Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing
<p>Path of a laser pulse.</p> "> Figure 2
<p>The setup of the example.</p> "> Figure 3
<p>(<b>a</b>) Temperature with its 95% confidence intervals at the first time step. (<b>b</b>) Differences between the estimated temperature and the reference temperature at the first time step.</p> "> Figure 4
<p>Spatial variation of the standard uncertainty of the estimated temperature, and the mean and standard deviation of the differences between the estimated and reference temperature.</p> "> Figure 5
<p>Temporal variation of the standard uncertainty of the estimated temperature, and the mean and standard deviation of the differences between the estimated and reference temperature.</p> "> Figure 6
<p>Synthetic example of the standard uncertainty of the estimated temperature using arithmetic mean and the inverse-variance weighted mean.</p> "> Figure A1
<p>Stokes residuals plotted against the anti-Stokes residuals. The Stokes and anti-Stokes intensity recorded by the DTS instrument have arbitrary units that are linearly related to the power of the scattered signals.</p> ">
Abstract
:1. Introduction
2. Estimation of Temperature from Stokes and Anti-Stokes Scatter
3. Integrated Differential Attenuation
3.1. Single-Ended Measurements
3.2. Double-Ended Measurements
4. Estimation of the Variance of the Noise in the Intensity Measurements
5. Single-Ended Calibration Procedure
6. Double-Ended Calibration Procedure
7. Confidence Intervals of the Temperature
7.1. Single-Ended Measurements
7.2. Double-Ended Measurements
8. Python Implementation
9. Example
9.1. Setup and Data Collection
9.2. Estimation of the Temperature and the Associated Uncertainty
9.3. Effect of Parameter Uncertainty
9.4. Effect of Difference in Reference Temperatures
10. Discussion
10.1. Improved Temperature Estimation for Double-Ended Setups
10.2. Calibration to Reference Sections
11. Conclusions
- Dataset license: GPL-3.0-or-later
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Intensity-Dependent Variance of the Noise in the Intensity Measurements
Appendix B. Correlation Stokes and Anti-Stokes Residuals
References
- Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 2006, 42, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sayde, C.; Thomas, C.K.; Wagner, J.; Selker, J. High-resolution wind speed measurements using actively heated fiber optics. Geophys. Res. Lett. 2015, 42, 10064–10073. [Google Scholar] [CrossRef] [Green Version]
- Van Ramshorst, J.G.V.; Coenders-Gerrits, M.; Schilperoort, B.; van de Wiel, B.J.H.; Izett, J.G.; Selker, J.S.; Higgins, C.W.; Savenije, H.H.G.; van de Giesen, N.C. Wind speed measurements using distributed fiber optics: A windtunnel study. Atmos. Meas. Tech. Discuss. 2019, 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Euser, T.; Luxemburg, W.M.J.; Everson, C.S.; Mengistu, M.G.; Clulow, A.D.; Bastiaanssen, W.G.M. A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles. Hydrol. Earth Syst. Sci. 2014, 18, 2021–2032. [Google Scholar] [CrossRef] [Green Version]
- Schilperoort, B.; Coenders-Gerrits, M.; Luxemburg, W.; Jiménez Rodríguez, C.; Cisneros Vaca, C.; Savenije, H. Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements. Hydrol. Earth Syst. Sci. 2018, 22, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Steele-Dunne, S.C.; Rutten, M.M.; Krzeminska, D.M.; Hausner, M.; Tyler, S.W.; Selker, J.; Bogaard, T.A.; van de Giesen, N.C. Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lowry, C.S.; Walker, J.F.; Hunt, R.J.; Anderson, M.P. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour. Res. 2007, 43, 1–9. [Google Scholar] [CrossRef]
- Bakker, M.; Caljé, R.; Schaars, F.; van der Made, K.J.; de Haas, S. An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment. Water Resour. Res. 2015, 51, 2760–2772. [Google Scholar] [CrossRef] [Green Version]
- Bense, V.F.; Read, T.; Bour, O.; Le Borgne, T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.; Selker, J.S. Distributed Temperature Sensing as a downhole tool in hydrogeology. Water Resour. Res. 2016, 52, 9259–9273. [Google Scholar] [CrossRef]
- Hausner, M.B.; Suárez, F.; Glander, K.E.; Giesen, N.V.d.; Selker, J.S.; Tyler, S.W. Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2011, 11, 10859–10879. [Google Scholar] [CrossRef] [PubMed]
- Van de Giesen, N.; Steele-Dunne, S.C.; Jansen, J.; Hoes, O.; Hausner, M.B.; Tyler, S.; Selker, J. Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data. Sensors 2012, 12, 5471–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, S.; Blume, T. Impact of seasonal variability and monitoring mode on the adequacy of fiber-optic distributed temperature sensing at aquifer-river interfaces. Water Resour. Res. 2013, 49, 2408–2423. [Google Scholar] [CrossRef]
- Hilgersom, K.; van Emmerik, T.; Solcerova, A.; Berghuijs, W.; Selker, J.; van de Giesen, N. Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing. Geosci. Instrum. Methods Data Syst. 2016, 5, 151–162. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, A.; Tinjum, J.M.; Hart, D.J.; Fratta, D. Dynamic Calibration for Permanent Distributed Temperature Sensing Networks. IEEE Sens. J. 2018, 18, 2342–2352. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Eriksrud, M.; Mickelson, A. Application of the backscattering technique to the determination of parameter fluctuations in multimode optical fibers. IEEE J. Quantum Electron. 1982, 18, 1478–1483. [Google Scholar] [CrossRef]
- Fukuzawa, T.; Shida, H.; Oishi, K.; Takeuchi, N.; Adachi, S. Performance improvements in Raman distributed temperature sensor. Photonic Sens. 2013, 3, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.; Bour, O.; Lavenant, N.; Porel, G.; Nauleau, B.; Pouladi, B.; Longuevergne, L. A Comparison of Different Methods to Estimate the Effective Spatial Resolution of FO-DTS Measurements Achieved during Sandbox Experiments. Sensors 2020, 20, 570. [Google Scholar] [CrossRef] [Green Version]
- Bolognini, G.; Hartog, A. Raman-based fibre sensors: Trends and applications. Opt. Fiber Technol. 2013, 19, 678–688. [Google Scholar] [CrossRef]
- Davey, S.; Williams, D.; Ainslie, B.; Rothwell, W.; Wakefield, B. Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers. IEE Proc. J Optoelectron. 1989, 136, 301–306. [Google Scholar] [CrossRef]
- Richter, P. Estimating Errors in Least-Squares Fitting. NASA Telecommun. Data Acquis. Prog. Rep. 1995, 42, 107–137. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, H.H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 1966, 70, 263–273. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010. [Google Scholar]
- Joint Committee for Guides in Metrology. JCGM 100: Evaluation of Measurement Data—Guide for the Expression of Uncertainty in Measurement (GUM); Technical Report; JCGM: Paris, France, 2008. [Google Scholar]
- Joint Committee for Guides in Metrology. JCGM 101: Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement (GUM)”—Propagation of Distributions Using a Monte Carlo Method; Technical Report; JCGM: Paris, France, 2008. [Google Scholar]
- Des Tombe, B.F.; Schilperoort, B. Dtscalibration Python Package for Calibrating Distributed Temperature Sensing Measurements, 2020, v0.7.4. Available online: https://zenodo.org/record/3627843#.XpUvaJkRWUk (accessed on 14 April 2020).
- Hoyer, S.; Hamman, J. xarray: ND labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015. [Google Scholar]
- Remouche, M.; Georges, F.; Meyrueis, P. Flexible Optical Waveguide Bent Loss Attenuation Effects Analysis and Modeling Application to an Intrinsic Optical Fiber Temperature Sensor. Opt. Photonics J. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hausner, M.B.; Kobs, S. Identifying and correcting step losses in single-ended fiber-optic distributed temperature sensing data. J. Sens. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
Name | Fiber Section (m) | Average Temperature (°C) | Number of Measurement Locations | Notes |
---|---|---|---|---|
Cold 1 | 7.5–17.0 | 4.35 | 37 | Used for calibration |
Warm 1 | 24.0–34.0 | 18.52 | 39 | Used for calibration |
Ambient | 40.0–50.0 | 12.62 | 39 | |
Cold 2 | 70.0–80.0 | 4.35 | 39 | |
Warm 2 | 85.0–95.0 | 18.52 | 39 |
Cold 1 | Warm 1 | Ambient | Cold 2 | Warm 2 | Total |
---|---|---|---|---|---|
95.6% | 95.0% | 92.3% | 94.7% | 94.3% | 94.4% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
des Tombe, B.; Schilperoort, B.; Bakker, M. Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing. Sensors 2020, 20, 2235. https://doi.org/10.3390/s20082235
des Tombe B, Schilperoort B, Bakker M. Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing. Sensors. 2020; 20(8):2235. https://doi.org/10.3390/s20082235
Chicago/Turabian Styledes Tombe, Bas, Bart Schilperoort, and Mark Bakker. 2020. "Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing" Sensors 20, no. 8: 2235. https://doi.org/10.3390/s20082235
APA Styledes Tombe, B., Schilperoort, B., & Bakker, M. (2020). Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing. Sensors, 20(8), 2235. https://doi.org/10.3390/s20082235