Behavior Modeling for a Beacon-Based Indoor Location System
<p>The system’s overall architecture.</p> "> Figure 2
<p>The architecture of the location prediction algorithm. Both approaches are shown in the same image, as they share the input, attention and output modules.</p> "> Figure 3
<p>The test environment with the established path and checkpoints.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Indoor Location
2.2. Behavior Prediction and Modeling
3. System Architecture
- BLE beacon infrastructure.
- A monitoring device to capture positioning data.
- A cloud server to store and process captured data.
Listing 1. Function used to calculate the RSSI accuracy. | |
1 | /* |
2 | * Calculates the accuracy of RSSI value considering txPower |
3 | * https://developer.radiusnetworks.com/2014/12/04/fundamentals- |
4 | * beacon-ranging.html |
5 | */ |
6 | protected static double calculateRating(int txPower, double rssi) { |
7 | if (rssi == 0) { |
8 | return -1.0; // if we cannot determine accuracy, return -1. |
9 | } |
10 | |
11 | double ratio = rssi*1.0/txPower; |
12 | if (ratio < 1.0) { |
13 | return Math.pow(ratio,10); |
14 | } |
15 | else |
16 | return (0.89976)*Math.pow(ratio,7.7095) + 0.111; |
17 | } |
Listing 2. Function used to link each beacon to the corresponding room. | |
1 | /* |
2 | * IndoorLocation |
3 | * @param beacon_address the BLE beacon mac address |
4 | * @param location_type the location (room) string label |
5 | * @param location_id the location (room) specific beacon identifier |
6 | * @param location_calibrated_rssi the integer value of RSSI measured at 1 meter |
7 | */ |
8 | indoorLocations.add(new IndoorLocation("E0:2E:61:8A:19:E7", "Livingroom", "53", -70)); |
9 | indoorLocations.add(new IndoorLocation("D3:5E:63:38:3B:45", "Bedroom", "56", -65)); |
10 | indoorLocations.add(new IndoorLocation(DC:64:4C:44:61:8C", "Livingroom", "32", -50)); |
11 | indoorLocations.add(new IndoorLocation("D4:64:95:34:4F:46", "Bathroom", "LVR", -70)); |
12 | indoorLocations.add(new IndoorLocation("FD:19:B1:2A:45:6B", "Bathroom", "46", -80)); |
13 | indoorLocations.add(new IndoorLocation("F0:A9:05:0A:6F:DB", "Bathroom", "54", -60)) |
14 | indoorLocations.add(new IndoorLocation("C8:7E:EC:5F:E4:00", "Bedroom", "47", -60)); |
15 | indoorLocations.add(new IndoorLocation("D4:3E:77:B1:F8:9D", "Kitchen", "45", -50)); |
16 | indoorLocations.add(new IndoorLocation("E9:68:B7:2C:F9:68", "Kitchen", "23-black", 0)); |
Listing 3. Distance calculation. | |
1 | /** |
2 | * Calculates distances using the log-distance path loss model |
3 | * |
4 | * @param rssi the currently measured RSSI |
5 | * @param calibratedRssi the RSSI measured at 1m distance |
6 | * @param pathLossParameter the path-loss adjustment parameter |
7 | */ |
8 | public static double calculateDistance(double rssi, float calibratedRssi) { |
9 | float pathLossParameter = 3f; |
10 | return Math.pow(10, (calibratedRssi - rssi) / (10 * pathLossParameter)); |
11 | } |
4. Location Prediction System
- Input module: It takes the semantic locations as inputs and transforms them into embeddings to be processed. It has both an input and an embedding layer.
- Attention mechanism: It evaluates the location embedding sequence to identify those that are more relevant for the prediction process. To do so, it uses a GRU layer, followed by a dense layer with a tanh activation and finally a dense layer with a softmax activation.
- Sequence feature extractor: It receives the location embeddings processed by the attention mechanism and uses a 1D CNN or a LSTM to identify the most relevelant location n-grams of sequences of locations for the prediction. In case of the CNNs, multiple 1D convolution operations are done in parallel to extract n-grams of different lengths in order to obtain a rich representation of the relevant features.
- Location prediction module: It receives the features extracted by the sequence feature extractor (multi-scale CNNs or LSTMs) and uses those features to predict the next location. This module is composed of two dense layers with ReLU activations and an output dense layer with a softmax activation.
4.1. Input Module
4.2. Attention Mechanism
4.3. Sequence Feature Extractor
4.4. Location Prediction Module
5. Test Environment
5.1. Physical Location
- Test 1Beacon model: the battery powered BlueBeacon Mini by BlueUp [47].Number of beacons: one BLE beacon in each room.
- Test 2Beacons model: the AKMW-iB005N-SMA by AnkhMaway [48] with a USB power supply.Number of beacons: one BLE beacon in each room.
- Test 3Beacons models: BlueBeacon Mini and AKMW-iB005N-SMA.Numbers of beacons: one AKMW-iB005N-SMA in the bedroom, one AKMW-iB005N-SMA in the bathroom, two BlueBeacon Mini in the Kitchen and two AKMW-iB005N-SMA in the living room.
5.2. Dataset
6. Results
6.1. Indoor Location System
6.2. Location Prediction System
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khalaf, R.; Mohammed, A.; Essa, E.; Ali, H. Controlling Smart Home Activities Using IoT. In Proceedings of the 2019 International Conference on Computing and Information Science and Technology and Their Applications(ICCISTA), Kirkuk, Iraq, 3–5 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Catarinucci, L.; Colella, R.; Consalvo, S.I.; Patrono, L.; Salvatore, A.; Sergi, I. IoT-oriented waste management system based on new RFID-sensing devices and cloud technologies. In Proceedings of the 2019 4th International Conference on Smart and Sustainable Technologies(SpliTech), Split, Croatia, 18–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Mulero, R.; Almeida, A.; Azkune, G.; Abril-Jiménez, P.; Waldmeyer, M.T.A.; Castrillo, M.P.; Patrono, L.; Rametta, P.; Sergi, I. An IoT-aware approach for elderly-friendly cities. IEEE Access 2018, 6, 7941–7957. [Google Scholar] [CrossRef]
- Maghdid, S.A.; Maghdid, H.S.; Rahman, S. Tracking Indoor Elderly-People Using Onboard Smartphones Wi-Fi Device and Inertial Sensors. In Proceedings of the 2018 1st International Conference on Advanced Research in Engineering Sciences (ARES), Dubai, United Arab Emirates, 15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- López-de Ipiña, D.; Lorido, T.; López, U. Indoor navigation and product recognition for blind people assisted shopping. In Proceedings of the International Workshop on Ambient Assisted Living, Torremolinos-Malaga, Spain, 8–10 June 2011; Springer: Berlin, Germany, 2011; pp. 33–40. [Google Scholar]
- Nakashima, K.; Okamoto, E. An energy-efficient adaptive lighting control scheme using indoor localization with prior position information. In Proceedings of the 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 29–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 470–475. [Google Scholar]
- Umer, S.M.; Ou, Y.; Feng, W. A novel localization and navigation approach for an indoor autonomous mobile surveillance robot. In Proceedings of the 2014 4th IEEE International Conference on Information Science and Technology, Shenzhen, China, 26–28 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 5–10. [Google Scholar]
- Almeida, A.; Fiore, A.; Mainetti, L.; Mulero, R.; Patrono, L.; Rametta, P. An IoT-aware architecture for collecting and managing data related to elderly behavior. Wirel. Commun. Mob. Comput. 2017, 2017, 5051915. [Google Scholar] [CrossRef]
- Alletto, S.; Cucchiara, R.; Del Fiore, G.; Mainetti, L.; Mighali, V.; Patrono, L.; Serra, G. An indoor location-aware system for an IoT-based smart museum. IEEE Internet Things J. 2015, 3, 244–253. [Google Scholar] [CrossRef]
- Eksen, K.; Serif, T.; Ghinea, G.; Grønli, T.M. Inloc: Location-aware emergency evacuation assistant. In Proceedings of the 2016 IEEE International Conference on Computer and Information Technology (CIT), Nadi, Fiji, 8–10 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 50–56. [Google Scholar]
- Do, T.H.; Yoo, M. An in-depth survey of visible light communication based positioning systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Want, R.; Hopper, A.; Falcao, V.; Gibbons, J. The active badge location system. ACM Trans. Inf. Syst. (TOIS) 1992, 10, 91–102. [Google Scholar] [CrossRef]
- Lo, D.; Mendonça, P.R.; Hopper, A. TRIP: A low-cost vision-based location system for ubiquitous computing. Pers. Ubiquitous Comput. 2002, 6, 206–219. [Google Scholar]
- Zhou, Z.; Chen, X.; Chung, Y.C.; He, Z.; Han, T.X.; Keller, J.M. Video-based activity monitoring for indoor environments. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1449–1452. [Google Scholar]
- Torres-Sospedra, J.; Montoliu, R.; Trilles, S.; Belmonte, Ó.; Huerta, J. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 2015, 42, 9263–9278. [Google Scholar] [CrossRef]
- Catarinucci, L.; Colella, R.; De Blasi, M.; Mighali, V.; Patrono, L.; Tarricone, L. High performance RFID tags for item-level tracing systems. In Proceedings of the SoftCOM 2010, 18th International Conference on Software, Telecommunications and Computer Networks, Split, Dubrovnik, Croatia, 23–25 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 21–26. [Google Scholar]
- Liu, X.; Peng, J.; Liu, T. A novel indoor localization system based on passive RFID technology. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 8, pp. 4285–4288. [Google Scholar]
- Xu, H.; Ding, Y.; Li, P.; Wang, R.; Li, Y. An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor. Sensors 2017, 17, 1806. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Peng, C.; Sun, J. Deep belief network for fingerprinting-based RFID indoor localization. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 22–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Zeng, Y.; Chen, X.; Li, R.; Tan, H.Z. UHF RFID indoor positioning system with phase interference model based on double tag array. IEEE Access 2019, 7, 76768–76778. [Google Scholar] [CrossRef]
- Sakpere, W.; Adeyeye-Oshin, M.; Mlitwa, N.B. A state-of-the-art survey of indoor positioning and navigation systems and technologies. S. Afr. Comput. J. 2017, 29, 145–197. [Google Scholar] [CrossRef] [Green Version]
- Catarinucci, L.; Colella, R.; Mainetti, L.; Mighali, V.; Patrono, L.; Sergi, I.; Tarricone, L. Performance evaluation of a novel animals tracking system based on UHF RFID technology. J. Commun. Softw. Syst. 2013, 9, 4–13. [Google Scholar] [CrossRef]
- Kajioka, S.; Mori, T.; Uchiya, T.; Takumi, I.; Matsuo, H. Experiment of indoor position presumption based on RSSI of Bluetooth LE beacon. In Proceedings of the 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 7–10 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 337–339. [Google Scholar]
- Faragher, R.; Harle, R. An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS + 2014), Tampa, FL, USA, 8–12 September 2014; ION: Leesburg, VA, USA, 2014; pp. 201–210. [Google Scholar]
- Subedi, S.; Kwon, G.R.; Shin, S.; Hwang, S.s.; Pyun, J.Y. Beacon based indoor positioning system using weighted centroid localization approach. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1016–1019. [Google Scholar]
- Ji, M.; Kim, J.; Jeon, J.; Cho, Y. Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system. In Proceedings of the 2015 17th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 1–3 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 92–95. [Google Scholar]
- García, E.; Poudereux, P.; Hernández, Á.; Ureña, J.; Gualda, D. A robust UWB indoor positioning system for highly complex environments. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3386–3391. [Google Scholar]
- Minne, K.; Macoir, N.; Rossey, J.; Van den Brande, Q.; Lemey, S.; Hoebeke, J.; De Poorter, E. Experimental evaluation of UWB indoor positioning for indoor track cycling. Sensors 2019, 19, 2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridolfi, M.; Vandermeeren, S.; Defraye, J.; Steendam, H.; Gerlo, J.; De Clercq, D.; Hoebeke, J.; De Poorter, E. Experimental evaluation of UWB indoor positioning for sport postures. Sensors 2018, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef] [Green Version]
- Mainetti, L.; Patrono, L.; Sergi, I. A survey on indoor positioning systems. In Proceedings of the 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 111–120. [Google Scholar]
- Irizar-Arrieta, A.; Gómez-Carmona, O.; Bilbao-Jayo, A.; Casado-Mansilla, D.; Lopez-De-Ipina, D.; Almeida, A. Addressing behavioural technologies through the human factor: A review. IEEE Access 2020, 8, 52306–52322. [Google Scholar] [CrossRef]
- Deshpande, D.; Deshpande, S. Analysis of various characteristics of online user behavior models. Int. J. Comput. Appl. 2017, 161, 5–10. [Google Scholar] [CrossRef]
- Raju, S.S.; Dhandayudam, P. Prediction of customer behaviour analysis using classification algorithms. In Proceedings of the AIP Conference, Maharashtra, India, 5–6 July 2018; AIP Publishing LLC: New York, NY, USA, 2018; Volume 1952, p. 020098. [Google Scholar]
- Zhan, Y.; Haddadi, H. Towards automating smart homes: Contextual and temporal dynamics of activity prediction. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; ACM: New York, USA, 2019; pp. 413–417. [Google Scholar]
- Köse, A.; Tepljakov, A.; Petlenkov, E. Dynamic predictive modeling approach of user behavior in virtual reality based application. In Proceedings of the 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 57–62. [Google Scholar]
- Almeida, A.; Azkune, G.; Bilbao, A. Embedding-level attention and multi-scale convolutional neural networks for behaviour modelling. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 439–445. [Google Scholar]
- Almeida, A.; Azkune, G. Predicting human behaviour with recurrent neural networks. Appl. Sci. 2018, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, L. BIM log mining: Learning and predicting design commands. Autom. Constr. 2020, 112, 103107. [Google Scholar] [CrossRef]
- Dash, S.; Luhach, A.K.; Chilamkurti, N.; Baek, S.; Nam, Y. A neuro-fuzzy approach for user behaviour classification and prediction. J. Cloud Comput. 2019, 8, 1–15. [Google Scholar]
- Kim, D.; Kim, S.; Zhao, H.; Li, S.; Rossi, R.A.; Koh, E. Domain switch-aware holistic recurrent neural network for modeling multi-domain user behavior. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 11–15 February 2019; ACM: New York, NY, USA, 2019; pp. 663–671. [Google Scholar]
- Salian, N. Visual Attention and Memory Augmented Activity Recognition and Behavioral Prediction. In Proceedings of the International Conference on Applications and Techniques in Information Security, Nanning, China, 9–11 November 2018; Springer: Berlin, Germany, 2018; pp. 92–106. [Google Scholar]
- Young, D.G. The Challenge of Bluetooth Distance Estimation. Available online: https://github.com/davidgyoung/davidgyoung.github.io/blob/32ba6f44e1af2b5df08589cee286eaf940566ab7/_posts/2020-05-15-how-far-can-you-go.md (accessed on 5 July 2021).
- Wikipedia. Log-Distance Path Loss Model. Available online: https://en.wikipedia.org/wiki/Log-distance_path_loss_model (accessed on 10 June 2021).
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. arXiv 2013, arXiv:0903.3608v5. [Google Scholar]
- BlueUp. BlueBeacon Mini. Available online: https://www.blueupbeacons.com/index.php?page=mini (accessed on 10 June 2021).
- AnkhMaway. AKMW-iB005N-SMA Beacon. Available online: https://www.beaconzone.co.uk/AKMW-iB005N-SMA-Eddystone (accessed on 10 June 2021).
- Duong-Trung, N.; Schilling, N.; Schmidt-Thieme, L. Near real-time geolocation prediction in twitter streams via matrix factorization based regression. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; ACM: New York, NY, USA, 2016; pp. 1973–1976. [Google Scholar]
- Mathew, W.; Raposo, R.; Martins, B. Predicting future locations with hidden Markov models. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; ACM: New York, NY, USA, 2012; pp. 911–918. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; ACM: New York, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
Test Repetition | Smartphone False Positives | Smartphone Percentage Error | Smartphone Absolute Deviation | Smartwatch False Positives | Smartwatch Percentage Error | Smartwatch Absolute Deviation |
---|---|---|---|---|---|---|
1 | 6 | 28.57% | 1.625 | 4 | 19.05% | 0.5 |
2 | 6 | 28.57% | 1.625 | 4 | 19.05% | 0.5 |
3 | 8 | 38.10% | 0.375 | 6 | 28.57% | 1.5 |
4 | 7 | 33.33% | 0.625 | 4 | 19.05% | 0.5 |
5 | 9 | 42.86% | 1.375 | 2 | 9.52% | 2.5 |
6 | 10 | 47.62% | 2.375 | 6 | 28.57% | 1.5 |
7 | 7 | 33.33% | 0.625 | 3 | 14.29% | 1.5 |
8 | 8 | 38.10% | 0.375 | 7 | 33.33% | 2.5 |
Average | 7.625 | 36.31% | 1.125 | 5 | 21.43% | 1.375 |
Test Repetition | Smartphone False Positives | Smartphone Percentage Error | Smartphone Absolute Deviation | Smartwatch False Positives | Smartwatch Percentage Error | Smartwatch Absolute Deviation |
---|---|---|---|---|---|---|
1 | 9 | 42.86% | 4.125 | 3 | 14.29% | 0.125 |
2 | 6 | 28.57% | 1.125 | 3 | 14.29% | 0.125 |
3 | 4 | 19.05% | 0.875 | 3 | 14.29% | 1.125 |
4 | 4 | 19.05% | 0.875 | 1 | 4.76% | 1.875 |
5 | 3 | 14.29% | 1.875 | 2 | 9.52% | 0.875 |
6 | 4 | 19.05% | 0.875 | 2 | 9.52% | 0.875 |
7 | 9 | 42.86% | 4.125 | 5 | 23.81% | 2.125 |
8 | 0 | 0.00% | 4.875 | 4 | 19.05% | 1.125 |
Average | 4.875 | 23.21% | 2.344 | 3 | 13.69% | 0.906 |
Test Repetition | Smartphone False Positives | Smartphone Percentage Error | Smartphone Absolute Deviation | Smartwatch False Positives | Smartwatch Percentage Error | Smartwatch Absolute Deviation |
---|---|---|---|---|---|---|
1 | 6 | 28.57% | 0.25 | 3 | 14.29% | 1.375 |
2 | 9 | 42.86% | 3.25 | 1 | 4.76% | 0.625 |
3 | 5 | 23.81% | 0.75 | 2 | 9.52% | 0.375 |
4 | 3 | 14.29% | 2.75 | 3 | 14.29% | 1.375 |
5 | 6 | 28.57% | 0.25 | 2 | 9.52% | 0.375 |
6 | 6 | 28.57% | 0.25 | 0 | 0.00% | 1.625 |
7 | 5 | 23.81% | 0.75 | 1 | 4.76% | 0.625 |
8 | 6 | 28.57% | 0.25 | 1 | 4.76% | 0.625 |
Average | 5.75 | 27.38% | 1.063 | 2 | 7.74% | 0.875 |
ID | Accuracy |
---|---|
NL | 0.5 |
HMM | 0.5961 |
M1 | 0.6538 |
M2 | 0.6538 |
L1 | 0.6346 |
L2 | 0.6731 |
ID | acc_at_1 | acc_at_2 | acc_at_3 |
---|---|---|---|
M1 | 0.6538 | 0.9038 | 0.9423 |
M2 | 0.6538 | 0.9231 | 0.9423 |
L1 | 0.6346 | 0.7885 | 0.9423 |
L2 | 0.6731 | 0.8654 | 0.9808 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilbao-Jayo, A.; Almeida, A.; Sergi, I.; Montanaro, T.; Fasano, L.; Emaldi, M.; Patrono, L. Behavior Modeling for a Beacon-Based Indoor Location System. Sensors 2021, 21, 4839. https://doi.org/10.3390/s21144839
Bilbao-Jayo A, Almeida A, Sergi I, Montanaro T, Fasano L, Emaldi M, Patrono L. Behavior Modeling for a Beacon-Based Indoor Location System. Sensors. 2021; 21(14):4839. https://doi.org/10.3390/s21144839
Chicago/Turabian StyleBilbao-Jayo, Aritz, Aitor Almeida, Ilaria Sergi, Teodoro Montanaro, Luca Fasano, Mikel Emaldi, and Luigi Patrono. 2021. "Behavior Modeling for a Beacon-Based Indoor Location System" Sensors 21, no. 14: 4839. https://doi.org/10.3390/s21144839
APA StyleBilbao-Jayo, A., Almeida, A., Sergi, I., Montanaro, T., Fasano, L., Emaldi, M., & Patrono, L. (2021). Behavior Modeling for a Beacon-Based Indoor Location System. Sensors, 21(14), 4839. https://doi.org/10.3390/s21144839