Antennas as Precise Sensors for GNSS Reference Stations and High-Performance PNT Applications on Earth and in Space
<p>Novatel GNSS 750 (<b>left</b>) and Leica AR25 (<b>right</b>) antenna as measured at DLR’s near field antenna test facility in Oberpfaffenhofen.</p> "> Figure 2
<p>Pictures of Leica AR25 and Novatel GNSS 750.</p> "> Figure 3
<p>GalExpAnt Antenna from Space Engineering SpA, used for Galileo reference stations.</p> "> Figure 4
<p>DLR in-house developed antenna with choke rings, as shown in [<a href="#B22-sensors-21-04192" class="html-bibr">22</a>], in the anechoic chamber.</p> "> Figure 5
<p>Novatel 703-GGG, Navxperience Nav3G+C, and Tallysman Verostar VSE6028, all in the anechoic chamber at DLR.</p> "> Figure 6
<p>Gain in dBic (RHCP in blue, LHCP in red, different lines represent different azimuth values with a resolution of 5.625 deg) over elevation angle at L1/E1 (<b>left</b>) and L5/E5 (<b>right</b>) of ANYWAVES GNSS All-Bands Antenna (data provided by manufacturer).</p> "> Figure 7
<p>PCV in the upper hemisphere at L1/E1 (<b>left</b>) and L5/E5a (<b>right</b>) for the ANYWAVES GNSS All-Bands Antenna, with data provided by manufacturer.</p> "> Figure 8
<p>GDV in the upper hemisphere at L1/E1 (<b>left</b>) and L5/E5a (<b>right</b>) for the ANYWAVES GNSS All-Bands Antenna, with data provided by manufacturer.</p> "> Figure 9
<p>Leica AR25R4 antenna placed on a tripod in DLR campus field for GNSS measurement.</p> "> Figure 10
<p>RMS of 100 s smoothed multipath (estimated through CMC) at L1/E1 for the antennas measured at DLR: (1) Leica AR25 R4; (2) Novatel GNSS-750; (3) Javad RingAnt-DM; (4) Space Engineering GalExpAnt; (5) DLR internal design; (6) Navxperience Nav3G+C; (7) Tallysman VSE6028 VeroStar.</p> "> Figure 11
<p>Example of reference antenna mounted in a more challenging environment, in this case, the rooftop of DLR’s Institute of Communications and Navigation.</p> "> Figure 12
<p>RMS of 100 s smoothed multipath (estimated through CMC) at L1/E1 for the antennas installed on the roof of DLR’s Institute of Communications and Navigation.</p> "> Figure A1
<p>Gain in dBic (RHCP in blue, LHCP in red; different lines represent different azimuth values with a resolution of 2 deg) at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4, (<b>2</b>) Novatel GNSS-750, (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) NavXperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A2
<p>Gain in dBic (RHCP in blue, LHCP in red; different lines represent different azimuth values with a resolution of 2 deg) at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A2 Cont.
<p>Gain in dBic (RHCP in blue, LHCP in red; different lines represent different azimuth values with a resolution of 2 deg) at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A3
<p>Normalized phase center variations (PCVs) in mm at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A3 Cont.
<p>Normalized phase center variations (PCVs) in mm at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A4
<p>Normalized phase center variations (PCVs) in mm at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysmann VSE6028 VeroStar.</p> "> Figure A5
<p>Group delay in ns at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A6
<p>Group delay in ns at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A6 Cont.
<p>Group delay in ns at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A7
<p>MPSI<sub>up</sub> at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A8
<p>MPSI<sub>up</sub> at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A9
<p>MPSI<sub>down</sub> at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A9 Cont.
<p>MPSI<sub>down</sub> at L1/E1 central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A10
<p>MPSI<sub>down</sub> at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A10 Cont.
<p>MPSI<sub>down</sub> at L5/E5a central frequency of the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Novatel 703-GGG; (<b>7</b>) Navxperience Nav3G+C; (<b>8</b>) Tallysman VSE6028 VeroStar.</p> "> Figure A11
<p>C/N0 at L1/E1 for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> "> Figure A12
<p>C/N0 at L5/E5a for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> "> Figure A13
<p>The 100 s smoothed multipath (estimated through CMC) at L1/E1 for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> "> Figure A13 Cont.
<p>The 100 s smoothed multipath (estimated through CMC) at L1/E1 for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> "> Figure A14
<p>The 100 s smoothed multipath (estimated through CMC) at L5/E5a for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> "> Figure A14 Cont.
<p>The 100 s smoothed multipath (estimated through CMC) at L5/E5a for the antennas measured at DLR; from left to right, from top to bottom: (<b>1</b>) Leica AR25 R4; (<b>2</b>) Novatel GNSS-750; (<b>3</b>) Javad RingAnt-DM; (<b>4</b>) Space Engineering GalExpAnt; (<b>5</b>) DLR internal design; (<b>6</b>) Navxperience Nav3G+C; (<b>7</b>) Tallysman VSE6028 VeroStar. Different colors indicate different PRNs.</p> ">
Abstract
:1. Introduction
2. Performance Parameters and the “Ideal Antenna”
- Gain (roll-off, uniformity), affecting the amount of received power and the signal to noise level;
- Group delay variation (GDV), affecting the pseudorange measurement;
- Phase center variation (PCV), affecting the carrier phase measurement;
- Multipath suppression capability, estimated through multipath suppression indicators (MPSIs), related to the amount of crosspolar radiation.
2.1. Gain Roll-Off and Uniformity
2.2. Group Delay/Phase Center Variations (GDVs/PCVs)
2.3. Multipath Suppression Capability
3. State-of-the-Art of Antennas in Ground Reference Stations
3.1. Antennas with Lateral Size Larger Than 30 cm
3.2. Antennas with Lateral Size Smaller Than 30 cm
4. High-Performance Antennas for Space Applications
5. Exemplary Performance
6. Open Research Issues
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Teunissen, P.J.G.; Montenbruck, O. Handbook of Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Morton, Y.J.; van Diggelen, F.; Spilker, J.J., Jr.; Parkinson, B.W.; Lo, S.; Gao, G. Position, Navigation and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems and Civil Applications; Wiley: Hoboken, NJ, USA, 2020; Volume 1. [Google Scholar]
- Bock, Y.; Melgar, D. Physical applications of GPS geodesy: A review. Rep. Prog. Phys. 2016, 79, 06801. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Montillet, J.-P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- European GNSS Agency (GSA). GNSS Market Report Issue 6. 2019. Available online: https://www.gsa.europa.eu/market/market-report (accessed on 1 February 2021).
- Giorgi, G.; Schmidt, T.D.; Trainotti, C.; Mata-Valvo, R.; Fuchs, C.; Hoque, M.M.; Berdermann, J.; Furthner, J.; Günther, C.; Schuldt, T. Advanced technologies for satellite navigation and geodesy. Adv. Space Res. 2019, 64, 1256–1273. [Google Scholar] [CrossRef]
- Rama Rao, B.; Kunysz, W.; Fante, R.; McDonald, K. GPS/GNSS Antennas (GNSS Technology and Applications); Artech House: Norwood, MA, USA, 2013. [Google Scholar]
- Park, K.D.; Nerem, R.; Schenewerk, M.; Davis, J.L. Site-specific multipath characteristics of global IGS and CORS GPS sites. J. Geod. 2004, 77, 799–803. [Google Scholar] [CrossRef]
- Caizzone, S.; Circiu, M.-S.; Elmarissi, W.; Enneking, C.; Felux, M.; Yinusa, K. Antenna Influence on Global Navigation Satellite System Pseudorange Performance for Future Aeronautics Multifrequency Standardization. Navigation 2019, 66, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Thornberg, D.B.; Thornberg, D.S.; DiBenedetto, M.F.; Braasch, M.S.; van Graas, F.; Bartone, C. The LAAS integrated multipath limiting antenna (IMLA). In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS), Portland, OR, USA, 24–27 September 2002. [Google Scholar]
- Görres, B.; Campbel, J.; Becker, M.; Siemes, M. Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques. GPS Solut. 2006, 10, 136–145. [Google Scholar] [CrossRef]
- Kröger, J.; Kersten, T.; Breva, Y.; Schön, S. Multi-frequency multi-GNSS receiver antenna calibration at IfE: Concept-calibration results—validation. Adv. Space Res. 2021. [Google Scholar] [CrossRef]
- Caizzone, S.; Circiu, M.-S.; Elmarissi, W.; Enneking, C.; Felux, M.; Yinusa, K. Multipath Rejection Capability Analysis of GNSS Antennas. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018. [Google Scholar]
- GPS.GOV, GPS-Control Segment. 6 January 2021. Available online: https://www.gps.gov/systems/gps/control/ (accessed on 7 April 2021).
- European Space Agency (ESA). ESA-Navipedia-Galileo Ground Segment. 25 March 2019. Available online: https://gssc.esa.int/navipedia/index.php/Galileo_Ground_Segment (accessed on 7 April 2021).
- International GNSS Service (IGS). IGS–Network. Available online: https://www.igs.org/network/ (accessed on 7 April 2021).
- Bruyninx, C.; Legrand, J.; Fabian, A.; Pottiaux, E. GNSS Metadata and Data Validation in the EUREF Permanent Network. 2019. Available online: https://www.epncb.oma.be/ (accessed on 7 April 2021).
- Topcon Positioning Systems. PN-A5–Brochure. Available online: https://www.topconpositioning.com/de/support/products/pn-a5 (accessed on 14 January 2021).
- Dessantis, L.; Dicecca, L.; D’Agristina, V.; Crino, P.; Gabellini, P.; Russo, F.A.; Fernandez, A.; Castro, A.Q.; Weiler, R. On site validation in GNSS stations for multipath and interference mitigation structure (IMLP). In Proceedings of the 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 3–5 December 2014. [Google Scholar]
- Kerkhoff, R.; Harris, B.; Petersen, C.P.; Pickard, A. Modifications to GPS Reference Station Antennas to Reduce Multipath. In Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24 September 2010. [Google Scholar]
- Caizzone, S.; Circiu, M.S.; Elmarissi, W.; Enneking, C. All-GNSS-band DRA antenna for high-precision applications. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Caizzone, S.; Circiu, M.-S.; Elmarissi, W. GNSS Reconfigurable Antenna Design for Multipath Characterization. In ION GNSS+, online. 2021. Available online: https://www.ion.org/gnss/upload/GNSS21Program.pdf (accessed on 16 June 2021).
- Novatel. GPS-703-GGG Product Sheet. Available online: https://novatel.com/support/previous-generation-products-drop-down/previous-generation-products/gps-703-ggg-antenna (accessed on 14 January 2021).
- NavXperience. Our precise GNSS Antennas: 3G+C Series—Technical Data. Available online: https://navxperience.com/product-range/ (accessed on 14 January 2021).
- Tallysman.VSE6028 Embedded VeroStar™ Full GNSS Precision Antenna—Datasheet. Available online: https://www.tallysman.com/product/vse6028-embedded-verostar-full-gnss-antenna/ (accessed on 14 January 2021).
- Leica Geosystems, A.G. Leica AR25 GNSS Antenna—Brochure. Available online: https://leica-geosystems.com/en-gb/products/gnss-reference-networks/antennas/leica-ar25 (accessed on 14 January 2021).
- Novatel. GNSS 750 Wideband Choke Ring Antenna—Product Sheet. Available online: https://novatel.com/products/antennas/fixed-reference-gnss-antennas/gnss-750 (accessed on 14 January 2021).
- Javad GNSS. RingAnt-DM Specifications—Datasheet. Available online: http://javad.com/jgnss/products/antennas/RingAnt-DM_spec.html (accessed on 14 January 2021).
- Septentrio. PolaNt Choke Ring B3/E6—Datasheet. Available online: https://www.septentrio.com/en/products/antennas/chokering-b3-e6 (accessed on 14 January 2021).
- Trimble. Trimble GNSS Ti-V2 Choke Ring Geodetic Antenna—Brochure. Available online: https://www.trimble.com/Real-Time-Networks/Trimble-Choke-Ring-Antenna.aspx (accessed on 12 April 2021).
- Topcon Positioning Systems. CR-G5—Datasheet. Available online: https://www.topconpositioning.com/de/support/products/cr-g5 (accessed on 14 January 2021).
- Leica Geosystems, A.G. Leica AR10 GNSS Antenna—Flyer. Available online: https://leica-geosystems.com/en-gb/products/gnss-reference-networks/antennas/leica-ar10 (accessed on 14 January 2021).
- Novatel. GPS-704-X Product Sheet. Available online: https://novatel.com/products/antennas/high-performance-gnss-gps-antennas/gps-704-x (accessed on 14 January 2021).
- Novatel. VEXXIS® GNSS-800 Series Antennas—GNSS-850 Product Sheet. Available online: https://novatel.com/products/antennas/vexxis-series-antennas/vexxis-gnss-800-series-antennas (accessed on 14 January 2021).
- Movahedinia, R.; Hautcoeur, J.; Panther, G.; MacLeod, K. Innovation: Design and Performance of a Novel GNSS Antenna for Rover Applications. GPS World 1 September 2020. Available online: https://www.gpsworld.com/innovation-design-and-performance-of-a-novel-gnss-antenna-for-rover-applications/ (accessed on 18 June 2021).
- Fraunhofer Institute for Integrated Circuits. GNSS Antennas—Geodetic Antennas—GNSS High-Precision Antenna—Technical data. Available online: https://www.iis.fraunhofer.de/en/ff/lv/lok/gnss/gnssa.html#1507894146 (accessed on 14 January 2021).
- Septentrio. Veraphase 6000—Datasheet. Available online: https://www.septentrio.com/en/products/antennas/veraphase6000 (accessed on 14 January 2021).
- Septentrio. PolaNt* MC—Datasheet. Available online: https://www.septentrio.com/en/products/antennas/polantmc (accessed on 14 January 2021).
- Imbriale, W.A.; Gao, S.S.; Boccia, L. Space Antenna Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- RUAG Space. RUAG Space: Maiden Flight of New Generation Navigation Receiver. 18 November 2020. Available online: https://www.ruag.com/en/news/ruag-space-maiden-flight-new-generation-navigation-receiver (accessed on 11 February 2021).
- Croissant, K.; Jenkins, G.; McKnight, R.; Peters, B.C.; Ugazio, S.; van Graas, F. Bobcat-1, the Ohio University CubeSat: Preliminary Data Analysis. In Proceedings of the 2021 International Technical Meeting of The Institute of Navigation, Virtual Event, 25–28 January 2021; pp. 625–636. [Google Scholar]
- Klein, W.; Axelrad, P. Simulation and Analysis of GPS Multipath for the GEDI Experiment Onboard the International Space Station. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Virtual Event, 21–25 September 2020; pp. 1338–1371. [Google Scholar]
- Hwu, S.U.; Loh, Y. Space station GPS multipath analysis and validation. In Proceedings of the 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363), Houston, TX, USA, 16–20 May 1999. [Google Scholar]
- United Nations Office for Outer Space Affairs. The Interoperable Global Navigation Satellite Systems Space Service Volume; United Nations Office: Vienna, Vienna, 2018. [Google Scholar]
- ISISPACE. GNSS Patch Antenna—Datasheet. Available online: https://www.isispace.nl/product/gnss-patch-antenna/ (accessed on 14 January 2021).
- ANYWAVES. GNSS L1/E1 Band Antenna. Available online: https://anywaves.eu/products/gnss-l1-e1-band-antenna/ (accessed on 12 April 2021).
- SkyFox Labs. Products—Space Friendly Multiconstellation Antenna Module piPATCH-MAX/FM. Available online: https://www.skyfoxlabs.com/product/20-pipatch-max (accessed on 12 April 2021).
- Space Quest. Satellite and Ground System Components—ANT-GPS Active GPS-Antenna—Product Datasheet. Available online: https://www.spacequest.com/components/11 (accessed on 12 April 2021).
- NewSpace Systems. GPS Receiver & Antenna—Product Datasheet. Available online: https://www.newspacesystems.com/portfolio/gps-receiver-antenna/ (accessed on 12 April 2021).
- RUAG. Antennas—Global Navigation Satellite System Antennas—GNSS RX Antennas. Available online: https://www.ruag.com/en/products-services/space/electronics/antennas (accessed on 14 January 2021).
- Fraunhofer IIS. GNSS Antennas—Satellite Antennas—CubeSat Antenna—Datasheet. Available online: https://www.iis.fraunhofer.de/en/ff/lv/lok/gnss/gnssa.html (accessed on 14 January 2021).
- ANYWAVES. GNSS All-Bands Antenna—Datasheet. Available online: https://anywaves.eu/products/gnss-all-bands-antenna/ (accessed on 14 January 2021).
- Fraunhofer Institute for Integrated Circuits (IIS). GNSS Antennas—Space User GNSS Antenna “SUGA”—Datasheet. Available online: https://www.iis.fraunhofer.de/de/ff/lv/lok/gnss/gnssa.html (accessed on 12 April 2021).
- Circiu, M.; Caizzone, S.; Felux, M.; Enneking, C.; Rippl, M.; Meurer, M. Development of the dual-frequency dual-constellation airborne multipath models. Navigation 2020, 67, 61–81. [Google Scholar] [CrossRef] [Green Version]
- National Coordination Office for Space-Based Positioning, Navigation and Timing. GPS.gov—Information about HPS Jamming. 2013. Available online: https://www.gps.gov/spectrum/jamming/ (accessed on 12 April 2021).
- Cuntz, M.; Konovaltsev, A.; Meurer, M. Concepts, Development and Validation of Multi-Antenna GNSS Receivers for Resilient Navigation. Proc. IEEE 2016, 104, 1288–1301. [Google Scholar] [CrossRef]
- Konovaltsev, A.; Caizzone, S.; Yinusa, K.; Sgammini, M.; Appel, M.; Cuntz, M.; Elmarissi, W.; Meurer, M. Interference Detection and Characterization with an Array based GNSS Receiver using Conformal Antennas in Maritime Environments. In Proceedings of the Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 2795–2811. [Google Scholar]
Antenna | Technique | Size | Weight | Frequency Bands | Gain Roll-Off Factor | Phase Center Variation PCV (Maximum Range in mm) | Group Delay Variation GDV (Maximum Range in ns) | |
---|---|---|---|---|---|---|---|---|
Leica AR25 [26] | Chokering | 380 × 380 × 200 mm3 | 7.6 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 14 dB L1/E1: 10 dB | L5/E5: +++/+ L1/E1: +/+ | L5/E5: 8 mm L1/E1: 7 mm | L5/E5: 0.8 ns L1/E1: 1.3 ns |
Novatel GNSS 750 [27] | Chokering | 380 × 380 × 200 mm3 | 7.6 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 13 dB L1/E1: 11 dB | L5/E5: +++/+ L1/E1: +/+ | L5/E5: 9 mm L1/E1: 8 mm | L5/E5: 0.4 ns L1/E1: 0.8 ns |
Javad RingAnt DM [28] | Chokering | 380 × 380 × 138 mm3 | 4.4 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 16 dB L1/E1: 16 dB | L5/E5: +++/++ L1/E1: ++/++ | L5/E5: 15 mm L1/E1: 18 mm | L5/E5: 0.8 ns L1/E1: 1.2 ns |
Space Engineering GalExpAnt | Not specified | 294 × 294 × 459 mm3 | ~16 kg | E5ab, E6, E1 | L5/E5: 11–12 dB L1/E1: 6–11 dB | L5/E5: +/o L1/E1: -/- - | L5/E5: 11 mm L1/E1: 22 mm | L5/E5: 1.9 ns L1/E1: 1.7 ns |
DLR antenna | Chokering | ~350 × 350 × 300 mm3 | ~8 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 17–18 dB L1/E1: 17–18 dB | L5/E5: ++/++ L1/E1: ++/++ | L5/E5: 18 mm L1/E1: 15 mm | L5/E5: 0.6 ns L1/E1: 0.7 ns |
Septentrio PolaNt Chokering B3/E6 [29] | Chokering | 376 × 376 × 350 mm3 | 5.0 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 11 dB L1/E1: 11 dB | n.a. | n.a. | n.a. |
Trimble GNSS v2 Chokering antenna [30] | Chokering | 380 × 380 × 146 mm3 | 4.3 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: - L1/E1: - | n.a. | n.a. | n.a. |
Topcon CR G5 [31] | Chokering | 380 × 380 × 155 mm3 | 4.9 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 16.5 dB L1/E1: 13 dB | n.a. | n.a. | n.a. |
Topcon PN A5 [18] | Vertical dipoles | 380 × 380 × 262 mm3 | 6.7 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 12 dB L1/E1: 10 dB | n.a. | n.a. | n.a. |
Leica AR10 [32] | Planar structure with large GND plane | 240 × 240 × 140 mm3 | 1.1 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: n.a. L1/E1: n.a. | n.a. | n.a. | n.a. |
Novatel 704-X [33] | NoVAtel’s patented Pinwheel technology | 185 × 185 × 69 mm3 | 0.468 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 11 dB L1/E1: 14 dB | n.a. | n.a. | n.a. |
Novatel 703-GGG [23] | Pinwheel | 185 × 185 × 69 mm3 | 0.500 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 8–10 dB L1/E1: 11–12 dB | L5/E5: +++/- L1/E1: +++/+ | L5/E5: 2 mm L1/E1: 4 mm | L5/E5: 0.6 ns L1/E1: 0.3 ns |
Novatel GNSS 850 [34] | Multi-point feeding network | 176 × 176 × 55 mm3 | 0.507 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 12 dB L1/E1: 10 dB | n.a. | n.a. | n.a. |
Tallysman Verostar VSE6028 [25,35] | VeroStar technology | 106 × 106 × 39 mm3 | 0.080 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 7–10 dB L1/E1: 6–9 dB | L5/E5: ++/- - L1/E1: ++/- | L5/E5: 18 mm L1/E1: 8 | L5/E5: 1.1 ns L1/E1: 1.4 ns |
Navxperience Nav3G+C [24,36] | Mobile | 172 × 172 × 121 mm3 | 0.384 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5: 9–10 dB L1/E1: 11–14 dB | L5/E5: +++/- L1/E1: +++/+ | L5/E5: 10 mm L1/E1: 6 mm | L5/E5: 0.3 ns L1/E1: 0.7 ns |
Septentrio/TallysmanVeraPhase 6000 [37] | VeraPhase | 167 × 167 × 175 mm3 | 0.820 kg | L5/E5ab, L2, E6, L1/E1 | L5/E5/L2: 11 dB L1/E1: 13 dB | n.a. | n.a. | n.a. |
Septentrio PolaNt-x MC [38] | Mobile | 190 × 190 × 73 mm3 | 0.450 kg | L5/E5ab, L2, L1/E1 | L5/E5: 11 dB L1/E1: 11 dB | n.a. | n.a. | n.a. |
Antenna | Technique | Size | Weight | Frequ. Bands | Gain Roll-Off Factor | Multipath Suppression | Phase Center Variation PCV | Group Delay Variation GDV |
---|---|---|---|---|---|---|---|---|
ISIS GNSS L1/E1 [45] | Patch antenna | 70 × 70 × 15 mm3 | 18 g | L1/E1 | L1/E1: ~7 dB | n.a. | n.a. | n.a. |
ANYWAVES GNSS L1/E1 [46] | Patch antenna | 68 × 70 × 12.1 mm3 | 86 g | L1/E1 | L1/E1: ~8 dB | n.a. | n.a. | n.a. |
SkyFoc Labs GPS-L1 piPATCH-MAX [47] | Patch antenna | 74 × 74 × 13 mm3 | 89 g | L1 | L1/E1: n.a | n.a. | n.a. | n.a. |
Space Quest ANT-GPS L1 [48] | Patch antenna | 17.5 × 52.8 × 52.8 mm3 | 82 g | L1 (+L2) | L1/E1: 7 dB (to 10° ele.) | n.a. | n.a. | n.a. |
New Space Systems NANT-PTCL1 [49] | Patch antenna | 54 × 54 × 14.1 mm3 | 80 g | L1 | L1/E1: - | n.a. | n.a. | n.a. |
RUAG PEC L1/E1 [50] | Patch Excited Cup | 144 × 144 × 35 mm3 | 220 g | L1/E1 | L1/E1: ~13 dB | n.a. | n.a. | n.a. |
Fraunhofer GNSS Cubesat [51] | Multifeed 3D technology | 100 × 83 × 10 mm3 | 20 g | L5/E5ab, L2, E6, L1/E1 | L5/E5: 7 dB L1/E1: ~11 dB | n.a. | n.a. | n.a. |
ANYWAVES GNSS all bands [52] | Printed antenna | 90 × 90 × 15 mm3 | 123 4 g | L5/E5ab, L2, E6, L1/E1 | L5/E5: 8–10 dB L1/E1: 7–13 dB | n.a. | L5/E5: <8 mm L1/E1: <9 mm | L5/E5: 1.5 ns L1/E1: 0.7 ns |
RUAG PEC (wo. corrugation) [50] | Patch Excited Cup | 160 × 160 × 55 mm3 | 325 g | L5/E5ab, L2, L1/E1 | L5/E5: 13 dB L1/E1: 18 dB | n.a. | n.a. | n.a. |
RUAG PEC (w. corrugation) [50] | Patch Excited Cup | 200 × 200 × 87 mm3 | 735 g | L5/E5ab, L2, L1/E1 | L5/E5: 14 dB L1/E1: 18 dB | n.a. | n.a. | n.a. |
RUAG Helix [50] | Quadrifilar helix | 90 × 90 × 410 mm3 | 0.815 kg | L5/E5ab, L2, L1/E1 | L5/E5: 1 dB L1/E1: 0 dB | n.a. | n.a. | n.a. |
RUAG PEC GEO [50] | Patch Excited Cup | 239 × 239 × 179 mm3 | 715 g | L1/E1 | n.a. | n.a. | n.a. | n.a. |
Fraunhofer SUGA [53] | One arm helix | 250 × 250 × 50 mm3 | <1000 g | L5/E5 | n.a. | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caizzone, S.; Schönfeldt, M.; Elmarissi, W.; Circiu, M.-S. Antennas as Precise Sensors for GNSS Reference Stations and High-Performance PNT Applications on Earth and in Space. Sensors 2021, 21, 4192. https://doi.org/10.3390/s21124192
Caizzone S, Schönfeldt M, Elmarissi W, Circiu M-S. Antennas as Precise Sensors for GNSS Reference Stations and High-Performance PNT Applications on Earth and in Space. Sensors. 2021; 21(12):4192. https://doi.org/10.3390/s21124192
Chicago/Turabian StyleCaizzone, Stefano, Miriam Schönfeldt, Wahid Elmarissi, and Mihaela-Simona Circiu. 2021. "Antennas as Precise Sensors for GNSS Reference Stations and High-Performance PNT Applications on Earth and in Space" Sensors 21, no. 12: 4192. https://doi.org/10.3390/s21124192
APA StyleCaizzone, S., Schönfeldt, M., Elmarissi, W., & Circiu, M.-S. (2021). Antennas as Precise Sensors for GNSS Reference Stations and High-Performance PNT Applications on Earth and in Space. Sensors, 21(12), 4192. https://doi.org/10.3390/s21124192