CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination
<p>Proposed sensor: (<b>a</b>) Circular patch antenna; (<b>b</b>) double CSRR element; (<b>c</b>) sensor structure with the ABS 3D-printed container to hold the material under test (MUT).</p> "> Figure 2
<p>(<b>a</b>) Simulated and measured results of the reflection coefficient, S<sub>11</sub> (dB), of the circular patch antenna and the proposed sensor with the double complementary split-ring resonator (CSRR) element; (<b>b</b>) photograph of the proposed sensor antenna.</p> "> Figure 3
<p>Reflection coefficient, S<sub>11</sub> (dB), results for different (MUT) relative permittivity’s values at resonant frequencies (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>f</mi> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>f</mi> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Sensitivity parameters results: (<b>a</b>) Resonant shift (<math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> </mrow> </semantics></math>); (<b>b</b>) percentage relative frequency shift (PRFS); (<b>c</b>) percentage resonant frequency shift enhancement (PRFSE); (<b>d</b>) sensitivity (S); (<b>e</b>) sensitivity enhancement (SE).</p> "> Figure 5
<p>Fitted curves to describe the dependence of the proposed sensor resonant frequency with respect to different values of the permittivity value at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>f</mi> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo> </mo> <mi>and</mi> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>f</mi> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Experimental setup and results for the proposed sensor: (<b>a</b>) Measurement setup; (<b>b</b>) measured results for FR-4, glass, and Rogers RO4003C.</p> "> Figure 7
<p>Quartz sand sample experimental procedure: (<b>a</b>) Measurement setup; (<b>b</b>) S<sub>11</sub> variation for different Soil Water Content (SWC).</p> "> Figure 8
<p>Red clay sample experimental procedure: (<b>a</b>) Measurement setup; (<b>b</b>) S<sub>11</sub> variation for different SWC.</p> "> Figure 9
<p>Measured results for different SWC (%) with quartz sand. <sup>a</sup> Soil sample obtained in the region of Banat in north-east of Serbia. <sup>b</sup> The values shown are the mean value of those obtained from measurements. <sup>c</sup> From Energy Dispersive X-ray (EDX) analysis, the sand soil sample is composed of 11.5% of Carbon, 28.1% Silicon, 0.1% Magnesium, 0.7% Iron, and 53% of Oxygen.</p> "> Figure 10
<p>Measured results for different SWC (%) with red clay. <sup>a</sup> Soil obtained in the region of Yingtan, Jiangxi Province of China.</p> "> Figure 11
<p>Measured results for the resonance frequency shift on quartz sand and red clay soil samples for different water concentrations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Design
2.2. Principle of Operation and Sensitivity
3. Mathematical Model and Validation
3.1. Obtaining Relative Permittivity as a Function of Resonant Frequency
3.2. Proposed Sensor Validation
4. Application: Soil Water Content (SWC) and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silavwe, E.; Somjit, N.; Robertson, I.D. A microfluidic-integrated SIW lab-on-substrate sensor for microliter liquid characterization. IEEE Sens. J. 2016, 16, 7628–7635. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, J.; Li, J.; Xu, G.; Ju, Z.; Liu, X.; Ni, X. A High-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids. Sensors 2018, 18, 4005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chretiennot, T.; Dubuc, D.; Grenier, K. A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions. IEEE Trans. Microw. Theory Tech. 2012, 61, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Vera, E.; Acevedo-Osorio, G.; Arias-Correa, M.; Senior, D.E. A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization. Sensors 2019, 19, 1936. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Romera, G.; Herraiz-Martínez, F.J.; Gil, M.; Martínez-Martínez, J.J.; Segovia-Vargas, D. Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization. IEEE Sens. J. 2016, 16, 3587–3596. [Google Scholar] [CrossRef]
- Soffiatti, A.; Max, Y.; Silva, S.G.; de Mendonça, L.M. Microwave metamaterial-based sensor for dielectric characterization of liquids. Sensors 2018, 18, 1513. [Google Scholar] [CrossRef] [Green Version]
- Vélez, P.; Muñoz-Enano, J.; Gil, M.; Mata-Contreras, J.; Martín, F. Differential microfluidic sensors based on dumbbell-shaped defect ground structures in microstrip technology: Analysis, optimization, and applications. Sensors 2019, 19, 3189. [Google Scholar] [CrossRef] [Green Version]
- Chahadih, A.; Cresson, P.Y.; Hamouda, Z.; Gu, S.; Mismer, C.; Lasri, T. Microwave/microfluidic sensor fabricated on a flexible kapton substrate for complex permittivity characterization of liquids. Sens. Act. A Phys. 2015, 229, 128–135. [Google Scholar] [CrossRef]
- Dinh, T.H.N.; Serfaty, S.; Joubert, P.Y. Non-contact radiofrequency inductive sensor for the dielectric characterization of burn depth in organic tissues. Sensors 2019, 19, 1220. [Google Scholar] [CrossRef] [Green Version]
- Helmy, A.A.; Kabiri, S.; Bajestan, M.M.; Entesari, K. Complex permittivity detection of organic chemicals and mixtures using a 0.5–3-GHz miniaturized spectroscopy system. IEEE Trans. Microw. Theory Tech. 2013, 61, 4646–4659. [Google Scholar] [CrossRef]
- Helmy, A.A.; Entesari, K. A 1–8 GHz miniaturized spectroscopy system for permittivity detection and mixture characterization of organic chemicals. IEEE Trans. Microw. Theory Tech. 2012, 60, 4157–4170. [Google Scholar] [CrossRef]
- KT, M.S.; Ansari, M.A.H.; Jha, A.K.; Akhtar, M.J. Design of SRR-based microwave sensor for characterization of magnetodielectric substrates. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 524–526. [Google Scholar]
- Shafi, K.M.; Jha, A.K.; Akhtar, M.J. Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials. IEEE Sens. J. 2017, 17, 5479–5486. [Google Scholar] [CrossRef]
- Liu, W.; Sun, H.; Xu, L. A Microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor. Sensors 2018, 18, 1438. [Google Scholar] [CrossRef] [Green Version]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S. Complementary metamaterial sensor for nondestructive evaluation of dielectric substrates. Sensors 2019, 19, 2100. [Google Scholar] [CrossRef] [Green Version]
- Boybay, M.S.; Ramahi, O.M. Material characterization using complementary split-ring resonators. IEEE Trans. Instrum. Meas. 2012, 61, 3039–3046. [Google Scholar] [CrossRef]
- Vélez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martín, F. Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sens. J. 2017, 17, 6589–6598. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2013, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Act. A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.; Lee, J.I. High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization. Sensors 2019, 19, 498. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.; Lee, J.I. Slot-Loaded Microstrip Patch Sensor Antenna for high-sensitivity permittivity characterization. Electronics 2019, 8, 502. [Google Scholar] [CrossRef] [Green Version]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 815–823. [Google Scholar]
- Memon, M.U.; Lim, S. Microfluidic high-Q circular substrate-integrated waveguide (SIW) cavity for radio frequency (RF) chemical liquid sensing. Sensors 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.A.H.; Jha, A.K.; Akhtar, M.J. Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity. IEEE Sens. J. 2015, 15, 7181–7189. [Google Scholar] [CrossRef]
- Li, Q.L.; Cheung, S.W.; Wu, D.; Yuk, T.I. Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system. IEEE Ant. Wirel. Propag. Lett. 2016, 16, 920–923. [Google Scholar] [CrossRef]
- Mestdagh, S.; De Raedt, W.; Vandenbosch, G.A. CPW-fed stacked microstrip antennas. IEEE Trans. Ant. Propag. 2004, 52, 74–83. [Google Scholar] [CrossRef]
- Saadat-Safa, M.; Nayyeri, V.; Khanjarian, M.; Soleimani, M.; Ramahi, O.M. A CSRR-based sensor for full characterization of magneto-dielectric materials. IEEE Trans. Microw. Theory Tech. 2019, 67, 806–814. [Google Scholar] [CrossRef]
- Kitić, G.; Crnojević-Bengin, V. A sensor for the measurement of the moisture of undisturbed soil samples. Sensors 2013, 13, 1692–1705. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, Z.; Wang, X. Soil water content estimation using high-frequency ground penetrating radar. Water 2019, 11, 1036. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Res. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Then, Y.L.; You, K.Y.; Dimon, M.N.; Lee, C.Y. A modified microstrip ring resonator sensor with lumped element modeling for soil moisture and dielectric predictions measurement. Measurement 2016, 94, 119–125. [Google Scholar] [CrossRef]
- Fratticcioli, E.; Dionigi, M.; Sorrentino, R. A simple and low-cost measurement system for the complex permittivity characterization of materials. IEEE Trans. Instrum. Meas. 2004, 53, 1071–1077. [Google Scholar] [CrossRef]
Parameter | Description | Value (mm) |
---|---|---|
W | Substrate Width | 48 |
L | Substrate Length | 64 |
R | Patch Radius | 13.12 |
Microstrip Line Width | 3 | |
Microstrip Line Length | 5 | |
Quarter Wave Transformer Width | 1 | |
Quarter Wave Transformer Length | 21 | |
d | CSRR offset from source | 6 |
CSRR External Radius | 5 | |
CSRR Internal Radius | 3 | |
s | CSRR Width | 1 |
g | CSRR Air-gap | 1 |
h | ABS recipient height | 5 |
Antenna | F | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Reference [21] | 2.5 | 2.384 | 2.287 | 2.202 | 2.128 | 2.063 | 2.003 | 1.949 | 1.899 | 1.854 | |
Reference [21] | 3.466 | 3.376 | 3.303 | 3.243 | 3.189 | 3.142 | 3.099 | 3.06 | 3.024 | 2.991 | |
Proposed | 2.264 | 2.173 | 2.089 | 2.017 | 1.957 | 1.891 | 1.831 | 1.788 | 1.740 | 1.692 | |
Proposed | 3.466 | 3.321 | 3.207 | 3.105 | 3.033 | 2.961 | 2.895 | 2.846 | 2.798 | 2.750 |
Curve Fitting | |
---|---|
0.9995 | |
0.9994 | |
0.9995 |
Soil | Si | Al | Fe | k | Sr | Ca | Zr | Ti | Rb | Mn | S | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | 50.106 | 8.774 | 12.584 | 7.738 | 5.538 | 4.733 | 1.988 | 1.176 | 1.041 | 0.179 | 0.133 | - |
Red Clay | 46.585 | 23.725 | 18.178 | 1.001 | - | - | 5.038 | 3.463 | - | - | 0.509 | 0.206 |
WC (0%) | WC (1%) | WC (3%) | WC (5%) | WC (7%) | WC (9%) | WC (10%) | |
---|---|---|---|---|---|---|---|
2.130 | 2.120 | 2.076 | 1.950 | 1.920 | 1.851 | 1.785 | |
(GHz) | 3.315 | 3.310 | 3.241 | 3.120 | 3.000 | 2.976 | 2.970 |
2.450 | 2.560 | 3.146 | 4.877 | 5.517 | 6.530 | 7.520 |
WC (%) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | 10 | 15 | |
2.13 | 2.103 | 2.094 | 2.085 | 2.029 | 1.997 | 1.950 | 1.815 | |
(GHz) | 3.315 | 3.293 | 3.279 | 3.285 | 3.120 | 3.095 | 3.090 | 2.955 |
2.456 | 2.775 | 2.892 | 2.984 | 3.890 | 4.327 | 4.934 | 7.105 |
Ref. | Structure | Area (mm2) | Sensing Parameter | Design Complexity | Char. Method | Two Resonances |
---|---|---|---|---|---|---|
[1] | Planar | N/A | Medium | Resonance | No | |
[2] | Planar | High | Resonance | No | ||
[4] | Planar | Low | Resonance | No | ||
[5] | Planar | N/A | Low | Resonance | No | |
[6] | Planar | Low | Transmission | N/A * | ||
[7] | Planar | ** | High | Transmission | No | |
[12] | Planar | Low | Resonance | Yes | ||
[21] | Planar | Low | Resonance | Yes | ||
[24] | Planar | N/A | Low | Resonance | No | |
This Work | Planar | Low | Resonance | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.G.D.; Pinto, E.N.M.G.; Silva Neto, V.P.; D’Assunção, A.G. CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination. Sensors 2020, 20, 255. https://doi.org/10.3390/s20010255
Oliveira JGD, Pinto ENMG, Silva Neto VP, D’Assunção AG. CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination. Sensors. 2020; 20(1):255. https://doi.org/10.3390/s20010255
Chicago/Turabian StyleOliveira, João G. D., Erica N. M. G. Pinto, Valdemir P. Silva Neto, and Adaildo G. D’Assunção. 2020. "CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination" Sensors 20, no. 1: 255. https://doi.org/10.3390/s20010255
APA StyleOliveira, J. G. D., Pinto, E. N. M. G., Silva Neto, V. P., & D’Assunção, A. G. (2020). CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination. Sensors, 20(1), 255. https://doi.org/10.3390/s20010255