Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region
<p>Schematics of the methodology pipeline followed to obtain the matrices required for the initialization of the 3D anthropomorphic phantom generator.</p> "> Figure 2
<p>Dielectric properties curves considered to assign the dielectric properties to the tissues in the phantoms. The curves were obtained by using the 4-pole Cole–Cole formulation with the parameters given in [<a href="#B30-sensors-20-02029" class="html-bibr">30</a>]. (<b>a</b>) depicts the graph of the relative permittivity curves for bone, fat, muscle and skin tissues. (<b>b</b>) depicts the graph of the conductivity curves for the considered biological tissues.</p> "> Figure 3
<p>Dielectric properties curves considered to assign the dielectric properties to the Cervical Lymph Nodes (CLNs) inserted in the phantoms. The curves were obtained by using the 4-pole Cole–Cole formulation with the Debye parameters given by [<a href="#B31-sensors-20-02029" class="html-bibr">31</a>]. (<b>a</b>) depicts the graph of the permittivity curves of the cross-section and surface of the healthy and metastasized CLNs. (<b>b</b>) depicts the graph of the conductivity curves, for the cross-section and surface of the healthy and metastasized CLNs.</p> "> Figure 4
<p>Visualizations of the simplest 3D head and neck phantom obtained from the developed phantom generator: a homogeneous phantom. (<b>a</b>) Realistic 3D rendering of the obtained phantom. (<b>b</b>) Scheme of the planes: coronal, sagittal and axial planes. (<b>c</b>) Corresponding axial plane of the generated phantom. Two regions are highlighted: the background (air) and the human body (homogenously modelled as fat tissue).</p> "> Figure 5
<p>Interfaces created for the inclusion of the MRI-extracted tissues. (<b>a</b>) Generator interface which allows the users to include mixed tissue in the phantoms. (<b>b,c</b>) Axial slice of a 3D anthropomorphic head and neck phantom with fat and mixed tissues. (<b>d</b>) Interface which allows the user to insert muscle tissue in the phantom. (<b>e</b>) Axial slice of a 3D anthropomorphic head and neck phantom with muscle tissue. (<b>f</b>) Axial slice of a 3D anthropomorphic head and neck phantom which combines fat, mixed and muscle tissue.</p> "> Figure 6
<p>Interfaces created for the inclusion of the synthetic tissues. (<b>a</b>) Interface which allows the user to insert synthetic skin tissue in the phantom. (<b>b</b>) Axial slice of a 3D anthropomorphic head and neck phantom with skin tissue. (<b>c</b>) Axial slice of a 3D anthropomorphic head and neck phantom which combines fat, mixed, muscle and skin tissue. (<b>d</b>) Interface which allows the user to insert CLNs in the phantom. (<b>e</b>) Axial slice of a 3D anthropomorphic head and neck phantom with two CLNs: orange—with 1.5 mm major axis, healthy, and located on level II, and red—with 2.0 mm major axis, metastasized, and located on levels V. (<b>f</b>) Axial slice of a 3D anthropomorphic head and neck phantom which combines fat, mixed, muscle and skin tissues, and two CLNs.</p> "> Figure 7
<p>Interfaces created to modified CLNs. (<b>a</b>) Interface which allows the user to choose the number of CLNs to insert in the phantom. (<b>b</b>) Informative note which specifies the limits of the six levels of the CLNs. (<b>c</b>) Interface which allows the user to choose the size, location and medical state of each CLN.</p> "> Figure 8
<p>Stage 3 interfaces. (<b>a</b>) Generator interface which allow the users to choose the frequency value at which the phantom generator should interpolate the dielectric properties values of the biological tissues for a given frequency. (<b>b</b>) Interface which allows the user to save the phantom.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 0
2.2. Stage 1—Biological Tissues
2.3. Stage 2—Synthetic Tissues
2.4. Stage 3—Assignment of the Dielectric Properties and Save the Phantom
3. Results
3.1. Stage 1
3.2. Stage 2
3.3. Stage 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Tissues | ε∞ | (σs) [S/m] | ∆ε1 | ∆ε2 | ∆ε3 | ∆ε4 | α1 | α2 | α3 | α4 | τ1 [ps] | τ2 [ns] | τ3 [μs] | τ4 [ms] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bone | 2.500 | 0.020 | 10.00 | 180.0 | 5 × 103 | 1 × 105 | 0.200 | 0.200 | 0.200 | 0.000 | 13.263 | 79.577 | 159.155 | 15.915 |
Fat | 2.500 | 0.035 | 9.00 | 35.00 | 3.3 × 104 | 1 × 107 | 0.200 | 0.100 | 0.050 | 0.010 | 7.958 | 15.915 | 159.155 | 15.915 |
Muscle | 4.000 | 0.200 | 50.00 | 7000 | 1.2 × 106 | 2.5 × 107 | 0.100 | 0.100 | 0.100 | 0.000 | 7.234 | 353.678 | 318.310 | 2.274 |
Skin | 4.000 | 0.000 | 32.00 | 1100 | 0.000 | 0.000 | 0.000 | 0.200 | 0.200 | 0.200 | 7.234 | 32.481 | 159.155 | 15.915 |
Tissues | ε∞ | (σs) [S/m] | ∆ε1 | α1 | τ1 [ps] |
---|---|---|---|---|---|
Healthy LN surface | 8.00 | 2.00 | 3.00 | 0.200 | 9.24 |
Healthy LN cross-section | 47.00 | 6.00 | 27.00 | 0.200 | 9.40 |
Metastasized LN surface | 17.00 | 4.00 | 10.00 | 0.100 | 10.47 |
Metastasized LN cross-section | 55.00 | 9.00 | 31.00 | 0.000 | 11.00 |
References
- Remmert, S.; Rottmann, M.; Reichenbach, M.; Sommer, K.; Friedrich, H.J. Lymphknotenmetastasierung bei Kopf-Hals-Tumoren (Lymph node metastasis in head-neck tumors). Laryngo Rhino Otol. 2001, 80, 27–35. [Google Scholar] [CrossRef] [PubMed]
- GLOBOCAN. Estimated Cancer Incidence, Mortality and Prevalence Worlwide in 2018. Available online: http://gco.iarc.fr/ (accessed on 26 October 2018).
- Lymph Nodes and Cancer. Available online: http://www.cancer.org/cancer/cancerbasics/lymph-nodes-and-cancer (accessed on 26 October 2018).
- Fehrenbach, M.; Herring, S. Illustrated Anatomy of the Head and Neck, 5th ed.; Elsevier Saunders Publisher: Philadelphia, PA, USA, 2016; pp. 243–263. [Google Scholar]
- Sapienza, M.T.; Tavares, M.G.; Endo, I.S.; Neto, G.C.C.; Lopes, M.M.M.F.; Nakagawa, S.; Belfort, F.A., Jr.; Soares, J.; Lewin, S.; Marone, M.M.S. The Role of Sentinel Node Mapping in Malignant Melanoma: Experience with 99mTc-phytate and a Review of the Literature. An. Bras. Dermatol. 2004, 79, 181–191. [Google Scholar] [CrossRef]
- Exposto, S. Personal Communication; Hospital de Lamêgo: Lamêgo, Portugal, 2014. [Google Scholar]
- Macmillan Cancer Support: Surgery for Head and Neck Cancer. Available online: http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Headneck/Treatingheadneckcancers/Surgery.aspx (accessed on 29 October 2018).
- Semenov, S. Microwave tomography: Review of the process towards clinical applications. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 3021–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lim, E.; Tang, Y.; Leach, M. Medical Applications of Microwave Imaging. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Scapaticci, R.; Di Donato, L.; Catapano, I.; Crocco, L. A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring. PIER B 2012, 40, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Fahger, A.; Candefjord, S.; Elam, M.; Persson, M. 3D Simulations of Intracerebral Hemorrhage Detection Using Broadband Microwave Technology. Sensors 2019, 19, E3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BrainWeb: Simulated Brain Database. Available online: http://brainweb.bic.mni.mcgill.ca/brainweb (accessed on 9 December 2019).
- Bjelogrlic, M.; Volery, M.; Fuchs, B.; Thiran, J.; Mosig, J.; Mattes, M. Stratified Spherical Model for Microwave Imaging of the Brain: Analysis and Experimental Validation of Transmitted Power. Microw. Opt. Technol. Lett. 2018, 60, 1042–1048. [Google Scholar] [CrossRef]
- Brand, J.; Kuba, R.; Braunreiter, T. An Improved Head-and-Neck Phantom for Radiation Dosimetry. Oral Surg. Oral Med. Oral Pathol. 1989, 67, 338–346. [Google Scholar] [CrossRef]
- Molineu, A.; Followill, D.; Balter, P.; Hanson, W.; Gillin, M.; Hug, M.; Eisbruch, A.; Ibbott, G. Design and Implementation of an Anthropomorphic Quality Assurance Phantom for Intensity-modulated Radiation Therapy for the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Paulides, M.; Weilheesen, D.; Van Der Zee, J.; Van Rhoon, G. Assessment of the Local SAR Distortion by Major Anatomical Structures in a Cylindrical Neck Phantom. Int. J. Hyperth. 2005, 21, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Merunka, I.; Fiser, O.; Vojackova, L.; Vrba, J.; Vrba, D. Array of Balanced Antipodal Vivaldi Antennas used for Microwave Hyperthermica Treatment of Neck Cancer. In Proceedings of the 24th International Conference Radioelektronika, Bratislava, Slovakia, 15–16 April 2014. [Google Scholar]
- Christ, A.; Kainz, W.; Hahn, E.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family—Develpment of Surface-based Anatomical Models of Two Adults and Two Children for Dosimetric Simulations. Phys. Med. Biol. 2010, 55, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Pelicano, A.C.; Conceição, R.C. Head and Neck Numerical Phantom Development for Cervical Lymph Node Microwave Imaging. In Proceedings of the 14th European Conference on Antennas and Propagation—EuCAP 2020 in convened session CS60 Sensors and Systems for Microwave Biomedical Imaging and Sensing, Copenhagen, Denmark, 15–20 March 2020. [Google Scholar]
- Pelicano, A.C. Modelling the Head and Neck Region for Microwave Imaging of Cervical Lymph Nodes. Master’s Thesis, Universidade de Lisboa, Lisbon, Portugal, 2019. [Google Scholar]
- The Cancer Imaging Archive (TCIA). Available online: https://www.cancerimagingarchive.net/# (accessed on 9 April 2019).
- Gonzalez, R.; Woods, R. Digital Image Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Ali, H.M. MRI Medical Image Denoising by Fundamental Filters. SCIREA J. Comput. 2017, 2, 12–26. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining, Concepts and Techniques, 3rd ed.; Elsevier Science & Technology: San Francisco, CA, USA, 2012; pp. 443–496. [Google Scholar]
- Stranding, S.; Anand, N.; Birch, R.; Collins, P.; Crossman, A.; Gleeson, M.; Jawaheer, G.; Smith, A.; Spratt, J.; Stringer, M.; et al. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Chopra, K.; Calva, D.; Sosin, M.; Tadisina, K.K.; Banda, A.; De La Cruz, C.; Chaudhry, M.R.; Legesse, T.; Drachenberg, C.B.; Manson, P.N.; et al. A Comprehensive Examination of Topographic Thickness of Skin in the Human Face. Aesthet. Surg. J. 2015, 35, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeley, R.; Tate, P.; Stephens, T. Anatomy and Phisiology, 8th ed.; McGraw-Hill Higher Education: Dubuque, IA, USA, 2007. [Google Scholar]
- Cruciani, S.; De Santis, V.; Feliziani, M.; Maradei, F. Cole-Cole vs Debye Models for the Assessment of Electromagnetic Fields inside Biological Tissues Produced by Wideband EMF Sources. In Proceedings of the 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, Singapore, 21–24 May 2012. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Available online: http://niremf.ifac.cnr.it/docs/DIELECTRIC/Report.html. (accessed on 6 May 2019).
- Eleutério, R. Microwave Imaging of the Axilla to Aid Breast Cancer Diagnosis. Master’s Thesis, Universidade Nova de Lisboa, Caparica, Portugal, 2014. [Google Scholar]
- Cameron, T.R.; Okoniewski, M.; Fear, E.C. A Preliminary Study of the Electrical Properties of Healthy and Diseased Lymph Nodes. In Proceedings of the 14th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM] and the American Electromagnetics Conference [AMEREM], Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Zastrow, E.; Davis, S.K.; Lazebnik, M.; Kelcz, F.; Veen, B.D.V.; Hagness, S.C. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans. Biomed. Eng. 2008, 55, 2792–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelicano, A.C.; Conceição, R.C. Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region. Sensors 2020, 20, 2029. https://doi.org/10.3390/s20072029
Pelicano AC, Conceição RC. Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region. Sensors. 2020; 20(7):2029. https://doi.org/10.3390/s20072029
Chicago/Turabian StylePelicano, Ana Catarina, and Raquel C. Conceição. 2020. "Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region" Sensors 20, no. 7: 2029. https://doi.org/10.3390/s20072029
APA StylePelicano, A. C., & Conceição, R. C. (2020). Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region. Sensors, 20(7), 2029. https://doi.org/10.3390/s20072029