholar]
- Krng, F.; Russer, P. The time domain electromagnetic interference measurement system. IEEE Trans. Electromagn. Compat. 2003, 45, 330–338. [Google Scholar]
- Kong, X.; Xie, Y. Electric field and magnetic field measuring system for EMP measurement based on fiber technology. High Vol. Eng. 2015, 41, 339–345. [Google Scholar]
- Xu, X.; Liu, S.; Zhu, C. Measurement of ultra-wide-band pulsed electrical fields. Physics 2005, 32, 603–607. [Google Scholar]
- Chen, J.; Liu, X.; Yan, Y.; Li, P.; Jiang, T. Compact short electromagnetic pulse sensor. High Power Laser Part. Beams 2012, 24, 2797–2801. [Google Scholar] [CrossRef]
- Shi, L.; Si, R.; Li, Y.; Ma, R.; Chen, R. Small size fiber-optic electric field sensor for EMP measurement. Chin. J. Radio Sci. 2012, 27, 1152–1157. [Google Scholar]
- Rendina, I.; Cocorullo, G.; Della Corte, F.; Iodice, M.; Massa, R.; Panariello, G. A new non-disturbing and wideband optical microsensor of electromagnetic fields. Sens. Actuator A Phys. 2000, 85, 106–110. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Y.; Xie, Z. Design of a wide band and mini-type optical fiber metrical system. Inform. Electron. Eng. 2010, 8, 30–32. [Google Scholar]
- Shi, L.; Si, R.; Si, Q.; Li, Y. A Small Size Dipole E-field Sensor for Calibration of Field Distribution. In Proceedings of the EMP Simulator 2012 6th Asia-Pacific Conference on Environmental Electromagnetic (CEEM), Shanghai, China, 6–9 November 2012; pp. 251–254. [Google Scholar]
- Zhang, G.; Li, W.; Qi, L.; Liu, J.; Song, Z.; Wang, J. Design of Wideband GHz Electric Field Sensor Integrated with Optical fiber Transmission Link for Electromagnetic Pulse Signal Measurement. Sensors 2018, 18, 3167. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, S.; Wei, M.; Hu, X. Characteristics analysis and design of fiber-optical E-field sensor for transient electromagnetic field measurement. J. Microw. 2011, 27, 78–82. [Google Scholar]
- Zhang, L.; Wei, G.; Pan, X.; Hu, X.; Zhang, Y. Calibration method of pulse electric field test system. High Vol. Eng. 2014, 40, 930–936. [Google Scholar]
- Yan, X.; Liu, W.; Wang, J.; Ou, Y.; Shi, G. Frequency domain calibration and uncertainty evaluation in GTEM cell. Trans. Beijing Inst. Tech. 2020, 40, 771–776. [Google Scholar]
- Ma, L.; Wu, W.; Cheng, Y.; Zhou, H.; Zhu, M. Pulsed electric field sensor based on original waveform measurement. High Power Laser Part. Beams 2010, 22, 2763–2768. [Google Scholar]
- Jiang, Y.; Xu, Z.; Huang, L.; Meng, C. A time-domain calibration method for transient EM field sensors. Measurement 2021, 168, 108404. [Google Scholar] [CrossRef]
- Wu, I.; Ishigami, S.; Gotoh, K.; Matsumoto, Y. Calibration of Electric Field Probes with Three Orthogonal Elements by Standard Field Method. IEICE Electron. Expr. 2009, 6, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
PART NUMBER | NE72218 | ||||
---|---|---|---|---|---|
SYMBOLS | PARAMETER AND CONDITIONS | UNITS | MIN | TYP | MAX |
GS | Power Gain at VDS = 3 V, ID = 30 mA, f = 12 GHz | dB | 5 | ||
P1dB | Output Power at 1 dB Gain Compression Point at VDS = 3 V, ID = 30 mA, f = 12 GHz | dBm | 15 | ||
PN | Phase Noise at VDS = 3 V, ID = 30 mA, f = 11 GHz, 100 kHz offset | dBC/Hz | −110 | ||
gm | Transconductance at VDS = 3 V, VGS = 0 V | mS | 20 | 45 | |
IDSS | Saturated Drain Current at VDS = 3 V, VGS = 0 V | mA | 30 | 60 | 120 |
VGS(OFF) | Grid to Source Cut Off Voltage at VDS = 3 V, ID = 100 μA | V | −0.5 | −2 | −4 |
IGSO | Grid to Source Leakage Current at VGS = −5 V | μA | 1 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhou, X.; Chen, Y. A Highly Sensitive and Miniature Optical Fiber Sensor for Electromagnetic Pulse Fields. Sensors 2021, 21, 8137. https://doi.org/10.3390/s21238137
Zhao M, Zhou X, Chen Y. A Highly Sensitive and Miniature Optical Fiber Sensor for Electromagnetic Pulse Fields. Sensors. 2021; 21(23):8137. https://doi.org/10.3390/s21238137
Chicago/Turabian StyleZhao, Min, Xing Zhou, and Yazhou Chen. 2021. "A Highly Sensitive and Miniature Optical Fiber Sensor for Electromagnetic Pulse Fields" Sensors 21, no. 23: 8137. https://doi.org/10.3390/s21238137
APA StyleZhao, M., Zhou, X., & Chen, Y. (2021). A Highly Sensitive and Miniature Optical Fiber Sensor for Electromagnetic Pulse Fields. Sensors, 21(23), 8137. https://doi.org/10.3390/s21238137