Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review
<p>The general process stages of studies using a thermal camera that performs physiological measurements. Several stages are depicted by dotted line boxes explaining that these stages only apply in certain studies in general.</p> "> Figure 2
<p>An overview of how RGB cameras are used to assist thermal cameras in determining ROI and the transformation process.</p> "> Figure 3
<p>An overview of how the signal extraction process from a thermal image is carried out. In general, there are two methods: first by measuring changes in temperature in the area around the nostrils and mouth, and second by looking at the movement based on the comparison between changes in pixels in each frame.</p> ">
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Research Objective
1.3. Comparison with Existing Reviews
2. System Architecture in General
2.1. Thermal Camera Model and Specification
2.2. Image Pre-Processing and Feature Matching
2.3. Determining and Tracking of ROI
2.4. Signal Extraction, Feature Extraction, and Classification
3. Thermal Camera for Physiological Measurement
3.1. Respiratory Rate
3.1.1. Overview of Respiratory Rate Measurement
3.1.2. Summary of Thermal Camera Usage Related to Respiratory
3.1.3. Deep Learning for RR Monitoring
3.1.4. Camera Sensor Fusion: Usability and Image Fusion Method
3.1.5. RR Signal Extraction Process
3.1.6. Performance Validation Method on RR
3.2. Heart Rate
3.3. Body Temperature
4. Discussion
4.1. Advantages of Thermal Camera-Based Physiological Measurement
4.2. Challenges of Thermal Camera-Based Physiological Measurement
4.3. Future Trends and Works
4.3.1. Healthcare Applications
4.3.2. Machine Learning
4.3.3. Multi-Parameter and Data Fusion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, H.G.; Masoumzadeh, S.; Nour, S.; Kianersi, S.; Eyvazi Zadeh, Z.; Joneidi Shariat Zadeh, F.; Haddadnia, J.; Khamseh, F.; Ahmadinejad, N. Breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences: Review article. Tehran Univ. Med. J. 2016, 74, 377–385. [Google Scholar]
- Balaji, A.S.; Makaram, N.; Balasubramanian, S.; Swaminathan, R. Analysis of pre- and post- fatigue thermal profiles of the dominant hand using infrared imaging. ACM Int. Conf. Proceeding Ser. 2017, 1, 53–57. [Google Scholar]
- Cardone, D.; Perpetuini, D.; Filippini, C.; Spadolini, E.; Mancini, L.; Chiarelli, A.M.; Merla, A. Driver stress state evaluation by means of thermal imaging: A supervised machine learning approach based on ECG signal. Appl. Sci. 2020, 10, 5673. [Google Scholar] [CrossRef]
- Topalidou, A.; Ali, N.; Sekulic, S.; Downe, S. Thermal imaging applications in neonatal care: A scoping review. BMC Pregnancy Childbirth 2019, 19, 381. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Enshaeifar, S.; Hilton, A.; Dijk, D.-J.; Wells, K. Transfer Learning for Clinical Sleep Pose Detection Using a Single 2D IR Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.M.; Chen, J.; Chunara, R.; Testa, P.A.; Nov, O. COVID-19 transforms health care through telemedicine: Evidence from the field. J. Am. Med. Inform. Assoc. 2020, 27, 1132–1135. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, D. Opportunities and challenges for contactless healthcare services in the post-COVID-19 Era. Technol. Forecast. Soc. Chang. 2021, 167, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeong, J. Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler Radar Sensor. Sensors 2020, 20, 5209. [Google Scholar] [CrossRef]
- McDuff, D.; Nishidate, I.; Nakano, K.; Haneishi, H.; Aoki, Y.; Tanabe, C.; Niizeki, K.; Aizu, Y. Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors. Sci. Rep. 2020, 10, 10884. [Google Scholar] [CrossRef]
- Hall, T.; Lie, D.Y.C.; Nguyen, T.Q.; Mayeda, J.C.; Lie, P.E.; Lopez, J.; Banister, R.E. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design. Sensors 2017, 17, 2632. [Google Scholar] [CrossRef] [Green Version]
- Cheshire, W.P. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. 2016, 196, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Weng, W.; Chen, W.; Luo, N. Review on modeling heat transfer and thermoregulatory responses in human body. J. Therm. Biol. 2016, 62, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, K. The development of the concepts of homeothermy and thermoregulation. J. Therm. Biol. 2006, 31, 24–29. [Google Scholar] [CrossRef]
- Barr, E.S. The Infrared Pioneers—II. Macedonio Melloni. Infrared Phys. 1962, 2, 67–74. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Thermographic Camera. Available online: https://en.wikipedia.org/w/index.php?title=Thermographic_camera&oldid=1052657772 (accessed on 30 October 2021).
- Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.J.; Smith, R.E. Guidelines for specifying and testing a thermal camera for medical applications. Thermol. Int. 2009, 19, 5–12. [Google Scholar]
- Bestsennyy, O.; Gilbert, G.; Harris, A.; Rost, J. Telehealth: A Quarter-Trillion-Dollar Post-COVID-19 Reality? McKinsey 2020. Available online: https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/telehealth-a-quarter-trillion-dollar-post-covid-19-reality (accessed on 4 November 2021).
- Mikulska, D. Contemporary applications of infrared imaging in medical diagnostics. Ann. Acad. Med. Stetin. 2006, 52, 35–40. [Google Scholar]
- Lahiri, B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- El, E.N.; Una, D. Applications of Infrared Thermography in Sports: A Review. Rev. Int. Med. Cienc. Act. Física Deporte 2015, 15, 805–824. [Google Scholar]
- Znamenskaya, V.V.S.I.A.; Koroteeva, E.Y.; Khakhalin, A.V. Thermographic visualization and remote control of dynamical processes around a facial area. Sci. Vis. 2016, 8, 122–131. [Google Scholar]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.; Costa, C.M.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Pan, C.-T.; Francisco, M.D.; Yen, C.-K.; Wang, S.-Y.; Shiue, Y.-L. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes. Sensors 2019, 19, 3573. [Google Scholar] [CrossRef] [Green Version]
- NAggarwal, N.; Garg, M.; Dwarakanathan, V.; Gautam, N.; Kumar, S.S.; Jadon, R.S.; Gupta, M.; Ray, A. Diagnostic accuracy of non-contact infrared thermometers and thermal scanners: A systematic review and meta-analysis. J. Travel Med. 2020, 27, taaa193. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.; Lloyd, A.B.; Havenith, G. Non-contact infrared assessment of human body temperature: The journal Temperature toolbox. Temperature 2021, 1–14. Available online: https://www.tandfonline.com/action/showAxaArticles?journalCode=ktmp20 (accessed on 4 November 2021). [CrossRef]
- He, Y.; Deng, B.; Wang, H.; Cheng, L.; Zhou, K.; Cai, S.; Ciampa, F. Infrared machine vision and infrared thermography with deep learning: A review. Infrared Phys. Technol. 2021, 116, 103754. [Google Scholar] [CrossRef]
- Lyra, S.; Mayer, L.; Ou, L.; Chen, D.; Timms, P.; Tay, A.; Chan, P.; Ganse, B.; Leonhardt, S.; Antink, C.H. A Deep Learning-Based Camera Approach for Vital Sign Monitoring Using Thermography Images for ICU Patients. Sensors 2021, 21, 1495. [Google Scholar] [CrossRef]
- Nowara, E.M.; Duff, D.M. Combating the Impact of Video Compression on Non-Contact Vital Sign Measurement Using Supervised Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019. [Google Scholar]
- AKirimtat, A.; Krejcar, O.; Selamat, A.; Herrera-Viedma, E. FLIR vs SEEK thermal cameras in biomedicine: Comparative diagnosis through infrared thermography. BMC Bioinform. 2020, 21 (Suppl. S2), 22. [Google Scholar]
- Khare, S.; Singh, M.; Kaushik, B.K. Development and validation of a quantitative model for the subjective and objective minimum resolvable temperature difference of thermal imaging systems. Opt. Eng. 2019, 58, 104111. [Google Scholar] [CrossRef]
- Kim, D.-I.; Kim, G.; Kim, G.-H.; Chang, K.S. Responsivity and Noise Evaluation of Infrared Thermal Imaging Camera. J. Korean Soc. Nondestruct. Test. 2013, 33, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Da-xing, S.M.-M.P. Evaluation of Performance of Infrared Systems Using Noise Equivalent Temperature Difference. Infrared 2010, 31, 22–25. [Google Scholar]
- Li, Y.; Pan, D.; Yang, C.; Luo, Y. NETD test of high-sensitivity infrared camera. In Proceedings of the 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Chengdu, China, 8–12 July 2007; Volume 6723, pp. 836–840. [Google Scholar]
- Villa, E.; Arteaga-Marrero, N.; Ruiz-Alzola, J. Performance Assessment of Low-Cost Thermal Cameras for Medical Applications. Sensors 2020, 20, 1321. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.Y.; Huang, C.S.; Horng, G.J.; Peng, P.L.; Jong, G.J. Infrared Image Processing for a Physiological Information Telemetry System. Wirel. Pers. Commun. 2015, 83, 3181–3208. [Google Scholar] [CrossRef]
- Rao, K.; Coviello, G.; Feng, M.; Debnath, B.; Hsiung, W.-P.; Sankaradas, M.; Yang, Y.; Po, O.; Drolia, U.; Chakradhar, S. F3S: Free Flow Fever Screening. In Proceeding of the 7th IEEE International Conference on Smart Computing, Irvine, CA, USA, 23–27 August 2021; pp. 276–285. [Google Scholar]
- HBudzier, H.; Gerlach, G. Calibration of uncooled thermal infrared cameras. J. Sens. Sens. Syst. 2015, 4, 187–197. [Google Scholar] [CrossRef] [Green Version]
- König, S.; Gutschwager, B.; Taubert, R.D.; Hollandt, J. Metrological characterization and calibration of thermographic cameras for quantitative temperature measurement. J. Sens. Sens. Syst. 2020, 9, 425–442. [Google Scholar] [CrossRef]
- Scebba, G.; Da Poian, G.; Karlen, W. Multispectral Video Fusion for Non-Contact Monitoring of Respiratory Rate and Apnea. IEEE Trans. Biomed. Eng. 2021, 68, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, T.; Liu, K. AI thermometer for temperature screening: Demo abstract. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Yokohama, Japan, 16–19 November 2020; pp. 597–598. [Google Scholar]
- Negishi, T.; Abe, S.; Matsui, T.; Liu, H.; Kurosawa, M.; Kirimoto, T.; Sun, G. Contactless Vital Signs Measurement System Using RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza. Sensors 2020, 20, 2171. [Google Scholar] [CrossRef] [Green Version]
- Jagadev, P.; Giri, L.I. Non-contact monitoring of human respiration using infrared thermography and machine learning. Infrared Phys. Technol. 2020, 104, 103117. [Google Scholar] [CrossRef]
- Mutlu, K.; Rabell, J.E.; del Olmo, P.M.; Haesler, S. IR thermography-based monitoring of respiration phase without image segmentation. J. Neurosci. Methods 2018, 301, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jagadev, P.; Giri, L.I. Human respiration monitoring using infrared thermography and artificial intelligence. Biomed. Phys. Eng. Express 2020, 6, 35007. [Google Scholar] [CrossRef]
- Goldman, L.J. Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing. Pediatr. Pulmonol. 2012, 47, 476–486. [Google Scholar] [CrossRef]
- Negishi, T.; Sun, G.; Liu, H.; Sato, S.; Matsui, T.; Kirimoto, T. Stable Contactless Sensing of Vital Signs Using RGB-Thermal Image Fusion System with Facial Tracking for Infection Screening. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 2018, 4371–4374. [Google Scholar]
- Negishi, T.; Sun, G.; Sato, S.; Liu, H.; Matsui, T.; Abe, S.; Nishimura, H.; Kirimoto, T. Infection screening system using thermography and CCD camera with good stability and swiftness for non-contact vital-signs measurement by feature matching and MUSIC algorithm. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Kim, Y.; Park, Y.; Kim, J.; Lee, E.C. Remote heart rate monitoring method using infrared thermal camera. Int. J. Eng. Res. Technol. 2018, 11, 493–500. [Google Scholar]
- Pereira, C.B.; Yu, X.; Goos, T.; Reiss, I.; Orlikowsky, T.; Heimann, K.; Venema, B.; Blazek, V.; Leonhardt, S.; Teichmann, D. Noncontact Monitoring of Respiratory Rate in Newborn Infants Using Thermal Imaging. IEEE Trans. Biomed. Eng. 2018, 66, 1105–1114. [Google Scholar] [CrossRef]
- Hu, M.-H.; Zhai, G.-T.; Li, D.; Fan, Y.-Z.; Chen, X.-H.; Yang, X.-K. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef]
- Chen, L.; Hu, M.; Liu, N.; Zhai, G.; Yang, S.X. Collaborative use of RGB and thermal imaging for remote breathing rate measurement under realistic conditions. Infrared Phys. Technol. 2020, 111, 103504. [Google Scholar] [CrossRef]
- Hu, M.; Zhai, G.; Li, D.; Fan, Y.; Duan, H.; Zhu, W.; Yang, X. Combination of near-infrared and thermal imaging techniques for the remote and simultaneous measurements of breathing and heart rates under sleep situation. PLoS ONE 2018, 13, e0190466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakkaew, P.; Onoye, T. Non-contact respiration monitoring and body movements detection for sleep using thermal imaging. Sensors 2020, 20, 6307. [Google Scholar] [CrossRef]
- Boyko, N.; Basystiuk, O.; Shakhovska, N. Performance Evaluation and Comparison of Software for Face Recognition, Based on Dlib and Opencv Library. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 478–482. [Google Scholar]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Weisstein, E.W. Affine Transformation. Available online: https://mathworld.wolfram.com/ (accessed on 25 July 2021).
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Abdulmajeed, M.; Seyfi, L. Object recognition system based on oriented FAST and rotated BRIEF. In Proceedings of the 2nd International Symposium on Innovative Approaches in Scientific Studies, Konya, Turkey, 30 November–2 December 2018. [Google Scholar]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001. [Google Scholar]
- Bennett, S.L.; Goubran, R.; Knoefel, F. Comparison of motion-based analysis to thermal-based analysis of thermal video in the extraction of respiration patterns. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 3835–3839. [Google Scholar]
- Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, 5, 588–603. [Google Scholar] [CrossRef] [Green Version]
- Palshikar, G. Simple algorithms for peak detection in time-series. In Proceedings of the 1st Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence, Ahmedabad, India, 6–7 June 2009; Volume 122. [Google Scholar]
- Sandya, H.B.; Hemanth, K.P.; Himanshi, P. Fuzzy rule based feature extraction and classification of time series signal. Int. J. Soft Comput. Eng. 2013, 3, 2231–2307. [Google Scholar]
- Huang, S.; Tang, J.; Dai, J.; Wang, Y. Signal Status Recognition Based on 1DCNN and Its Feature Extraction Mechanism Analysis. Sensors 2019, 19, 2018. [Google Scholar] [CrossRef] [Green Version]
- Laguna, P.; Moody, G.B.; Mark, R.G. Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 1998, 45, 698–715. [Google Scholar] [CrossRef]
- Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time Series Feature Extraction Library. SoftwareX 2020, 11, 100456. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07TR01. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carol, K. Respiratory rate 1: Why measurement and recording are crucial. Nurs. Times 2018, 114, 23–24. [Google Scholar]
- Takamoto, H.; Nishine, H.; Sato, S.; Sun, G.; Watanabe, S.; Seokjin, K.; Asai, M.; Mineshita, M.; Matsui, T. Development and Clinical Application of a Novel Non-contact Early Airflow Limitation Screening System Using an Infrared Time-of-Flight Depth Image Sensor. Front. Physiol. 2020, 11, 552942. [Google Scholar] [CrossRef]
- Flenady, T.; Dwyer, T.; Applegarth, J. Accurate respiratory rates count: So should you! Australas. Emerg. Nurs. J. 2017, 20, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Sartini, C.; Tresoldi, M.; Scarpellini, P.; Tettamanti, A.; Carcò, F.; Landoni, G.; Zangrillo, A. Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit. JAMA 2020, 323, 2338–2340. [Google Scholar] [CrossRef]
- Total Hospital Bed Occupancy (COVID-19)|SCDHEC. Available online: https://scdhec.gov/covid19/hospital-bed-capacity-covid-19 (accessed on 25 July 2021).
- Storck, K.; Karlsson, M.; Ask, P.; Loyd, D. Heat transfer evaluation of the nasal thermistor technique. IEEE Trans. Biomed. Eng. 1996, 43, 1187–1191. [Google Scholar] [CrossRef]
- Hunsaker, D.H.; Riffenburgh, R.H. Snoring Significance in Patients Undergoing Home Sleep Studies. Otolaryngol. Neck Surg. 2006, 134, 756–760. [Google Scholar] [CrossRef]
- Akbarian, S.; Ghahjaverestan, N.M.; Yadollahi, A.; Taati, B. Distinguishing Obstructive Versus Central Apneas in Infrared Video of Sleep Using Deep Learning: Validation Study. J. Med. Internet Res. 2020, 22, e17252. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W.; Hunter, A.; Gravill, N.; Matusiewicz, S. Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea. IEEE Trans. Biomed. Eng. 2014, 61, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gault, T.; Farag, A. A fully automatic method to extract the heart rate from thermal video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Louisville, KY, USA, 23–28 June 2013; pp. 336–341. [Google Scholar]
- Bennett, S.L.; Goubran, R.; Knoefel, F. Adaptive eulerian video magnification methods to extract heart rate from thermal video. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Li, F.; Zhao, Y.; Kong, L.; Dong, L.; Liu, M.; Hui, M.; Liu, X. A camera-based ballistocardiogram heart rate measurement method. Rev. Sci. Instrum. 2020, 91, 054105. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Durand, F.; Guttag, J. Detecting Pulse from Head Motions in Video. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3430–3437. [Google Scholar]
- Netinant, P.; Vasprasert, P.; Rukhiran, M. Evaluations of Effective on LWIR Micro Thermal Camera IoT and Digital Thermometer for Human Body Temperatures. In Proceedings of the 2021 The 5th International Conference on E-Commerce, E-Business and E-Government, New York, NY, USA, 28 April 2021; pp. 20–24. [Google Scholar]
- Ring, E.F.J.; McEvoy, H.; Jung, A.; Zuber, J.; Machin, G. New standards for devices used for the measurement of human body temperature. J. Med. Eng. Technol. 2010, 34, 249–253. [Google Scholar] [CrossRef]
- Mercer, J.B.; Ring, E.F.J. Fever screening and infrared thermal imaging: Concerns and guidelines. Thermol. Int. 2009, 19, 67–69. [Google Scholar]
- Kim, N.W.; Zhang, H.Y.; Yoo, J.-H.; Park, Y.S.; Song, H.J.; Yang, K.H. The Correlation Between Tympanic Membrane Temperature and Specific Region of Face Temperature. Quant. InfraRed Thermogr. Asia 2017, 16, 1–7. [Google Scholar]
- Yeoh, W.K.; Lee, J.K.W.; Lim, H.Y.; Gan, C.W.; Liang, W.; Tan, K.K. Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLoS ONE 2017, 12, e0174120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Isola, G.B.; Cosentini, E.; Canale, L.; Ficco, G.; Dell’Isola, M. Noncontact Body Temperature Measurement: Uncertainty Evaluation and Screening Decision Rule to Prevent the Spread of COVID-19. Sensors 2021, 21, 346. [Google Scholar] [CrossRef]
- Strąkowska, M.; Strąkowski, R. Automatic eye corners detection and tracking algorithm in sequence of thermal medical images. Meas. Autom. Monit. 2015, 61, 199–202. [Google Scholar]
- Chen, H.-Y.; Chen, A.; Chen, C. Investigation of the Impact of Infrared Sensors on Core Body Temperature Monitoring by Comparing Measurement Sites. Sensors 2020, 20, 2885. [Google Scholar] [CrossRef]
- Nhan, B.R.; Chau, T. Classifying Affective States Using Thermal Infrared Imaging of the Human Face. IEEE Trans. Biomed. Eng. 2010, 57, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Merla, A.; Mattei, P.A.; Di Donato, L.; Romani, G.L. Thermal Imaging of Cutaneous Temperature Modifications in Runners During Graded Exercise. Ann. Biomed. Eng. 2009, 38, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Tejedor, B.; Casals, M.; Gangolells, M.; Macarulla, M.; Forcada, N. Human comfort modelling for elderly people by infrared thermography: Evaluating the thermoregulation system responses in an indoor environment during winter. Build. Environ. 2020, 186, 107354. [Google Scholar] [CrossRef]
- Pavlidis, I.T. Lie detection using thermal imaging. Def. Secur. 2004, XXVI, 270–279. [Google Scholar]
- Warmelink, L.; Vrij, A.; Mann, S.; Leal, S.; Forrester, D.; Fisher, R.P. Thermal imaging as a lie detection tool at airports. Law Hum. Behav. 2011, 35, 40–48. [Google Scholar] [CrossRef]
- VEngert, V.; Merla, A.; Grant, J.; Cardone, D.; Tusche, A.; Singer, T. Exploring the Use of Thermal Infrared Imaging in Human Stress Research. PLoS ONE 2014, 9, e90782. [Google Scholar]
- Koukiou, G.; Anastassopoulos, V. Neural networks for identifying drunk persons using thermal infrared imagery. Forensic Sci. Int. 2015, 252, 69–76. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Li, M.; Tsien, J.Z. Technology platforms for remote monitoring of vital signs in the new era of telemedicine. Expert Rev. Med. Devices 2015, 12, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Hiete, M.; Lauer, L.; Rentz, O. Low cost country sourcing and its effects on the total cost of ownership structure for a medical devices manufacturer. J. Purch. Supply Manag. 2010, 16, 4–16. [Google Scholar] [CrossRef]
- Balsam, J.; Ossandon, M.; Bruck, H.A.; Lubensky, I.; Rasooly, A. Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin. Med. Diagn. 2013, 7, 243–255. [Google Scholar] [CrossRef] [PubMed]
- YChoi, Y.; Kim, N.; Hwang, S.; Kweon, I.S. Thermal Image Enhancement using Convolutional Neural Network. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 223–230. [Google Scholar]
- Welch, J.; Kanter, B.; Skora, B.; McCombie, S.; Henry, I.; McCombie, D.; Kennedy, R.; Soller, B. Multi-parameter vital sign database to assist in alarm optimization for general care units. J. Clin. Monit. 2015, 30, 895–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Published Year | Difference |
---|---|---|
Mikulska D. [19] | 2006 | Covered studies before 2006 |
Lahiri et al. [20] | 2012 | Published in 2012 and covered studies before 2012 |
El et al. [21] | 2015 | Only covered applications related to sports |
Znamenskaya et al. [22] | 2016 | Limited to human psychophysiological conditions that are based on thermographic video |
Zadeh et al. [1] | 2016 | Only covered breast cancer diagnostics by using thermal imaging |
Moreira et al. [23] | 2017 | Developed checklist guidelines to assess skin temperature for sports and exercise medicine |
Topalidou et al. [4] | 2019 | Database limited to EMBASE, MEDLINE, and MIDIRS and only covered thermal camera usage in neonatal care |
Pan et al. [24] | 2019 | Focused on vein finder by using near infrared (NIR) |
Aggarwal et al. [25] | 2020 | Focused on reviewing the accuracy of handheld thermal cameras |
Foster et al. [26] | 2021 | Focused on assessing human core temperature using infrared thermometry |
He et al. [27] | 2021 | Not focused on human vital signs |
Manufacturer | Model | Spectral Range | Temperature Accuracy | Thermal Sensitivity (NETD) | Maximum FPS and Resolutions | Used by |
---|---|---|---|---|---|---|
Flir Systems Inc., Wilsonville, OR, USA | Lepton 3.5 | 8 to 14 µm | ±5 °C | <50 mK | 8.7 FPS, 160 × 120 pixels | [40,41] |
A325 | 7 to 13.5 µm | ±5 °C | <50 mK | 60 FPS, 320 × 240 pixels | [42,43,44,45] | |
Thermovision A40M | 7 to 13.5 µm | ±2 °C | <50 mK | 60 FPS, 320 × 240 pixels | [46] | |
A315 | 7.5 to 13 µm | ±2 °C | <50 mK | 60 FPS, 320 × 240 pixels | [47,48] | |
P384-20 | 8 to 14 µm | ±2 °C | <50 mK | 50 FPS, 384 × 288 pixels | [36] | |
T430sc | 7.5 to 13 µm | ±2 °C | <30 mK | 12 FPS, 320 × 240 pixels | [49] | |
InfraTec GmbH, Dresden, Germany | VarioCAMR HD 820S | 7.5 to 14 µm | ±1 °C | <55 mK | 30 FPS, 1024 × 768 pixels | [50] |
Magnity Electronics Co., Ltd., Shanghai, China | MAG 62 | 7.5 to 14 µm | ±2 °C | <60 mK | 50 FPS, 640 × 480 pixels | [51,52,53] |
Optris Gmbh, Berlin, Germany | Optris PI 450i | 8 to 14 µm | ±2 °C | <75 mK | 80 FPS, 382 × 288 pixels | [28] |
Seek Thermal Inc., Santa Barbara, CA, USA | Compact PRO | 7.5 to 14 µm | - | <70 mK | >15 FPS, 320 × 240 pixels | [54] |
Mobotix AG, Winnweiler, Germany | M16 TR | 7.5 to 13 µm | ±10 °C | <50 mK | 9 FPS, 336 × 252 pixels | [37] |
Author | Objectives | Thermal Camera Model, FPS, and Dimension Used | Image and Signal Processing Tools | Algorithm Used | Validation Method | Performance |
---|---|---|---|---|---|---|
Chen et al. [52] | RR measurement | MAG 62, 10 FPS, 640 × 480 pixels | ·Open CV: Image Processing Tools | ·KLT: Coordinate Mapping ·RSQI_dtw: score each ROI | Compared with the GY-6620 sleep monitor | ·Root Mean Square Error: 0.71 breaths/min and 0.76 breaths/min |
Goldman et al. [46] | RR measurement | Thermovision A40, 50FPS, 320 × 240 pixels | ·Matlab for signal processing software | ·n/a | Compared with standard measurements of nasal pressure | ·Intraclass correlation of 0.978 (0.991–0.954 95% CI) |
Hu et al. [51] | RR measurement | MAG 62, 640 × 480 pixels | ·All analysis conducted with Matlab R2014A | ·Viola-Jones Algorithm for Cascade Object Detector ·Shi-Tomasi for the corner detection algorithm | Compared with human observers (manual counting) | ·Accuracy for face, nose, and mouth: 98.46%, 95.38%, 84.62% |
Hu, et al. [53] | RR and HR measurement | MAG 62, 30 FPS, 640 × 480 pixels | ·Matlab R2014a for Image Processing | ·Affine Transformation for transforming images | Compared with human observers (manual counting) | ·Determination Coefficient: 0.831 |
Jagadev et al. [45] | RR measurement | Flir A325, 25 FPS, 320 × 240 pixels | ·k-nearest neighbors (k-NN) Classifier ·the t-Stochastic Neighbor Embedding algorithm | Statistical calculation of sensitivity, precision, spurious cycle rate, missed cycle rate | ·Sensitivity: 98.76% ·Precision: 99.07% ·Spurious cycle rate: 0.92% ·Missed cycle rate: 1.23% | |
Jagadev et al. [43] | RR measurement and classification | Flir A325, 25 FPS, 320 × 240 pixels | ·Breath Detection algorithm for counting RR ·k-NN and SVM to classify the abnormalities | Statistical calculation of sensitivity, precision, spurious cycle rate, missed cycle rate | ·Sensitivity: 97.2% ·Precision: 98.6% ·Spurious cycle rate: 1.4% ·Missed cycle rate: 2.8% | |
Jakkaew et al. [54] | RR measurement and body movement detection | Compact PRO, 17 FPS, 640 × 480 pixels | ·minMaxLoc OpenCV: ROI Detection ·findContour: programming library to detect significant movement ·OpenCV: image processing framework | Compared with Go Direct respiratory belt | ·Root Mean Square Error: 1.82 ± 0.75 bpm | |
Lyra et al. [28] | RR measurement | Optris PI 450i, 4 FPS, 382 × 288 pixels | ·YOLO_mark: Labelling framework ·YOLOv4 with CSPDarknet53 Backbone: training framework ·YOLOv4-Tiny: Real-Time classifier framework | Compared with thoracic bioimpedance based patient monitor device (Philips, Amsterdam, The Netherlands) | ·Intersection over unit (IoU): 0.70 ·IoU (tiny): 0.75 ·Mean Absolute Errors: 2.79 bpm, 2.69 bpm (Tiny) | |
Mutlu et al. [44] | RR measurement | Flir A325, 60 FPS, 320 × 240 pixels | ·FLIR ResearchIRMax: Video Recording software ·Labview: camera trigger software ·MATLAB: analysis tools | Compared with a respiratory belt transducer containing a piezoelectric | ·Median Error Rate: 6.2% | |
Negishi et al. [47] | RR measurement | Flir A315, 15 FPS, 320 × 240 pixels | ·Labview: Image recording and analysis ·Grab cut: Extraction of contour ·Oriented FAST and Rotated Brief (ORB): feature matching ·dlib: ROI detection library ·OpenCV: Image Processing Tools | Compared with a respiratory effort belt (DL-231, S&ME, Japan) | ·Root Mean Square Error: 2.52 RPM ·Correlation Coefficient 0.77 | |
Negishi et al. [48] | RR and HR measurement | Flir A315, 15 FPS, 320 × 240 pixels | ·Labview: Image recording and analysis ·Grab cut: Extraction of contour ·Oriented Fast and Rotated Brief: feature matching ·dlib: ROI detection library ·OpenCV: Image Processing Tools | Compared with a respiratory effort belt (DL-231, S&ME, Japan) | ·Root Mean Square Error: 1.13 RPM ·Correlation Coefficient 0.92 | |
Negishi et al. [42] | RR and HR measurement | Flir A325, 15 FPS, 320 × 240 pixels | ·dlib: ROI detection library ·OpenCV: Image Processing Library | ·Multiple signal classification (MUSIC) algorithm for signal estimation ·Homography Matrix for facial landmarking | Compared with a respiratory effort belt (DL-231, S&ME, Japan) | ·Sensitivity: 85.7% ·Specificity: 90.1% |
Pereira et al. [50] | RR measurement for infants | VarioCAMR HD 820S, 30 FPS, 1024 × 768 pixels | ·Matlab 2017 for Evaluation and Signal Processing software | Compared with thoracic effort piezo plethysmography belt, namely SOMNOlab2 | ·Root Mean Square Error: (0.31 ± 0.09) breaths/min. | |
Scebba et al. [40] | RR measurement for apnea detection | NIR: See3cam_CU40 MV, 15 FPS, 336×190 pixels LWIR: Flir Lepton 3.5, 8.7 FPS, 160 × 120 pixels | ·Smart Signal Quality Fusion (S2Fusion) for RR estimation ·Cascade Convolutional Neural Network (CCNN) for facial landmark ·KLT for tracking | Compared with piezo-resistive sensors based ezRIP module, Philips Respironics | · Median of Root Mean Square Error: 1.17 breaths/min |
Authors | Fusion Camera Combination | Characteristic |
---|---|---|
Scebba et al. [40] | NIR and LWIR Camera | LWIR camera used for nostrils and chest ROI, NIR camera used for chest ROI |
Negishi et al. [42,47,48] | RGB and LWIR Camera | RGB camera used for determining ROI and extracting PPG signals while LWIR camera used for extracting respiratory signal |
Hu et al. [51] | RGB and LWIR Camera | RGB camera used for determining ROI while LWIR camera used for extracting respiratory signal |
Chen et al. [52] | RGB and LWIR Camera | RGB camera used for determining ROI and alternative method to extract respiratory signal if no face detected while LWIR camera sued for extract respiratory signal if any face detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manullang, M.C.T.; Lin, Y.-H.; Lai, S.-J.; Chou, N.-K. Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review. Sensors 2021, 21, 7777. https://doi.org/10.3390/s21237777
Manullang MCT, Lin Y-H, Lai S-J, Chou N-K. Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review. Sensors. 2021; 21(23):7777. https://doi.org/10.3390/s21237777
Chicago/Turabian StyleManullang, Martin Clinton Tosima, Yuan-Hsiang Lin, Sheng-Jie Lai, and Nai-Kuan Chou. 2021. "Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review" Sensors 21, no. 23: 7777. https://doi.org/10.3390/s21237777
APA StyleManullang, M. C. T., Lin, Y.-H., Lai, S.-J., & Chou, N.-K. (2021). Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review. Sensors, 21(23), 7777. https://doi.org/10.3390/s21237777