Design of a Low-Cost Small-Size Fluxgate Sensor
<p>A dual-core fluxgate probe structure.</p> "> Figure 2
<p>Schematic diagram of the working principle of the dual-core magnetic fluxgate sensor. (<b>a</b>) the simplified hysteresis line of the core (<b>b</b>) the core’s magnetic induction intensity (<b>c</b>) the core’s magnetic field intensity (<b>d</b>) the output voltage of the induction coil.</p> "> Figure 3
<p>Co-based amorphous ribbon.</p> "> Figure 4
<p>Photo of the probe structure. (a) Two independent semi-cylindrical core skeletons; (b) induction coil skeleton; (c) probe casing.</p> "> Figure 5
<p>Photo of the single-component probe (a coin is used as a size reference).</p> "> Figure 6
<p>Simplified block diagram of the sensor processing circuitry.</p> "> Figure 7
<p>Photo of the fluxgate sensor.</p> "> Figure 8
<p>Location of the three probes.</p> "> Figure 9
<p>Test shield cylinder for determining the magnetic sensor performance.</p> "> Figure 10
<p>Linearity test results.</p> "> Figure 11
<p>Three-component data waveform from the prototype fluxgate sensor in the shielding cylinder.</p> "> Figure 12
<p>Photo of the observation experiment used for the fluxgate senor comparison.</p> "> Figure 13
<p>Daily variational curves of the test device and standard device.</p> ">
Abstract
:1. Introduction
2. Core Material and Probe Design
3. Concept of the Proposed Sensor and Realization
4. Experiments and Results
4.1. Linearity Testing
4.2. Noise Testing
4.3. Instrument Comparison Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ripka, P. Magnetic Sensors and Magnetometers; Artech House: Boston, London, 2001; pp. 75–88. [Google Scholar]
- Zorlu, O.; Kejik, P.; Teppan, W. A closed core microfluxgate sensor with cascaded planar FeNi rings. Sens. Actuat. A 2010, 162, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Forslund, Å.; Belyayev, S.; Ivchenko, N.; Olsson, G.; Edberg, T.; Marusenkov, A. Miniaturized digital fluxgate magnetometer for small spacecraft applications. Meas. Sci. Technol. 2008, 19, 015202. [Google Scholar] [CrossRef]
- Gooneratne, C.P.; Li, B.; Moellendick, T.E. Downhole Applications of Magnetic Sensors. Sensors 2017, 17, 2384. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Zhu, F.; Lei, G.; Chong, L.; Zhou, Y. Investigation of a novel MEMS orthogonal fluxgate sensor fabricated with Co-based amorphous ribbon core. Sens. Actuat. A 2017, 267, 121–126. [Google Scholar] [CrossRef]
- Cui, Z. Design of Closed Loop Feedback Broadband Fluxgate Sensor. Instrum. Tech. Sens. 2018, 3, 117–121. [Google Scholar]
- Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application. Sensors 2021, 21, 1500. [Google Scholar] [CrossRef]
- Vopálenský, M.; Ripka, P.; Platil, A. Precise magnetic sensors. Sens. Actuat. A 2003, 106, 38–42. [Google Scholar] [CrossRef]
- Cerman, A.; Kuna, A.; Ripka, P.; Merayo, J.M.G. Digitalization of highly precise fluxgate magnetometers. Sens. Actuat. A 2005, 121, 421–429. [Google Scholar] [CrossRef]
- Cerman, A.; Ripka, P. Towards fully digital magnetometer. Sens. Actuat. A 2003, 106, 34–37. [Google Scholar] [CrossRef]
- Ripka, P. New directions in fluxgate sensors. J. Magn. Magn. Mater. 2000, 215, 735–739. [Google Scholar] [CrossRef]
- Díaz-Michelena, M. Small Magnetic Sensors for Space Applications. Sensors 2009, 9, 2271–2288. [Google Scholar] [CrossRef]
- Choi, W.Y.; Na, K.W.; Ahn, S.J.; Choi, S.O. A Micro-Fluxgate Magnetic Sensor Using Closely Coupled Excitation and Pick-Up Coils. MRS Online Proc. Lib. Arch. 2002, 729, 95–100. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kim, S.J. High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core. Trans. Electr. Mater. 2005, 6, 110–114. [Google Scholar] [CrossRef]
- Wu, P.M.; Ahn, C.H. Design of a Low-Power Micromachined Fluxgate Sensor Using Localized Core Saturation Method. IEEE Sens. J. 2008, 8, 308–313. [Google Scholar] [CrossRef]
- Lu, C.C.; Huang, J. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide. Sensors 2015, 15, 14727–14744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lan, M.; Wang, D. Present and Future of Micro-Fluxgate Sensors Development. J. Telem. Track. Command. 2002, 4. [Google Scholar]
- Ripka, P. Advances in fluxgate sensors. Sens. Actuat. A 2003, 106, 8–14. [Google Scholar] [CrossRef]
- Lang, X.; Du, A.; Li, Q.; Cao, X.; Zhi, M.; Qiao, D. Hardware design and realization of pic SCM-based miniaturized low-power fluxgate magnetometer. Prog. Geophys. 2016, 31, 908–912. [Google Scholar]
- Liu, Y.; Yang, Z.; Wang, T.; Sun, X.C.; Lei, C.; Zhou, Y. Improved performance of the micro planar double-axis fluxgate sensors with different magnetic core materials and structures. Microsyst. Technol. 2016, 22, 2341–2347. [Google Scholar] [CrossRef]
- Ripka, P. Sensors based on bulk soft magnetic materials: Advances and challenges. J. Magn. Magn. Mater. 2008, 320, 2466–2473. [Google Scholar] [CrossRef]
- Ripka, P.; Janosek, M. Advances in Magnetic Field Sensors. IEEE Sens. J. 2010, 10, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Kawahito, S.; Cerman, A.; Aramaki, K.; Tadokoro, Y. A Weak Magnetic Field Measurement System Using Micro-Fluxgate Sensors and Delta-Sigma Interface. IEEE Trans. Instrum. Meas. 2003, 52, 103–110. [Google Scholar] [CrossRef]
- Huang, W.; Lu, C.; Jeng, J. A novel 3D CMOS micro-fluxgate magnetic sensor for low magnetic field detection. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Lu, C.C.; Huang, W.S.; Liu, Y.T.; Jeng, J.T. Design, Fabrication, and Characterization of a 3-D CMOS Fluxgate Magnetometer. IEEE Trans. Magn. 2011, 47, 3752–3755. [Google Scholar] [CrossRef]
- Tumanski, S. Handbook of Magnetic Measurements; CRC Press Inc.: Boca Raton, FL, USA, 2011; pp. 183–185. [Google Scholar]
- Lei, J.; Lei, C.; Zhou, Y. Micro Fluxgate Sensor using Solenoid Coils Fabricated by MEMS Technology. Meas. Sci. Rev. 2012, 12, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.C.; Huang, J.; Chiu, P.K.; Chiu, S.L.; Jeng, J.T. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design. Sensors 2014, 14, 13815–13829. [Google Scholar] [CrossRef] [Green Version]
- Can, H.; Jr, P.S.; Tanrseven, S.; Bydzovsky, J.; Birlikseven, C.; Sözeri, H.; Sr, P.S.; Topal, U. Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires. Meas. Sci. Technol. 2015, 26, 115102. [Google Scholar] [CrossRef]
- Heimfarth, T.; Mielli, M.Z.; Carreno, M.N.P.; Mulato, M. Miniature Planar Fluxgate Magnetic Sensors Using a Single Layer of Coils. IEEE Sens. J. 2015, 15, 2365–2369. [Google Scholar] [CrossRef]
- Lei, C.; Sun, X.C.; Zhou, Y. Reverse Optimization of an Integrated Solenoid Fluxgate Sensor Based on Co-based Amorphous Soft Magnetic Ribbon. J. Electron. Mater. 2016, 45, 5356–5361. [Google Scholar] [CrossRef]
- Miles, D.M.; Mann, I.R.; Ciurzynski, M.; Barona, D.; Narod, B.B.; Bennest, J.R.; Pakhotin, I.P.; Kale, A.; Bruner, B.; Nokes, C.D.A.; et al. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions. J. Geophys. Res. Space Phys. 2016, 121, 11839–11860. [Google Scholar] [CrossRef]
- Kaluza, F.; Grüger, A.; Grüger, H. New and future applications of fluxgate sensors. Sens. Actuat. A 2003, 106, 48–51. [Google Scholar] [CrossRef]
- Zhang, X.F.; Lu, Y.L. Fluxgate Technology; National Defense Industry Press: Beijing, China, 1995; pp. 30–41. [Google Scholar]
- Lv, H.; Yang, H. Noise reduction technology of micro fluxgate based on structure optimization. Electron. Compon. Mater. 2018, 37, 67–71. [Google Scholar]
- Jin, X.; Zhang, W.; Yu, B. Small amorphous fluxgate magnetometer. Electr. Meas. Instrum. 1999, 6, 10–12. [Google Scholar]
- Ryusuke, H. Advances in amorphous and nanocrystalline magnetic materials. J. Magn. Magn. Mater. 2006, 304, 187–191. [Google Scholar]
- Jian, L.; Chong, L.; Yong, Z. Fabrication and characterization of a new MEMS fluxgate sensor with nanocrystalline magnetic core. Measurement 2012, 45, 535–540. [Google Scholar]
- Lei, C.; Liu, Y.; Sun, X.C.; Wang, T.; Yang, Z.; Zhou, Y. Improved Performance of Integrated Solenoid Fluxgate Sensor Chip Using a Bilayer Co-Based Ribbon Core. IEEE Sens. J. 2015, 15, 5010–5014. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Zhi, S.; Feng, Z.; Lei, C.; Zhou, Y. Wide Linearity Range and Highly Sensitive MEMS-Based Micro-Fluxgate Sensor with Double-Layer Magnetic Core Made of Fe–Co–B Amorphous Alloy. Micromachines 2017, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Zhi, S.; Feng, Z.; Lei, C. Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core. Sensors 2019, 19, 5058. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Lei, J.; Yang, Z.; Wang, T.; Zhou, Y. A low power micro fluxgate sensor with improved magnetic core. Microsyst. Technol. 2013, 19, 591–598. [Google Scholar] [CrossRef]
- González-Alonso, D.; Gonzalez-Legarreta, L.; Corte-León, P.; Zhukova, V.; Ipatov, M.; Blanco, J.M.; Zhukov, A. Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications. Sensors 2020, 20, 3227. [Google Scholar] [CrossRef]
Type | Composition | Saturation Magnetic Field Intensity/T | Coercivity /Am−1 | Maximum Permeability |
---|---|---|---|---|
CACO-01 | Co-Fe-Mo-Si-B | 0.55 | 0.13 | 1,000,000 |
Metglas 2714A | Co-Fe-Ni-Si-B | 0.57 | 0.4 | 1,000,000 |
Standard Magnetic Field | Component H | Linearity/‰ | Component D | Linearity/‰ | Component Z | Linearity/‰ |
---|---|---|---|---|---|---|
2000 | 2003.99 | 1.15 | 2000.53 | 0.62 | 2000.53 | 0.23 |
1500 | 1503.37 | 1.12 | 1500.82 | 0.63 | 1500.74 | 0.17 |
1000 | 1002.9 | 1.21 | 1001.13 | 0.63 | 1000.91 | 0.08 |
800 | 802.39 | 0.88 | 800.83 | 1.16 | 800.73 | 0.33 |
400 | 401.87 | 0.45 | 401.36 | 1 | 401.01 | 0.05 |
200 | 201.83 | 0.7 | 201.12 | 3.2 | 201.17 | 0.9 |
0 | 1.69 | / | 1.76 | / | 0.99 | / |
−200 | −198.56 | 1.25 | −197.79 | 2.25 | −198.887 | 0.615 |
−400 | −398.55 | 0.6 | −397.4 | 2.1 | −398.67 | 0.85 |
−800 | −798.7 | 0.49 | −796.91 | 1.67 | −798.37 | 0.8 |
−1000 | −999.04 | 0.73 | −997.24 | 1 | −998.59 | 0.42 |
−1500 | −1499.27 | 0.64 | −1496.64 | 1.07 | −1498.19 | 0.55 |
−2000 | −1999.38 | 0.54 | −1996.31 | 0.97 | −1997.91 | 0.55 |
Component H | Component D | Component Z | |
---|---|---|---|
RMS noise (nT) | 0.065 | 0.059 | 0.087 |
Type | Operation Range | Size | Power Consumption | Linearity | RMS Noise |
---|---|---|---|---|---|
The proposed sensor | ±70,000 nT | Φ70 mm × 100 mm 1 | <2 W | <4‰ | <0.1 nT |
GM4 | ±62,500 nT | Φ180 mm × 100 mm 2 | <4 W | <5‰ | <0.1 nT |
Mag-03 | ±70,000 nT | Φ25 mm × 202 mm 2 | <3 W | <5‰ | <0.1 nT |
The sensor in [27] | ±50,000 nT | 5.5 mm × 5.8 mm 2 | 33.75 mW | / | 23 nT |
The sensor in [31] | 0~100,000 nT | 6.74 mm × 9 mm 2 | 20.35 mW | <4% | 2.2 nT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Teng, Y.; Hu, X. Design of a Low-Cost Small-Size Fluxgate Sensor. Sensors 2021, 21, 6598. https://doi.org/10.3390/s21196598
Shen X, Teng Y, Hu X. Design of a Low-Cost Small-Size Fluxgate Sensor. Sensors. 2021; 21(19):6598. https://doi.org/10.3390/s21196598
Chicago/Turabian StyleShen, Xiaoyu, Yuntian Teng, and Xingxing Hu. 2021. "Design of a Low-Cost Small-Size Fluxgate Sensor" Sensors 21, no. 19: 6598. https://doi.org/10.3390/s21196598
APA StyleShen, X., Teng, Y., & Hu, X. (2021). Design of a Low-Cost Small-Size Fluxgate Sensor. Sensors, 21(19), 6598. https://doi.org/10.3390/s21196598