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Abstract: In order to identify the abnormal road surface condition efficiently and at low cost, a road
surface condition recognition method is proposed based on the vibration acceleration generated by a
smartphone when the vehicle passes through the abnormal road surface. The improved Gaussian
background model is used to extract the features of the abnormal pavement, and the k-nearest
neighbor (kNN) algorithm is used to distinguish the abnormal pavement types, including pothole
and bump. Comparing with the existing works, the influence of vehicles with different suspension
characteristics on the detection threshold is studied in this paper, and an adaptive adjustment
mechanism based on vehicle speed is proposed. After comparing the field investigation results with
the algorithm recognition results, the accuracy of the proposed algorithm is rigorously evaluated.
The test results show that the vehicle vibration acceleration contains the road surface condition
information, which can be used to identify the abnormal road conditions. The test result shows that
the accuracy of the recognition of the road surface pothole is 96.03%, and the accuracy of the road
surface bump is 94.12%. The proposed road surface recognition method can be utilized to replace the
special patrol vehicle for timely and low-cost road maintenance.

Keywords: road surface recognition; Gaussian background model; abnormal road surface;
acceleration sensor

1. Introduction

During the operation of the road, the road surface will inevitably suffer from some defects or
damage due to the crushing, impact, and weather changes of the passing vehicles. These defects
and damage are often referred to as abnormal road conditions [1]. Abnormal road conditions have a
negative impact on vehicle speed, fuel consumption, mechanical wear, ride comfort, and even safety.
The traditional abnormal road condition information collection mainly relies on the manual site survey
and special patrol vehicle, which is inefficient and high in cost. According to the statistics of the
Ministry of Transport of China, the maintenance expenditure of the national toll road in 2017 has
reached 53.39 billion yuan.

In order to save money and time costs, many experts and scholars have studied abnormal road
surface identification methods [2,3]. There are three main methods for identifying abnormal roads:
Visual [4], three-dimensional reconstruction [5,6], and dynamic vehicle response. The method of
road surface recognition based on visual or three-dimensional reconstruction has high-performance
requirements and high cost, which is not conducive to comprehensive promotion and use. The test
scope is also very limited. The method based on the smartphone acceleration sensor to identify the
abnormal road surface has certain advantages [2].
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In early research, accelerometers are used for pavement recognition. De Zoysa [7] proposed to
deploy a small number of mobile sensors in the public transportation system to detect road conditions,
but the system exhibited low detection efficiency and a false-positive rate. Chen [8] proposed a
crowdsourcing based road surface monitoring system. By adding acceleration sensors and GPS
modules to the vehicle to obtain the acceleration, velocity, and position information of the vehicle, the
Gaussian background model is used to identify the abnormal road surface. Based on the research of
Chen, Harikrishnan [9] improved the Gaussian background model and proposed an abnormal road
surface recognition method that can adapt to different vehicle speeds. This method could classify the
speed bump and road surface bumps according to the X-Z axis acceleration ratio.

In order to improve the accuracy of road surface recognition, Wang [10] proposed a method by
fusing the feature data from an acceleration sensor and camera to identify the abnormal road type.
Celaya [11] installed sensors at the front of the vehicle to obtain the vehicle vibration response when
the vehicle passed the speed bump and used the multivariate genetic algorithm to detect the road
surface anomaly. This method can realize the recognition of abnormal road surfaces with a low false
alarm rate, but the calculation is complicated, and a large number of statistical features such as mean,
variance, peak, and standard deviation are needed for machine learning. With the rapid development
of mobile intelligent terminal technology, smartphones equipped with sensors such as accelerometers
and global positioning navigation systems can be used to detect abnormal road surfaces [12]. Cong [13]
used the probabilistic statistical method and wavelet analysis method to establish an identification
model of abnormal data and uses median filtering and wavelet filtering to process the data so that
the data detected by the smartphone can truly reflect the vibration of the vehicle. Yi [14] proposed a
smartphone detection vehicle to monitor the road surface, using an anomaly indexing algorithm to
detect the speed bump, the pit, and the manhole cover. However, in the subsequent experiments, it was
found that the proposed algorithm can only identify the speed bump, and the identification of other
abnormal road conditions is not favorable. Mukherjee [15] established a quarter-vehicle model and a
half-vehicle model and studied the acceleration response of the vehicle when crossing the deceleration
belt. They developed a mathematical statistics method to identify the deceleration belt. Zhao [16]
proposed a feature extraction method combining time-domain parameter characteristics and wavelet
packet energy characteristics based on vehicle suspension vibration response and used a probabilistic
neural network to classify road surface.

In summary, the research on the road surface condition identification method has achieved certain
results. Recent studies have proven that smartphone accelerometers can effectively capture vehicle
vibrations caused by abnormal road surfaces. By analyzing the signals from these mobile sensors, we
have the potential to identify road anomalies. In this study, a Gaussian background model is used to
identify abnormal roads, and an adaptive adjustment mechanism based on vehicle speed is proposed
to improve the recognition accuracy. The parameters of the Gaussian background model are optimized
by using fuzzy logic inference machines, making the method suitable for different types of vehicles,
and using the kNN algorithm to classify abnormal roads.

2. Road Information Sharing System

Obtaining abnormal road information in advance can effectively prevent traffic accidents, but
due to road geometry, weather, lighting conditions, etc., the driver may not be able to notice the
abnormal road ahead. The information-sharing technology is used to construct an abnormal road
sharing system, especially encouraged by the development of the vehicle network and intelligent
transportation system [17–21]. The road information sharing system is designed to promptly warn the
driver when the driver approaches an abnormal road at a dangerous speed. In addition, the relevant
information of the abnormal road surface is sent to the municipal road maintenance unit, so that the
road maintenance personnel can timely get the road damage status and repair it to ensure the safety
and comfort of travel [22–25].
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In order to monitor the road surface conditions in realtime, it is necessary to find an efficient and
reliable communication technology to transmit abnormal road information. This paper uses existing
cellular network technology to collect abnormal road surface data. Figure 1 shows an architectural
diagram of a road information sharing system. A smartphone with an acceleration sensor and a GPS
module is fixed on the vehicle to obtain the latitude and longitude coordinates of the vehicle, the
traveling speed, and the vibration acceleration data of the vehicle body. When the vehicle passes the
abnormal road surface, the smartphone will upload the location and type of the abnormal road surface
to the cloud. The abnormal road information is sent to the road maintenance personnel. When other
vehicles approach the abnormal road surface, the cloud will issue an abnormal road surface reminder
to ensure that the vehicle can pass the area safely and smoothly.
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Figure 2. The quarter vehicle model. 

Figure 1. Road information sharing system architecture diagram.

3. Data Processing

There are many sources of vibration in a vehicle. Different vibration sources have certain
differences in frequency domain characteristics. In this study, a quarter of the vehicle model and the
abnormal road surface model are established to analyze the excitation effect of the abnormal road
on the overall vehicle system. In order to obtain the vibration frequency range of the vehicle body, a
frequency spectrum analysis of the vibration acceleration of the vehicle body is implemented, and a
filter based on this analysis result is designed.

3.1. Vehicle Dynamics Analysis

In order to study the interaction between the vehicle and the road, a quarter-vehicle model is
utilized to analyze the vibration of the vehicle in the vertical direction. The simplified vehicle dynamics
model is shown in Figure 2.
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mu is the unsprung mass. ms is the sprung mass. KS is the stiffness of the spring. CS is the
damping coefficient of the shock absorber. KT is the stiffness of the tire. xs is the vertical displacement
of the vehicle body. xu is the vertical displacement of the wheel. xg is the road surface excitation. The
differential equation of motion of the vehicle is described as Equation (1).{

ms
..
xs + CS(

.
xs −

.
xu) + KS(xs − xu) = 0

mu
..
xu −CS(

.
xs −

.
xu) −KS(xs − xu) + KT(xu − xg) = 0

(1)

This paper analyzes the dynamic response of the vehicle when the vehicle passes through the
road surface at different speeds [26]. An abnormal pavement model is shown in Figure 3. The length
of the abnormal road surface is L, and the height is h. v is the speed of the vehicle. t1 and t2 are the
starting moment and the ending moment of the road surface excitation, respectively. The mathematical
model is described as Equation (2) [27].

xg(t) =

 0.5h
(
1− cos

(
2πv

L t
))

, t1 ≤ t ≤ t2

0, t1 < t or t > t2
(2)
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the vertical acceleration of the vehicle. The frequency–domain analysis of the acceleration signal is 
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Figure 3. Abnormal road surface excitation at different speeds.

When the vehicle passes through an abnormal road at different speeds, the vertical acceleration
response of the vehicle body is shown in Figure 4. The speed of the vehicle has a significant effect on
the vertical acceleration of the vehicle. The frequency–domain analysis of the acceleration signal is
performed to obtain a spectrogram of the vehicle vibration acceleration signal, as shown in Figure 5.
As the vehicle speed increases, the frequency of body vibration increases, but its main component is
still in the low-frequency range (30 Hz).

3.2. Butterworth Filter

When the data is collected, the position of the smartphone is not flat, and the slope of the test road
surface may interfere with the recognition of the abnormal road surface. Therefore, the data needs
to be filtered before using to recognize the abnormal road surface. According to the simulation data
analysis results, the vibration caused by the abnormal road surface excitation is mainly distributed in
the low-frequency range.

In this paper, the Butterworth filter is used to filter out the through component and the
high-frequency noise with the frequency greater than 30 Hz. There are several reasons for choosing the
Butterworth filter. Firstly, the Butterworth filter does not generate a ripple in the passband. Secondly, it
has been successfully implemented in many commercial tools. Figure 6 shows the frequency response
of the fifth-order Butterworth’s numerical low-pass filters with a cut-off frequency of 30 Hz.
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In addition, the filter delay has a negative impact on the positioning accuracy of abnormal roads
surface. The filter delay will shift the positioning of the abnormal road surface towards the vehicle
driving direction for a distance. However, because the filtering delay is very small (about 0.1 s), the
positioning error caused by the filtering delay is not large, and the positioning accuracy requirements
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for abnormal road recognition are not high. Therefore, the Butterworth filter can be applied to the
recognition of abnormal roads.

4. Abnormal Road Surface Recognition

4.1. Overview of Abnormal Road Surface Recognition Algorithm

The framework of the abnormal road recognition algorithm is shown in Figure 7. In order to
collect vehicle speed, acceleration, and position information, the smartphone’s built-in accelerometer
and global positioning navigation system are used. First, the raw data is preprocessed using a
Butterworth filter. Secondly, the Gaussian background model is improved by using fuzzy logic control.
The improved Gaussian model is combined with the acceleration threshold condition to extract the
characteristic acceleration value caused by the abnormal pavement. Finally, the kNN algorithm is used
to classify the abnormal road surface.
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4.2. Gaussian Background Model

When the vehicle is traveling on a flat road surface, the vibration acceleration in the vertical
direction of the vehicle is Gaussian-distributed. In order to verify the conclusion, we used both
Kolmogorov–Smirnov and Lilliefors test methods to test whether the acceleration generated by the
vehicle on a flat road conforms to the Gaussian distribution. The results show that the assumption is
valid. By measuring the vibration acceleration of the vehicle, the vehicle’s vertical acceleration will
be abrupt when the vehicle passes through an abnormal road surface compared to traveling on a flat
road [28]. The Gaussian model is described as Equation (3).

η
(
z
∣∣∣µ, σ2

)
=

1

σ
√

2π
e(
−(z−µ)2

2σ2 ) (3)

µ is a mathematical expectation. σ is a standard deviation, and z is a body vibration acceleration
value. If the vehicle passes over an abnormal road, the body acceleration at this time will no longer
conform to the Gaussian distribution. Therefore, if z is the vertical acceleration of the vehicle caused
by abnormal road excitation, the absolute value of the difference between z and µ is greater than
the product of the threshold TG and the standard deviation σ. The equation can be described as
Equation (4). ∣∣∣(z− µ)∣∣∣ > TG ∗ σ (4)

If Equation (4) is not satisfied, the vehicle is considered to be traveling on a flat road. At this time,
the background of the Gaussian model will change, and the model parameters will be updated. The
Gaussian model parameter update equation is described as Equation (5).
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 µt+1 = (1− α)µt + α(z− µt)

σ2
t+1 = (1− α)σ2

t + α(z− µt)
2 (5)

where α is the learning rate, and the size of the learning rate indicates the speed of the update. µt+1

and σt+1 are the updated mean and standard deviation.

4.3. Improved Gaussian Background Model

The vibration acceleration of the vehicle is affected by the traveling speed. When the vehicle
passes over abnormal roads at a different speed, the amplitude of the vibration acceleration is different.
In order to avoid false alarms at high speed and false negatives at low speed, the Gaussian model
described as Equation (3) needs to be improved. After the improvement, if z is the vertical vibration
acceleration caused by the abnormal road surface, it can be described as Equation (6).

∣∣∣(z− µ)∣∣∣ > (
v

TV

)
∗ TG ∗ σ (6)

In addition, when the vehicle passes an abnormal road surface, the vertical acceleration of the
vehicle is large. Therefore, if z is the acceleration caused by passing through the abnormal road, z will
satisfy the following Equation (7).

z >
(

v
TV

)
TZ (7)

Similar to the Gaussian background model, the improved Gaussian background model will also
update the model parameters. When the acceleration z does not satisfy Equations (6) and (7), the
data is considered as background data and will be used to update the background parameters. The
parameter update formula is shown in Equation (5).

Where v is the current vehicle speed, and TV is the speed threshold. Vehicle suspension parameters
are different for different types of vehicles. The vibration response of the vehicles body will be
significantly different when different types of vehicles pass through the same road surface. The original
Gaussian background model has a fixed threshold TZ, which is obviously not applicable to different
types of vehicles. Therefore, this paper proposes designing a fuzzy logic controller to optimize the
Gaussian background model.

Due to the complexity of the vehicle system, it is difficult to establish accurate mathematical
models to describe the relationship between different vehicles and abnormal road surfaces. Fuzzy
logic control is based on artificial experience and does not require an accurate mathematical model
of the controlled object. Using fuzzy logic, the basic idea of optimizing the abnormal road surface
recognition algorithm is: Firstly, find the fuzzy relationship between the road surface recognition
algorithm parameter TZ and the vehicle suspension parameters. Second, in the process of road surface
recognition, according to the difference of KS and CS parameters of different vehicles, fuzzy logic is
used to modify TZ, so that the abnormal road surface recognition algorithm can adapt to different
types of vehicles.

In this section, to make the abnormal road recognition algorithm applicable to different types of
vehicles, a fuzzy logic inference machine is used to calculate an appropriate TZ. The input quantities of
the fuzzy logic inference machine are defined as the vehicle suspension stiffness KS and damping CS.
The basic domain of KS is [0,200], the basic domain of CS is [0,4], and the basic domain of TZ is [0.5,1].

As shown in Figure 8, the membership function is gaussmf type. The input 1 (KS) is qualitative
into five sets, denoted as NB, NS, ZO, PS, and PB. The input 2 (CS) is qualitative into four sets, denoted
as NB, NS, PS, and PB. The output (TZ) is qualitative into three sets, denoted as NB, ZO, and PB, where
NB is negative big, and PB is positive big.
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The establishment of the rule bases of the fuzzy logic inference machine is based on the experiments
and CarSim simulation. The rule bases of the fuzzy logic inference machine are shown in Table 1, and
Figure 9 shows the interface of the output.



Sensors 2020, 20, 451 9 of 17

Table 1. Rule bases of TZ.

CS
KS NB NS ZO PS PB

NB ZO NB NB NB NB
NS NB PB NB NB NB
PS ZO NB NB ZO NB
PB ZO NB ZO ZO ZO
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The improved Gaussian background model is described in Algorithm 1.

Algorithm 1: Abnormal road surface recognition method

Input: z, the Z-axis acceleration; v, the vehicle speed; KS, the spring stiffness; CS, the damping coefficient.
Output: event_z, Acceleration due to abnormal road surface.
1. Algorithm begin:
2. µ = 0 % µ is a mathematical expectation
3. σ = 0 % σ is a standard deviation
4. TG = 2 % TG is the Gaussian matching threshold
5. TV = 20 % TV is the speed threshold
6. if (v > TV)
7. z_match←abs(z − µ)/σ
8. % calculating thresholds TZ using fuzzy logic inference machines
9. TZ ← fuzzy_control (KS, CS)
10. if (z_match > TG*v/TV) && (abs(z) > (TZ * v/TV))
11. event_z← z
12. else % update µ and σ, as described in Equation (5)
13. µ← (1 − α) * µ + α*z
14. σ← SQRT ((1 − α) * σˆ2 + α * (z − µ)ˆ2) % SQRT means calculate square root
15. end if
16. end if
17. return event_z
18. Algorithm end

5. kNN Algorithm Abnormal Road Surface Classification

The kNN classifier is a sample-based machine learning algorithm. Due to the simple and effective
characteristics of kNN, kNN has been widely used in engineering applications [29]. First, the abnormal
road surface acceleration signal extracted by the abnormal road surface recognition algorithm is used
to identify the k nearest neighbor values in the training data set. Then, the abnormal pavement labels
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corresponding to these nearest neighbor values are counted, and the number of neighboring samples
belonging to each possible type is calculated. The most common type of pavement that belongs to
most of the k nearest neighbors is the type of pavement being measured.

5.1. Training and Testing Sample Data Sets

Both the training samples and the test samples are collected by the acceleration sensor of a
smartphone. In this study, multiple sets of acceleration data caused by abnormal road surfaces are
collected as training data sets. In addition, in order to maintain the independence between training
data and test samples, the training samples and test samples are collected on two different roads. The
number of training and test samples obtained in this paper is shown in Table 2.

Table 2. Number of training and testing sample.

Road Surface Training Testing

Bump 118 151
Flat 174 283

Pothole 103 68

From the perspective of the classification process, kNN most directly establishes a relationship
between training samples and test samples, which can effectively avoid the negative impact caused
by the improper selection of category features. Another widely used classification algorithm support
vector machine (SVM) is utilized to compare with kNN on classifying the road surface. The same
training and testing samples are used and the results are shown in Figure 10. The results show that
kNN has an advantage over SVM in the classification of abnormal roads.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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5.2. Classification Algorithms and Tuning Parameters

The kNN classification algorithm classifies objects based on the attributes of k neighbors. The
value of k is a key parameter of the kNN algorithm. This paper tests the classification effect when k
takes different values in the range of 1–19 (odd numbers). Figure 11 shows the classification accuracy
when k takes different values. It can be seen from the figure that as the value of k increases, the
classification accuracy decreases, and the effect is best when k = 3. Therefore, k is set as 3 in this work.
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6. Test and Analysis

6.1. Test Conditions

To validate the performance of the proposed algorithm, an A-class vehicle (Cavalier) and SUV
(Qoros 5) are used to perform the test. An app working on a smartphone (Redmi Note 8 Pro) is
developed to collect the acceleration, speed, and position. The sampling frequency is 400 Hz. According
to the sampling theorem, if the frequency information of a signal is to be saved, the sampling frequency
must be twice as much as the frequency of the measured object. If the amplitude information of a
signal is to be saved, the sampling frequency is preferably ten times as much as the frequency of the
measured object. The sampling frequency of vehicle speed and position is 1 Hz. This is because the
GPS module data update frequency in the smartphone used in the experiment is 1 Hz. The smartphone
is fixed on the handrail of the driver’s seat during the test, as shown in Figure 12.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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Figure 12. Smartphone installation location.

The vehicle travels at a different speed on an abnormal road and a flat road and performs multiple
tests. There are many abnormal road surfaces on the test road, as shown in Figure 13. The actual
measurement shows that the area of the pothole on the road is about 1 square meter and the maximum
depression depth is 30 mm. The diameter of the raised manhole cover is 700 mm, and the height is 50
mm. The width of the speed bump is 350 mm, and the height is about 30 mm.
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6.2. Vehicle Dynamic Response under Different Road Excitations

When the vehicle is travelling on a flat road surface, its vibration acceleration is relatively stable.
When the vehicle passes through an abnormal road surface such as a road pit or a road surface bump,
the acceleration of the vehicle in the vertical direction changes significantly. Figure 14 shows the
vibration acceleration of the vehicle when the vehicle passes through different roads at a speed of 30
km per hour. Figure 14a shows the vehicle traveling on a flat road surface. In Figure 14b, the vehicle is
excited by the pothole road surface. In Figure 14c, the vehicle is excited by the bump road surface.
Under the influence of gravity acceleration, the Z-axis acceleration fluctuates around 9.8.

After the original acceleration data is processed by the Butterworth filter, the filtered Z-axis
vibration acceleration shown in Figure 15 is obtained. It can be clearly observed that the valid data
collected by the smartphone is retained, and the through component and the high-frequency noise
are eliminated.

6.3. Test Results and Analysis

Figure 16 depicts the vertical acceleration values of the vehicle body when the experimental
vehicle passes through the same abnormal road surface at different vehicle speeds. The blue triangle in
Figure 16 represents the experimental data of the A-class vehicle, and the red rectangle represents the
experimental data of the SUV.

It can be observed from Figure 16 that as the vehicle speed increases, the vertical vibration
acceleration of the vehicle body also increases. In addition, when the different types of vehicles pass
the same abnormal road surface, the vertical vibration acceleration of the vehicle body also has a
significant difference.

Comparing the field measurement results with the algorithm identification results, as shown in
Table 3, the results show that the proposed method can effectively identify the road surface potholes
and bumps. In the 68 sets of road surface pothole data, 64 groups are successfully identified and
classified, and the accuracy rate is 94.12%. Among the 151 sets of road surface bumps data, 145
groups are successfully identified and classified, and the accuracy rate is 96.03%. Through onsite
investigation of the reported road surface, it is found that the abnormal road surface size of the false
alarm is small, or the multiple abnormal road surfaces are close to each other, which leads to erroneous
recognition results.



Sensors 2020, 20, 451 13 of 17

Table 3. Abnormal road surface identification result.

Road Surface Field Measurement Algorithm Identification Accuracy Rate

Pothole 151 145 96.03%
Bump 68 64 94.12%
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7. Conclusions

In this paper, a method for abnormal road surface recognition using a smartphone acceleration
sensor is proposed. The Gaussian background model is optimized by a fuzzy logic inference machine
so that the road surface recognition algorithm can be applied to different types of vehicles. Vehicle
acceleration, speed, and position data are collected by the built-in acceleration sensor and global
positioning navigation system of the smartphone. The vibration acceleration caused by the abnormal
road surface is extracted using the improved Gaussian background model and the Z-axis acceleration
threshold condition. An adaptive adjustment mechanism based on vehicle speed is proposed to
improve the recognition accuracy. The classification of the abnormal road surface is realized by
utilizing the kNN classification algorithm. Multiple sets of samples are used to test the abnormal road
surface identification method. Comparing the algorithm identification results with the artificial site
survey results, it is found that the proposed method can effectively identify and classify abnormal road
surfaces such as potholes and bumps.

It is worth noting that with the increase of the total mileage of the road, the intelligent transportation
system will be more and more widely used in the transportation industry. In this paper, only the two
main types of the abnormal road surface are identified. The next step would be studying the evaluation
and identification methods of the degree and size of abnormal road surface damage.
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