Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing
<p>MEMS resonator schematic geometries for the fabricated and measured devices: (<b>a</b>) Plate resonator with straight anchors (PR1); (<b>b</b>) plate resonator with folded flexure anchors (PR2). Not to scale.</p> "> Figure 2
<p>(<b>a</b>) Optical image of the overall CMOS-MEMS oscillator circuit fabricated in CMOS 0.35 μm commercial technology. (<b>b</b>) Schematic diagram showing the side-view of the MEMS resonator for two cross-sections.</p> "> Figure 3
<p>Scanning electron microscope (SEM) images for the two fabricated and tested MEMS resonators: (<b>a</b>) PR1; (<b>b</b>) PR2.</p> "> Figure 4
<p>COMSOL Multiphysics simulation results depicting the stiffness constant in the <span class="html-italic">x</span>-axis direction and its non-linear behavior. A lateral force was applied and the resonator displacement determined. The stiffness constant and the non-linear term (k<sub>3</sub>) are reported in the plots. Additionally, the linear model fit for small vibration amplitude is also included for clarification; the fitting coefficient refers only to this model: (<b>a</b>) PR1 shows a deviation from the linear behavior becoming stiffer for larger vibration amplitude; (<b>b</b>) PR2 shows no spring-hardening due to the folded flexure anchors that provide free movement along the <span class="html-italic">y</span>-axis.</p> "> Figure 5
<p>Experimental setup for gas flow test on CMOS-MEMS resonators: (<b>a</b>) schematic representation; (<b>b</b>) picture of the actual setup including the test equipment for system data acquisition; (<b>c</b>) diagram showing the gas chamber dimensions and the relative position of the fluid flow over the MEMS resonator.</p> "> Figure 6
<p>Relative frequency changes over time for a valve aperture and subsequent closure at different gas flow rates (see legend). Each of the resonators exhibits a singular response as a consequence of their different anchor geometries: (<b>a</b>) PR1 presents a much larger frequency variation, as high a 10,000 ppm, due to its clamped ends; (<b>b</b>) PR2, shows a much smaller absolute frequency change (2500 ppm) thanks to the folded flexure anchors that provide free movement along the <span class="html-italic">y</span>-axis; moreover, its frequency variation takes the opposite direction than for PR1.</p> "> Figure 7
<p>Time evolution of relative frequency change measured at the self-sustained oscillator output plate resonators: PR1 (blue line) and PR2 (red line) for a total dry air flow of 300 mL·min<sup>−1</sup>. Two valves were complementary switching their relative aperture (the % of valve 1 is depicted in light blue) to test the impact of an overall flow transient spike on the resonator frequency.</p> "> Figure 8
<p>Relative frequency change for each one of the geometries due to variation in the operating pressure down to 10<sup>−3</sup> mbar. The open-loop response in vacuum and air was also measured for an input power of −30 dBm so as to obtain the value of Q by curve fitting. PR1 showed a Q of 190 in air and 910 in vacuum, while PR2 reached a Q of 170 in air and 750 in vacuum.</p> "> Figure 9
<p>Electromechanical system transmission coefficient measured in open-loop configuration under vacuum pressure (<10<sup>−3</sup> mbar) and 2 dBm input power. The amplifier gain has been reduced by increasing the capacitance at the sensing node to visualize the non-linear behavior previous to amplifier saturation: (<b>a</b>) PR1 has a biasing voltage that changes from 15 V to 30 V; (<b>b</b>) PR2 has also a sweep in the polarization from 15 V to 30 V.</p> "> Figure 10
<p>Magnitude plot of the system transmission coefficient in ambient pressure and overpressure (2 atm) operation with a DC biasing voltage of 30 V for each resonator: (<b>a</b>) PR1; (<b>b</b>) PR2. When increasing the operating pressure, the quality factor decreases and, as a consequence, so does the resonance frequency.</p> "> Figure 11
<p>Time evolution of the temperature during the gas flow experiment measured into the sealed chamber (red line). The gas flow is also depicted in light blue.</p> "> Figure 12
<p>Resonant frequency dependence versus operation temperature calibrated into a climate chamber where the RH has been kept at 40 ± 1% for the whole curve. The DC bias voltage is 30 V for both resonators: (<b>a</b>) PR1; (<b>b</b>) PR2. Both plots preserve the same vertical scale in order to obtain a fairer visual comparison.</p> ">
Abstract
:1. Introduction and Motivation
2. Design and Fabrication
3. Theoretical Analysis
3.1. -Factor: Energy Losses
3.2. Drag Force
3.3. Non-Linearities: Mechanical Spring-Hardening vs. Electrical Spring-Softening
4. Experimental Setup and Results
4.1. Impact of Gas Flow
4.2. Impact of Operating Pressure
4.3. Temperature Sensitivity
4.4. Gas Flow-Induced Stationary Deflection
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vidal-Álvarez, G.; Agustí, J.; Torres, F.; Abadal, G.; Barniol, N.; Llobet, J.; Sansa, M.; Fernández-Regúlez, M.; Perez-Murano, F.; Paulo, A.S.; et al. Top-down silicon microcantilever with coupled bottom-up silicon nanowire for enhanced mass resolution. Nanotechnology 2015, 26, 145502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301–304. [Google Scholar] [PubMed]
- Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012, 7, 602–608. [Google Scholar] [PubMed]
- Verd, J.; Uranga, A.; Abadal, G.; Teva, J.L.; Torres, F.; López, J.; Perez-Murano, F.; Esteve, J.; Barniol, N. Monolithic CMOS MEMS oscillator circuit for sensing in the attogram range. IEEE Electron. Device Lett. 2008, 29, 146–148. [Google Scholar] [CrossRef]
- Ivaldi, P.; Abergel, J.; Matheny, M.H.; Villanueva, L.G.; Karabalin, R.B.; Roukes, M.L.; Andreucci, P.; Hentz, S.; Defaÿ, E. 50 nm thick AlN film-based piezoelectric cantilevers for gravimetric detection. J. Micromech. Microeng. 2011, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Perelló-Roig, R.; Verd, J.; Barceló, J.; Bota, S.; Segura, J. A 0.35-μm CMOS-MEMS oscillator for high-resolution distributed mass detection. Micromachines 2018, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Dennis, J.O.; Ahmed, A.Y.; Khir, M.H. Fabrication and characterization of a CMOS-MEMS humidity sensor. Sensors 2015, 15, 16674–16687. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.Y.; Chu, C.C.; Li, M.H.; Liu, C.Y.; Li, S.S. CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications. In Proceedings of the Transducers 2017-19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 18–22 June 2017; pp. 452–455. [Google Scholar]
- Kosaka, P.M.; Pini, V.; Ruz, J.J.; Da Silva, R.A.; González, M.U.; Ramos, D.; Calleja, M.; Tamayo, J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014, 9, 1047–1053. [Google Scholar]
- Bargatin, I.; Myers, E.B.; Aldridge, J.S.; Marcoux, C.; Brianceau, P.; Duraffourg, L.; Colinet, E.; Hentz, S.; Andreucci, P.; Roukes, M.L. Large-scale integration of nanoelectromechanical systems for gas sensing applications. Nano Lett. 2012, 12, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y.; Ozturk, Z.Z.; Urey, H.; Kilinc, N. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B Chem. 2014, 202, 357–364. [Google Scholar] [CrossRef]
- Possas-Abreu, M.; Ghassemi, F.; Rousseau, L.; Scorsone, E.; Descours, E.; Lissorgues, G. Development of diamond and silicon MEMS sensor arrays with integrated readout for vapor detection. Sensors 2017, 17, 1163. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Qu, H.; Chang, Y.; Pang, W.; Zhang, Q.; Liu, J.; Duan, X. Miniaturized polymer coated film bulk acoustic wave resonator sensor array for quantitative gas chromatographic analysis. Sens. Actuators B Chem. 2018, 274, 419–426. [Google Scholar] [CrossRef]
- Park, S.; Yoon, I.; Lee, S.; Kim, H.; Seo, J.W.; Chung, Y.; Unger, A.; Kupnik, M.; Lee, H.J. CMUT-based resonant gas sensor array for VOC detection with low operating voltage. Sens. Actuators B Chem. 2018, 273, 1556–1563. [Google Scholar] [CrossRef]
- Schlicke, H.; Behrens, M.; Schröter, C.J.; Dahl, G.T.; Hartmann, H.; Vossmeyer, T. Cross-linked gold-nanoparticle membrane resonators as microelectromechanical vapor sensors. ACS Sens. 2017, 2, 540–546. [Google Scholar] [CrossRef]
- Truax, S.B.; Demirci, K.S.; Beardslee, L.A.; Luzinova, Y.; Hierlemann, A.; Mizaikoff, B.; Brand, O. Mass-sensitive detection of gas-phase volatile organics using disk microresonators. Anal. Chem. 2011, 83, 3305–3311. [Google Scholar] [CrossRef]
- Park, K.K.; Lee, H.J.; Yaralioglu, G.G.; Ergun, A.S.; Oralkan, Ö.; Kupnik, M.; Quate, C.F.; Khuri-Yakub, B.T.; Braun, T.; Ramseyer, J.-P.; et al. Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl. Phys. Lett. 2007, 91, 094102. [Google Scholar] [CrossRef]
- Dorsey, K.L.; Bedair, S.S.; Fedder, G.K. Gas chemical sensitivity of a CMOS MEMS cantilever functionalized via evaporation driven assembly. J. Micromech. Microeng. 2014, 24, 075001. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Paprotny, I.; Wright, P.K.; White, R.M. In-plane capacitive MEMS flow sensor for low-cost metering of flow velocity in natural gas pipelines. In Proceedings of the MEMS 2014-27th IEEE International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, 26 January 2014; pp. 971–974. [Google Scholar]
- Ramezany, A.; Mahdavi, M.; Moses, A.; Pourkamali, S. Sail-shaped piezoelectric micro-resonators for high resolution gas flowmetry. In Proceedings of the Transducers 2015-18th International Conference on Solid-State Sensors, Actuators and Microsystems, Anchorage, AK, USA, 21–25 June 2015; pp. 2252–2255. [Google Scholar]
- Zöllner, J.P.; Durstewitz, S.; Stauffenberg, J.; Ivanov, T.; Holz, M.; Ehrhardt, W.; Riegel, W.-U.; Rangelow, I.W. Gas-flow sensor based on self-oscillating and self-sensing cantilever. In Proceedings of the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018; p. 846. [Google Scholar]
- Perelló-Roig, R.; Verd, J.; Bota, S.; Segura, J. Thermomechanical noise characterization in fully monolithic CMOS-MEMS resonators. Sensors 2018, 18, 3124. [Google Scholar] [CrossRef]
- Stauffenberg, J.; Durstewitz, S.; Hofmann, M.; Ivanov, T.; Holz, M.; Ehrhardt, W.; Riegel, W.-U.; Zoellner, J.-P.; Manske, E.; Rangelow, I. Determination of the mixing ratio of a flowing gas mixture with self-actuated microcantilevers. J. Sens. Sens. Syst. 2020, 9, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.H.; Bridges, G.E.; Thomson, D.J. Direct evidence of “spring softening” nonlinearity in micromachined mechanical resonator using optical beam deflection technique. J. Vac. Sci. Technol. A Vac. Surf. Film. 2006, 24, 732–736. [Google Scholar] [CrossRef]
- Uranga, A.; Verd, J.; Marigó, E.; Giner, J.; Muñóz-Gamarra, J.L.; Barniol, N. Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories. Sens. Actuators A Phys. 2013, 197, 88–95. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, P.; Yu, H.; Zuo, G.; Cheng, Z.; Lee, D.W.; Li, X. Hyper-branched sensing polymer directly constructed on a resonant micro-cantilever for the detection of trace chemical vapor. J. Mater. Chem. 2012, 22, 18004. [Google Scholar] [CrossRef]
- Pettine, J.; Patrascu, M.; Karabacak, D.M.; Vandecasteele, M.; Petrescu, V.; Brongersma, S.H.; Crego-Calama, M.; Van Hoof, C. Volatile detection system using piezoelectric micromechanical resonators interfaced by an oscillator readout. Sens. Actuators A Phys. 2013, 189, 496–503. [Google Scholar] [CrossRef]
- Dam, V.A.T.; Wouters, D.; Knoben, W.; Brongersma, S.H.; Van Schaijk, R. Polymer coated MEMS resonator for room temperature NH3 sensing. In Proceedings of the IEEE Sensors 2014, Valencia, Spain, 2–5 November 2014; pp. 194–197. [Google Scholar]
- Possas-Abreu, M.; Ghassemi, F.; Rousseau, L.; Lissorgues, G.; Habchi, M.; Scorsone, E. Detecting volatile organic compounds using a resonant microcantilever-based system. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016; pp. 1–5. [Google Scholar]
- Rabih, A.A.S.; Dennis, J.O.; Ahmed, A.Y.; Md Khir, M.H.; Ahmed, M.G.A.; Idris, A.; Mian, M.U. MEMS-based acetone vapor sensor for non-invasive screening of diabetes. IEEE Sens. J. 2018, 18, 9486–9500. [Google Scholar] [CrossRef]
- Muñoz-Contreras, F.; Verd, J.; Segura, J.; Uranga, A.; Riverola, M.; Barniol, N. Towards a fully-integrated CMOS microcalorimeter with on-chip quasi-digital output signal. In Proceedings of the IEEE Sensors 2013, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar]
- Li, M.H.; Chen, C.Y.; Li, C.S.; Chin, C.H.; Li, S.S. A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator. J. Microelectromechanical Syst. 2015, 24, 360–372. [Google Scholar] [CrossRef]
Resonator | Parameter | Symbol | Value |
---|---|---|---|
PR1 | Beam length | 10 μm | |
Beam width | 0.8 μm | ||
Thickness | 0.85 μm | ||
Platform length | 41 μm | ||
Platform width | 10.2 μm | ||
Driver–resonator gap | 0.6 μm | ||
Mass density 1 | 3000 kg·m−3 | ||
Mass sensitivity per unit area | 210 pg·Hz−1 cm−2 | ||
PR2 | Beam length | 4.6 μm | |
Truss length | 2.4 μm | ||
Beam width | 0.8 μm | ||
Thickness | 0.85 μm | ||
Platform length | 41 μm | ||
Platform width | 10.2 μm | ||
Driver–resonator gap | 0.6 μm | ||
Mass density 1 | 3000 kg·m−3 | ||
Mass sensitivity per unit area | 270 pg·Hz−1 cm−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perello-Roig, R.; Verd, J.; Bota, S.; Segura, J. Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing. Sensors 2020, 20, 4663. https://doi.org/10.3390/s20174663
Perello-Roig R, Verd J, Bota S, Segura J. Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing. Sensors. 2020; 20(17):4663. https://doi.org/10.3390/s20174663
Chicago/Turabian StylePerello-Roig, Rafel, Jaume Verd, Sebastià Bota, and Jaume Segura. 2020. "Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing" Sensors 20, no. 17: 4663. https://doi.org/10.3390/s20174663
APA StylePerello-Roig, R., Verd, J., Bota, S., & Segura, J. (2020). Impact of Fluid Flow on CMOS-MEMS Resonators Oriented to Gas Sensing. Sensors, 20(17), 4663. https://doi.org/10.3390/s20174663