The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects
<p>The TECIS-1 satellite layout.</p> "> Figure 2
<p>The concept of the SIF Imaging Spectrometer (SIFIS).</p> "> Figure 3
<p>Curve of signal-to-noise ratio (SNR) versus spectral resolution (SR) provided by the instrument manufacturer.</p> "> Figure 4
<p>Fluorescence spectra at the top-of-canopy (TOC) level as simulated using the SCOPE model.</p> "> Figure 5
<p>Flow-chart of the process used to produce the simulated dataset.</p> "> Figure 6
<p>A single group of normalized simulated top-of-atmosphere (TOA) radiance spectra over vegetated surfaces (black), incident solar radiance reaching the top-of-canopy (TOC) (blue), TOC SIF (red), and TOA SIF (green) with 0.3 nm spectral resolution and 0.1 nm sampling interval derived from SCOPE and MODTRAN 5 models.</p> "> Figure 7
<p>The leading four principal components (PCs) of noise-free simulated spectra for different SRs of 0.1 nm (black), 0.3 nm (red), and 0.5 nm (blue). (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) are the first leading PCs for the far-red band, and (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) are the first leading PCs for the red band. The explained variances of each PC for three SRs are also listed at the top of each graph.</p> "> Figure 8
<p>The spectral residuals between the fitted and measured TOA radiances when the retrieved SIF is fitted (blue) and not fitted (red), as well as the noise spectrum (black). (<b>a</b>,<b>c</b>,<b>e</b>) are the spectral residuals for the far-red band with an SR of 0.1 nm and SNR of 127, an SR of 0.3 nm and SNR of 322, and an SR of 0.5 nm and SNR of 472, respectively; (<b>b</b>,<b>d</b>,<b>f</b>) are those for the red band, respectively.</p> "> Figure 9
<p>Retrieved vs. true fluorescence using far-red (<b>a</b>,<b>c</b>,<b>e</b>) and red (<b>b</b>,<b>d</b>,<b>f</b>) fitting windows derived from noise-free simulated data with spectral resolutions of 0.1 nm (<b>a</b>,<b>b</b>), 0.3 nm (<b>c</b>,<b>d</b>), and 0.5 nm (<b>e</b>,<b>f</b>). Standard derivation error bars are also shown as vertical lines for each vegetation canopy type. The true SIF values at each band are averaged over the fitting windows for 60 simulated vegetation canopy conditions. The circles mark the averaged retrieved SIF value for a total of 4608 atmospheric and geometrical conditions.</p> "> Figure 10
<p>Retrieved vs. true fluorescence using far-red (<b>a</b>,<b>c</b>,<b>e</b>) and red (<b>b</b>,<b>d</b>,<b>f</b>) fitting windows derived from simulated data with an SNR of 127 and SR of 0.1 nm (<b>a</b>,<b>b</b>), SNR of 322 and SR of 0.3 nm (<b>c</b>,<b>d</b>), and SNR of 472 and SR of 0.5 nm (<b>e</b>,<b>f</b>). Standard deviations are also shown as vertical bars.</p> "> Figure 11
<p>Variations of RMS diff* of SIF retrievals at far-red (<b>a</b>) and red (<b>b</b>) bands using simulations with a different SNR and SR of 0.1 nm (<b>a</b>,<b>b</b>) and 0.3 nm (<b>c</b>,<b>d</b>). ‘NN’ indicates the noise-free simulations condition. The red box refers to the RMS value of the simulations with SNRs of 127 (<b>a</b>,<b>b</b>) and 322 (<b>c</b>,<b>d</b>), respectively.</p> "> Figure 12
<p>Example of the estimated effective two-way atmospheric transmittance (<math display="inline"><semantics> <mrow> <msubsup> <mi>T</mi> <mrow> <mo>↓</mo> <mo>↑</mo> </mrow> <mi>e</mi> </msubsup> </mrow> </semantics></math>, shown in blue) and the effective upward transmittance (<math display="inline"><semantics> <mrow> <msubsup> <mi>T</mi> <mo>↑</mo> <mi>e</mi> </msubsup> </mrow> </semantics></math>, shown in red) plotted against the true upward transmittance (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>↑</mo> </msub> </mrow> </semantics></math>, shown in black) at far-red band (<b>a</b>) and red band (<b>b</b>) based on simulations with an SR of 0.3 nm and SNR of 322.</p> "> Figure 13
<p>Comparisons between SIF retrievals using the true upward transmittance (<b>a</b>,<b>c</b>) and that using the effective upward transmittance (<b>b</b>,<b>d</b>) calculated by Equation (3) at both far-red (<b>upper panels</b>) and red bands (<b>bottom panels</b>). Similar to <a href="#sensors-20-00815-f012" class="html-fig">Figure 12</a>, simulations with SR of 0.3 nm and SNR 322 are used.</p> "> Figure 14
<p>True SIF spectrum at red (green) and far-red (red) fitting windows derived using the SCOPE model and the fixed spectral function (black) based on the Gaussian function. <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>h</mi> </msub> </mrow> </semantics></math> was set as 21 and 9.5 and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> was set as 740 and 692 nm for the far-red and red band, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The TECIS-1 Satellite and SIF Payload
2.2. Simulated Experiment
2.3. Data-Driven SIF Retrieval Method
2.4. Metrics Used for Accuracy Assessment
3. Results
3.1. Performance of the PCA Data-Driven Approach for Fitting the TOA Radiance
3.2. Performance of the PCA Data-Driven Approach for SIF Retrieval
3.3. Performance of SIF Retrievals Using Simulations with Different SRs and SNRs
4. Discussion
4.1. Uncertainty in the SIF Retrieval Method
4.2. Determination of SR, SNR, Spectral Range, and Other Requirements for the SIFIS and the TECIS-1 Satellite
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.K.; Middleton, E.M.; Corp, L.A.; Kim, M.S. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Sci. Total Environ. 2008, 404, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Corp, L.A.; Middleton, E.M.; McMurtrey, J.E.; Campbell, P.K.E.; Butcher, L.M. Fluorescence sensing techniques for vegetation assessment. Appl. Opt. 2006, 45, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014, 111, E1327–E1333. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Cheng, Z. Mapping C3 and C4 plant functional types using separated solar-induced chlorophyll fluorescence from hyperspectral data. Int. J. Remote Sens. 2011, 32, 9171–9183. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Guanter, L.; Berry, J.A.; Tol, C.V.D.; Yang, X.; Tang, J.; Zhang, F. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 2016, 187, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Magney, T.S.; Frankenberg, C.; Fisher, J.B.; Sun, Y.; North, G.B.; Davis, T.S.; Kornfeld, A.; Siebke, K. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 2017, 215, 1594–1608. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma, M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, eaam5747. [Google Scholar] [CrossRef] [Green Version]
- Damm, A.; Guanter, L.; Paul-Limoges, E.; van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; Ammann, C.; Schaepman, M.E. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sens. Environ. 2015, 166, 91–105. [Google Scholar] [CrossRef]
- Gu, L.; Han, J.; Wood, J.D.; Chang, C.Y.; Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 2019, 223, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, X.; Hu, J. Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level. Eur. J. Remote Sens. 2015, 48, 743. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, L. Improving Chlorophyll Fluorescence Retrieval Using Reflectance Reconstruction Based on Principal Components Analysis. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1645–1649. [Google Scholar]
- Liu, X.; Liu, L.; Zhang, S.; Zhou, X. New Spectral Fitting Method for Full-Spectrum Solar-Induced Chlorophyll Fluorescence Retrieval Based on Principal Components Analysis. Remote Sens. 2015, 7, 10626–10645. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.; Huemmrich, K.; Middleton, E.; Ward, L.; Julitta, T.; Daughtry, C.; Burkart, A.; Russ, A.; Kustas, W. Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated with Photosynthesis at Leaf and Canopy Scales. Remote Sens. 2019, 11, 488. [Google Scholar] [CrossRef] [Green Version]
- Damm, A.; Guanter, L.; Laurent, V.C.E.; Schaepman, M.E.; Schickling, A.; Rascher, U. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sens. Environ. 2014, 147, 256–266. [Google Scholar] [CrossRef]
- Plascyk, J.A.; Gabriel, F.C. Fraunhofer line discriminator Mk II—Airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans. Instrum. Meas. 1975, 24, 306–313. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Xu, S.; Zhang, W.; Wu, J. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Sensors 2016, 16, 775. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Liu, L.; Liu, X.; Guo, J.; Hu, J.; Wang, S.; Zhang, Y. SIFSpec: Measuring Solar-Induced Chlorophyll Fluorescence Observations for Remote Sensing of Photosynthesis. Sensors 2019, 19, 3009. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shi, H.; Stovall, A.; Guan, K.; Miao, G.; Zhang, Y.; Zhang, Y.; Xiao, X.; Ryu, Y.; Lee, J.E. FluoSpec 2-An Automated Field Spectroscopy System to Monitor Canopy Solar-Induced Fluorescence. Sensors 2018, 18, 2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Wood, J.D.; Chang, C.Y.Y.; Sun, Y.; Riggs, J.S. Advancing Terrestrial Ecosystem Science With a Novel Automated Measurement System for Sun-Induced Chlorophyll Fluorescence for Integration With Eddy Covariance Flux Networks. J. Geophys. Res. Biogeosci. 2019, 124, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.-E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Butz, A.; Toon, G.C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2A-band spectra of reflected sun-light. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Guanter, L.; Middleton, E.M. New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. Discuss. 2016, 9, 3939–3967. [Google Scholar]
- Köhler, P.; Frankenberg, C.; Magney, T.S.; Guanter, L.; Joiner, J.; Landgraf, J. Global Retrievals of Solar-Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO-2. Geophys. Res. Lett. 2018, 45, 10456–10463. [Google Scholar] [CrossRef] [Green Version]
- Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- Köhler, P.; Guanter, L.; Frankenberg, C. Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1446–1450. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Guanter, L.; Aben, I.; Tol, P.; Krijger, J.M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 2015, 8, 1337–1352. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Liu, L.; Liu, X.; Zhang, X.; Zhang, X.; Bi, Y.; Zhang, L. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 2018, 63, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M.; Campbell, P.K.E.; Yoshida, Y.; Kuze, A.; Corp, L.A. Filling-in of far-red and near-Infrared solar lines by terrestrial and atmospheric effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. Discuss. 2012, 5, 163–210. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; van der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol. 1998, 152, 283–296. [Google Scholar] [CrossRef]
- Campbell, P.K.; Middleton, E.M.; McMurtrey, J.E.; Corp, L.A.; Chappelle, E.W. Assessment of vegetation stress using reflectance or fluorescence measurements. J. Environ. Qual. 2007, 36, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Pushnik, J.; Dobrowski, S.; Ustin, S. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Agati, G.; Mazzinghi, P.; Fusi, F.; Ambrosini, I. The F685/F730 Chlorophyll Fluorescence Ratio as a Tool in Plant Physiology: Response to Physiological and Environmental Factors. J. Plant Physiol. 1995, 145, 228–238. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Babani, F. Detection of photosynthetic activity and water stressby imaging the red chlorophyll fluorescence. Plant Physiol. Biochem. 2000, 38, 889–895. [Google Scholar] [CrossRef]
- Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett. 2015, 42, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Guanter, L.; Guan, K.; You, L.; Huete, A.; Ju, W.; Zhang, Y. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Glob. Chang. Biol. 2018, 24, 4023–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lu, X.; An, S.; Heskel, M.; Yang, H.; Tang, J. Advantage of multi-band solar-induced chlorophyll fluorescence to derive canopy photosynthesis in a temperate forest. Agric. For. Meteorol. 2019, 279, 107691. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Hu, J.; Guo, J.; Du, S. Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level. Agric. For. Meteorol. 2020, 281, 107846. [Google Scholar] [CrossRef]
- Coppo, P.; Taiti, A.; Pettinato, L.; Francois, M.; Taccola, M.; Drusch, M. Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission. Remote Sens. 2017, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Moreno, J.; Bello, U.D.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1273–1284. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Shen, S.S.; Berk, A.; Descour, M.R.; Acharya, P.K.; Bernstein, L.S.; Anderson, G.P.; Chetwynd, J.J.H.; Hoke, M.L. Reformulation of the MODTRAN band model for higher spectral resolution. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI; SPIE: Bellingham, WA, USA, 2000; Volume 4049, pp. 190–198. [Google Scholar]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Meroni, M.; Preusker, R.; Fischer, J.; Moreno, J. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2014, 6, 10656–10675. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.N.; Swayze, G.A. Automated Spectral Analysis: Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm. Abstr. Lunar Planet. Sci. Conf. 1995, 26, 255. [Google Scholar]
- Magney, T.S.; Frankenberg, C.; Köhler, P.; North, G.; Davis, T.S.; Dold, C.; Dutta, D.; Fisher, J.B.; Grossmann, K.; Harrington, A.; et al. Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis. J. Geophys. Res. Biogeosci. 2019, 124, 1491–1507. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Rossini, M.; Colombo, R.; Meroni, M.; Frankenberg, C.; Lee, J.-E.; Joiner, J. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sens. Environ. 2013, 133, 52–61. [Google Scholar] [CrossRef]
Satellite/ Sensor | Data Available From | Equatorial Crossing Time | Spectral Coverage (nm) | Spectral Resolution (nm) | Spatial Resolution | Swath (km) |
---|---|---|---|---|---|---|
GOSAT | 04/2009 | 1:00 pm | 757–775 | 0.025 | 10 km diam. | 750 |
OCO-2 | 08/2014 | 1:30 pm | 757–771 | 0.042 | 1.3 km × 2.25 km | 10.3 |
TanSat | 02/2017 | 1:30 pm | 758–778 | 0.044 | 2 km × 2 km | 20 |
SCIAMACHY | 03/2002 | 10:00 am | 650–790 | 0.5 | 30 km × 240 km or 30 km × 60 km ** | 240 |
GOME-2 | 01/2007 | 9:30 am | 650–790 | 0.5 | 40 km × 80 km or 40 km × 40 km * | 1920 |
TROPOMI | 11/2017 | 1:30 pm | 675–775 | 0.5 | 3.5 km × 7 km | 2600 |
FLEX | To be launched in 2022 | 10:00 am | 500–780 | 0.3−2.0 | 0.3 km × 0.3 km | 150 |
TECIS-1 | To be launched in 2021 | 10:30 am | 670–780 | 0.3 | 2 km × 2 km | 34 |
Parameter | Description | Value/Range | Unit |
---|---|---|---|
N | Leaf thickness parameters | 1.4 | - |
LAI | Leaf area index | 0.5, 1, 2, 3, 4 | |
fqe | Fluorescence quantum yield efficiency at photosystem level | 0.01, 0.02, 0.04 | - |
Cab | Leaf chlorophyll a + b content | 5, 10, 20, 40 | μg cm−2 |
Cdm | Leaf equivalent water thickness | 0.012 | g cm−2 |
Cw | Dry matter content | 0.009 | cm |
Parameter | Description | Value | Units |
---|---|---|---|
MODEL | Geographical-seasonal model atmospheres | 2, 3 | - |
H2OSTR | Vertical water vapor column | 0.5, 1.5, 2.5, 4 | g cm−2 |
O3STR | Vertical ozone column | 0.2 | atm-cm |
IHAZE | Type of extinction | 1 | - |
VIS | Surface meteorological range | −0.1, −0.2, −0.3, −0.4, −0.5, −0.6 | km |
H2 | Final altitude | 0.01, 0.05, 1, 2 | km |
ANGLE | Initial zenith angle as measured from H1 | 164, 180 | degree |
RO | Radius of the earth at the particular latitude | 6378.39, 6371.23, 6356.91 | km |
PARM2 | Solar zenith angle at H1 | 15, 30, 45, 70 | degree |
V1 | Initial frequency (as a wavenumber) | 12,500 | cm−1 |
V2 | Final frequency | 16,667 | cm−1 |
Experiment | No. | SR (nm) | SNR |
---|---|---|---|
Exp I | 1 | 0.1 | 127 |
2 | 0.3 | 322 | |
3 | 0.5 | 472 | |
Exp II | 4 | 0.1 | No |
5 | 0.3 | No | |
6 | 0.5 | No | |
7 | 0.1 | 322 | |
8 | 0.5 | 322 | |
Exp III | 9 | 0.3 | 450 |
Exp IV | 10 | 0.1 | 50, 80, 100, 127, 150, 200 |
11 | 0.3 | 200, 250, 300, 322, 350, 400, 450, 500 |
Line | Band | SR (nm) | SNR | RMS diff | r | σ | Slope | Bias | Intercept | RMS diff* |
---|---|---|---|---|---|---|---|---|---|---|
1 | Far-red | 0.1 | No | 0.66 | 1.00 | 1.43 | 0.79 | −0.04 | −0.05 | 0.03 |
2 | 0.3 | No | 0.69 | 1.00 | 1.46 | 0.81 | −0.11 | −0.14 | 0.07 | |
3 | 0.5 | No | 0.73 | 1.00 | 1.48 | 0.82 | −0.18 | −0.23 | 0.12 | |
4 | 0.1 | 127 | 0.64 | 1.00 | 1.45 | 0.80 | −0.02 | −0.03 | 0.15 | |
5 | 0.3 | 322 | 0.69 | 0.99 | 1.47 | 0.81 | −0.10 | −0.13 | 0.20 | |
6 | 0.5 | 472 | 0.74 | 0.99 | 1.50 | 0.82 | −0.18 | −0.22 | 0.26 | |
7 | 0.1 | 322 | 0.66 | 1.00 | 1.44 | 0.80 | −0.04 | −0.05 | 0.07 | |
8 | 0.5 | 322 | 0.76 | 0.98 | 1.52 | 0.83 | −0.18 | −0.21 | 0.35 | |
9 | 0.3 | 450 | 0.49 | 0.99 | 1.50 | 0.82 | 0.12 | 0.14 | 0.17 | |
10 | Red | 0.1 | No | 0.35 | 1.00 | 0.49 | 0.73 | −0.03 | −0.04 | 0.04 |
11 | 0.3 | No | 0.38 | 0.99 | 0.49 | 0.73 | −0.05 | −0.07 | 0.07 | |
12 | 0.5 | No | 0.56 | 0.93 | 0.47 | 0.67 | −0.17 | −0.25 | 0.18 | |
13 | 0.1 | 127 | 0.49 | 0.84 | 0.58 | 0.73 | −0.04 | −0.05 | 0.43 | |
14 | 0.3 | 322 | 0.60 | 0.73 | 0.65 | 0.71 | −0.07 | −0.08 | 0.62 | |
15 | 0.5 | 472 | 0.96 | 0.49 | 0.94 | 0.69 | −0.13 | −0.11 | 1.30 | |
16 | 0.1 | 322 | 0.37 | 0.97 | 0.51 | 0.74 | −0.03 | −0.03 | 0.18 | |
17 | 0.5 | 322 | 1.59 | 0.27 | 1.48 | 0.61 | −0.25 | −0.34 | 5.61 | |
18 | 0.3 | 450 | 0.54 | 0.82 | 0.57 | 0.70 | −0.08 | −0.10 | 0.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Liu, L.; Liu, X.; Zhang, X.; Gao, X.; Wang, W. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects. Sensors 2020, 20, 815. https://doi.org/10.3390/s20030815
Du S, Liu L, Liu X, Zhang X, Gao X, Wang W. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects. Sensors. 2020; 20(3):815. https://doi.org/10.3390/s20030815
Chicago/Turabian StyleDu, Shanshan, Liangyun Liu, Xinjie Liu, Xinwei Zhang, Xianlian Gao, and Weigang Wang. 2020. "The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects" Sensors 20, no. 3: 815. https://doi.org/10.3390/s20030815
APA StyleDu, S., Liu, L., Liu, X., Zhang, X., Gao, X., & Wang, W. (2020). The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects. Sensors, 20(3), 815. https://doi.org/10.3390/s20030815