Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation
<p>Typical swept frequency excitation: (<b>a</b>) time domain; (<b>b</b>) frequency domain.</p> "> Figure 2
<p>Finite element model of a two-end fixed beam.</p> "> Figure 3
<p>Typical response of a two-end fixed beam in the time domain.</p> "> Figure 4
<p>Flowchart of the proposed method.</p> "> Figure 5
<p>Geometry of the sluice: (<b>a</b>) plane view; (<b>b</b>) cross-section view; (<b>c</b>) elevation view.</p> "> Figure 6
<p>Finite element model of the sluice system.</p> "> Figure 7
<p>Damage characteristics of case ‘d1t’: (<b>a</b>) time domain; (<b>b</b>) frequency domain.</p> "> Figure 8
<p>Damage characteristics of case ‘d12′: (<b>a</b>) time domain; (<b>b</b>) frequency domain.</p> "> Figure 9
<p>Damage curves: beam 1; beam 2; beam 3.</p> "> Figure 10
<p>Time domain responses measured by different sensors: (<b>a</b>) beam 1; (<b>b</b>) beam 2; (<b>c</b>) beam 3.</p> "> Figure 11
<p>The amplitudes of frequency domain responses of the LRRB measured by different sensors under different damage situations.</p> "> Figure 12
<p>Time domain responses excited by different excitations: (<b>a</b>) beam 1; (<b>b</b>) beam 3.</p> "> Figure 12 Cont.
<p>Time domain responses excited by different excitations: (<b>a</b>) beam 1; (<b>b</b>) beam 3.</p> "> Figure 13
<p>Frequency domain responses excited by different excitations: (<b>a</b>) beam 1; (<b>b</b>) beam 3.</p> "> Figure 14
<p>Clean signals and noisy signals in the time domain of beam 1 excited by HE: (<b>a</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0; (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.05; (<b>c</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.10; (<b>d</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.15; (<b>e</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.20.</p> "> Figure 15
<p>Clean signals and noisy signals in the time domain of beam 1 excited by SFE: (<b>a</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0; (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.05; (<b>c</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.10; (<b>d</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.15; (<b>e</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.20.</p> "> Figure 16
<p>Identification of LPF in frequency spectrums of noisy signals excited by HE: (<b>a</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.05; (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.10; (<b>c</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.15; (<b>d</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.20.</p> "> Figure 17
<p>Identification of LPF in frequency spectrums of noisy signals excited by SFE: (<b>a</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.05; (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.10; (<b>c</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.15; (<b>d</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> = 0.20.</p> ">
Abstract
:1. Introduction
2. Damage Factor Formation Based on Local Modes
2.1. Frequency Sensitivity to Substructural Damage
2.2. Local Modes of Substructures
2.3. Damage Index
3. Damage Identification Evoked by Swept Frequency Excitation
3.1. Swept Frequency Excitation (SFE)
3.2. Local Resonance Response Band (LRRB)
3.3. Procedure of Damage Identification
4. Application to Evaluation of Sluice Beam
4.1. Finite Element Model
4.2. Simulation of Damage
4.3. Damage Identification
5. Parametric Discussions and Comparison with Hammer Excitation (HE) Method
5.1. Sensor Position
5.2. Excitation
5.3. Noise Immunity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karami, S.; Heidari, M.M.; Rad, M.H.A. Investigation of Free Flow Under the Sluice Gate with the Sill Using Flow-3D Model. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2020, 44, 317–324. [Google Scholar] [CrossRef]
- Liu, Y.W.; Cho, S.W. Study on application of fiber-reinforced concrete in sluice gates. Constr. Build. Mater. 2018, 176, 737–746. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, C.; Guo, G.; Li, L.; Zhao, Y.; Li, H.; Gong, Y. Monitoring Sluice Health in Vibration by Monocular Digital Photography and a Measurement Robot. KSCE J. Civ. Eng. 2019, 23, 2666–2678. [Google Scholar] [CrossRef]
- Giri, P.; Kharkovsky, S. Detection of Surface Crack in Concrete Using Measurement Technique With Laser Displacement Sensor. IEEE Trans. Instrum. Meas. 2016, 65, 1951–1953. [Google Scholar] [CrossRef]
- Suaris, W.; Fernando, V. Detection of crack growth in concrete from ultrasonic intensity measurements. Mater. Struct. 1987, 20, 214–220. [Google Scholar] [CrossRef]
- Ikhlas, A.Q.; Osama, A.; Michael, E.K. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput. Civ. Eng. 2003, 17, 255–263. [Google Scholar]
- Srinivas, V.; Jeyasehar, C.A.; Ramanjaneyulu, K.; Sasmal, S. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam. J. Inst. Eng. 2012, 93, 54. [Google Scholar]
- Yeum, C.M.; Dyke, S.J. Vision-Based Automated Crack Detection for Bridge Inspection. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Seyed, R.; Hashim, R.; Zubaidah, I.; Hooman, M. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis. Sensors 2015, 15, 22750–22775. [Google Scholar]
- Hanif, M.U.; Ibrahim, Z.; Ghaedi, K.; Hashim, H.; Javanmardi, A. Damage assessment of reinforced concrete structures using a model-based nonlinear approach—A comprehensive review. Constr. Build. Mater. 2018, 192, 846–865. [Google Scholar] [CrossRef]
- Wu, C.; Sun, K.; Xu, Y.; Zhang, S.; Zeng, S. Concrete crack detection method based on optical fiber sensing network and microbending principle. Saf. Sci. 2019, 117, 299–304. [Google Scholar] [CrossRef]
- Lee, Y.S.; Chung, M.J. A study on crack detection using eigenfrequency test data. Comput. Struct. 2000, 77, 327–342. [Google Scholar] [CrossRef]
- Thatoi, D.N.; Nanda, J.; Das, H.C.; Parhi, D.R. Analysis of the Dynamic Response of a Cracked Beam Structure. Appl. Mech. Mater. 2012, 187, 58–62. [Google Scholar] [CrossRef]
- Das, S.; Saha, P.; Patro, S.K. Vibration-based damage detection techniques used for health monitoring of structures: A review. J. Civ. Struct. Health Monit. 2016, 6, 507. [Google Scholar] [CrossRef]
- Yan, Y.J.; Cheng, L.; Wu, Z.Y.; Yam, L.H. Development in vibration-based structural damage detection technique. Mech. Syst. Signal. Process. 2007, 21, 2198–2211. [Google Scholar] [CrossRef]
- Cao, M.S.; Sha, G.G.; Gao, Y.F.; Ostachowicz, W. Structural damage identification using damping: A compendium of uses and features. Smart Mater. Struct. 2017, 26, 043001. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Wu, J.; Ramakrishnan, K.R.; Singh, H.K. A novel method of vibration modes selection for improving accuracy of frequency-based damage detection. Compos. Part B Eng. 2019, 159, 437–446. [Google Scholar] [CrossRef]
- Xu, W.; Ding, K.; Liu, J.; Cao, M.; Ostachowicz, W. Non-uniform crack identification in plate-like structures using wavelet 2D modal curvature under noisy conditions. Mech. Syst. Signal Process. 2019, 126, 469–489. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. A Summary Review of Vibration-Based Damage Identification Methods. Shock Vib. Dig. 1998, 30, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Ciang, C.C.; Lee, J.R.; Bang, H.J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Biswas, M.; Samman, M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332. [Google Scholar] [CrossRef]
- Dahak, M.; Touat, N.; Kharoubi, M. Damage detection in beam through change in measured frequency and undamaged curvature mode shape. Inverse Probl. Sci. Eng. 2019, 27, 89–114. [Google Scholar] [CrossRef]
- Ciambella, J.; Vestroni, F. The use of modal curvatures for damage localization in beam-type structures. J. Sound Vibrat. 2015, 340, 126–137. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L. Damage Identification of a Beam-like Structure Using Element Modal Strain Energies and Natural Frequencies. Appl. Mech. Mater. 2011, 94–96, 718–723. [Google Scholar] [CrossRef]
- Chang, K.C.; Soong, T.T.; Oh, S.T.; Lai, M.L. Effect of Ambient Temperature on Viscoelastically damped structure. J. Struct. Eng. 1992, 118, 1955–1973. [Google Scholar] [CrossRef]
- Salawu, O.S. Detection of structural damage through changes in frequency: A review. J. Eng. Struct. 1997, 19, 718–723. [Google Scholar] [CrossRef]
- Cawley, P.; Adams, R.D. The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. Des. 1979, 14, 49–57. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Elias, D. Using the exact element method and modal frequency changes to identify distributed damage in beams. Eng. Struct. 2013, 51, 60–72. [Google Scholar] [CrossRef]
- Dilena, M.; Morassi, A. Structural Health Monitoring of Rods Based on Natural Frequency and Antiresonant Frequency Measurements. Struct. Health Monit. 2009, 8, 149–173. [Google Scholar] [CrossRef]
- Huang, M.S.; Gul, M.; Zhu, H.P. Vibration-Based Structural Damage Identification under Varying Temperature Effects. J. Aerosp. Eng. 2018, 31, 04018014. [Google Scholar] [CrossRef]
- Chondros, T.G.; Dimarogonas, A.D. Identification of cracks in welded joints of complex structures. J. Sound Vibrat. 1980, 69, 531–538. [Google Scholar] [CrossRef]
- Labib, A.; Kennedy, D.; Featherston, C.A. Crack localisation in frames using natural frequency degradations. Comput. Struct. 2015, 157, 51–59. [Google Scholar] [CrossRef]
- Chinchalkar, S. Determination of crack Location in Beams Using Natural Frequencies. J. Sound Vibrat. 2001, 247, 417–429. [Google Scholar] [CrossRef]
- Wei, Z.L.; Zhu, Z.Y.; Guo, Z.H. Numerical Research on Damage Detection of Simple Supported Beam Based on the Natural Frequency Vector Method. Appl. Mech. Mater. 2013, 437, 513–516. [Google Scholar] [CrossRef]
- Wang, S.; Long, X.; Luo, H.; Zhu, H. Damage Identification for Underground Structure Based on Frequency Response Function. Sensors 2018, 18, 3033. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lie, S.T.; Zhang, Y. Damage detection using frequency shift path. Mech. Syst. Signal Process. 2016, 66–67, 298–313. [Google Scholar] [CrossRef]
- Hou, J.L.; Jankowski, L.; Ou, J.P. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies. Math. Probl. Eng. 2014, 2014, 405784. [Google Scholar] [CrossRef]
- Kim, J.T.; Ryu, Y.S.; Cho, H.M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs. mode-shape-based method. Eng. Struct. 2003, 25, 57–67. [Google Scholar] [CrossRef]
- Sony, S.; Sadhu, A. Multivariate empirical mode decomposition–based structural damage localization using limited sensors. J. Vib. Control 2021, 2021, 10775463211006965. [Google Scholar]
- Hou, J.L.; Ou, J.P.; Jankowski, L. The Study and Experiment of Substructure Damage Identification Based on Local Primary Frequency. Eng. Mech. 2012, 29, 99–105. [Google Scholar]
- Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M. Noncontact Sonic NDE and Defect Imaging Via Local Defect Resonance. J. Nondestruct. Eval. 2016, 35, 48. [Google Scholar] [CrossRef]
- Mei, H.; Migot, A.; Haider, M.F.; Joseph, R.; Bhuiyan, M.Y.; Giurgiutiu, V. Vibration-Based In-Situ Detection and Quantification of Delamination in Composite Plates. Sensors 2019, 19, 1734. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.L.; Jankowski, L.; Ou, J.P. Substructural Damage Identification Using Local Primary Frequency. In Proceedings of the Eleventh International Symposium on Structural Engineering, Guangzhou, China, 18–20 December 2010; pp. 1426–1431. [Google Scholar]
- Wei, Y.; Dong, Y.; Huang, X.; Zhang, Z. A Stepped Frequency Sweeping Method for Nonlinearity Measurement of Microresonators. Sensors 2016, 16, 1700. [Google Scholar] [CrossRef]
- Mituletu, I.C.; Gillich, G.-R.; Maia, N.M.M. A method for an accurate estimation of natural frequencies using swept-sine acoustic excitation. Mech. Syst. Signal Process. 2019, 116, 693–709. [Google Scholar] [CrossRef]
Name | M1 | M2 | M3 | M4 |
---|---|---|---|---|
Type | Foundation | Bottom plate | Gate pier | Hoist beam |
Density (Kg/m3) | 2450 | 2650 | 3100 | 2650 |
Elastic Modulus (MPa) | 5E3 | 2.8E4 | 3.1E4 | 3E4 |
Poisson’s Ratio | 0.28 | 0.167 | 0.167 | 0.2 |
Reduction (%) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 12 | 27 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beam 1 | d11 | d12 | d13 | d14 | d15 | d16 | d17 | d18 | d19 | d1t | T1a | T1b | T1c |
Beam 2 | d21 | d22 | d23 | d24 | d25 | d26 | d27 | d28 | d29 | d2t | T2a | T2b | T2c |
Beam 3 | d31 | d32 | d33 | d34 | d35 | d36 | d37 | d38 | d39 | d3t | T3a | T3b | T3c |
Damaged Cases | T1a | T1b | T1c | T2a | T2b | T2c | T3a | T3b | T3c | Average |
---|---|---|---|---|---|---|---|---|---|---|
True results (%) | 12 | 27 | 47 | 12 | 27 | 47 | 12 | 27 | 47 | / |
Identified results (%) | 12.1 | 26.5 | 46.3 | 11.6 | 27.1 | 47 | 12.5 | 27.4 | 46.6 | / |
Error (%) | 0.83 | 1.85 | 1.49 | 3.33 | 0.37 | 0 | 4.17 | 1.48 | 0.85 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Xu, H.; Li, Y.; Chen, L.; Novák, D.; Cui, L.; Cao, M. Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation. Sensors 2021, 21, 6357. https://doi.org/10.3390/s21196357
Wei Q, Xu H, Li Y, Chen L, Novák D, Cui L, Cao M. Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation. Sensors. 2021; 21(19):6357. https://doi.org/10.3390/s21196357
Chicago/Turabian StyleWei, Qingyang, Hao Xu, Yifei Li, Li Chen, Drahomír Novák, Li Cui, and Maosen Cao. 2021. "Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation" Sensors 21, no. 19: 6357. https://doi.org/10.3390/s21196357
APA StyleWei, Q., Xu, H., Li, Y., Chen, L., Novák, D., Cui, L., & Cao, M. (2021). Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation. Sensors, 21(19), 6357. https://doi.org/10.3390/s21196357