Tuning of Classifiers to Speed-Up Detection of Pedestrians in Infrared Images
<p>General pedestrian detection scheme.</p> "> Figure 2
<p>Processing scheme for tuning pedestrian classification with proposed performance index.</p> "> Figure 3
<p>Test bed for comparison of tested classifiers.</p> "> Figure 4
<p>CVC-09 dataset of pedestrians: (<b>a</b>) day-time positive samples, (<b>b</b>) night-time positive samples, (<b>c</b>) day-time negative samples, (<b>d</b>) night-time negative samples.</p> "> Figure 5
<p>Distribution of pedestrian heights (in pixels) in CVC-09 dataset.</p> "> Figure 6
<p>NTPD dataset pedestrian (positive) samples.</p> "> Figure 7
<p>Two illustrative images from OSU dataset.</p> "> Figure 8
<p>Three positive samples in various resolutions: 64 × 128, 56 × 112, 48 × 96, 40 × 80, 32 × 64, 24 × 48, 16 × 32; original images are in the CVC-09 dataset.</p> "> Figure 9
<p>Detection rate and processing time as functions of image resolutions: HOG + SVM classifier (left column), ACF detector (middle column), CNN (right column) for the following datasets: LSIFIR (first row: <b>a</b>–<b>c</b>), OSU (second row: <b>d</b>–<b>f</b>).</p> "> Figure 10
<p>Detection rate and processing time as functions of image resolutions: HOG+SVM classifier (left column), ACF detector (middle column), CNN (right column) for the following datasets: NTPD (first row: <b>a</b>–<b>c</b>), CVC-09 night-time (second row: <b>d</b>–<b>f</b>), CVC-09 day-time (third row: <b>g</b>–<b>i</b>).</p> "> Figure 11
<p>Performance indices as functions of image resolutions (values on <span class="html-italic">x</span>-axis refer to particular test sets in <a href="#sensors-20-04363-t004" class="html-table">Table 4</a>): for (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mi>w</mi> </semantics></math> = 0.92, for (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mi>w</mi> </semantics></math> = 0.95, for (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mi>w</mi> </semantics></math> = 0.98, with <math display="inline"><semantics> <mi>w</mi> </semantics></math> being the weight of accuracy for various datasets and classifiers indicated with different colors as explained in the legend.</p> ">
Abstract
:1. Introduction
2. IR Systems for Detection of Pedestrians
2.1. General Pedestrian Detection Procedure
2.2. Object Classification
2.2.1. Features Extraction
2.2.2. Validation (Classifiers)
3. Tuning Object Classification with Performance Index
4. Experiments
4.1. Night Vision Pedestrian Datasets
4.1.1. CVC-09 Thermal Pedestrian Dataset
4.1.2. NTPD
4.1.3. LSI FIR Pedestrian Dataset
4.1.4. OSU Thermal Pedestrian Dataset
4.2. Classifier Training
4.3. Resolution of the Classifier
4.4. HOG+SVM and ACF Detectors Configuration
4.5. AlexNet/CaffeNet CNN Configuration
4.6. Classification Accuracy and Calculation Time
4.7. Discussion on Results
5. Performance Index Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pace, J.F.; Tormo, M.T.; Sanmartin, J.; Thomas, P.; Kirk, A.; Brown, L.; Yannis, G.; Evgenikos, P.; Papantoniou, P.; Broughton, J.; et al. Basic Fact Sheet Pedestrians. DaCoTA EU Road Safety Project, 2012. Available online: http://www.dacota-project.eu/BFS%202011.html (accessed on 4 August 2020).
- Shopovska, I.; Jovanov, L.; Philips, W. Deep Visible and Thermal Image Fusion for Enhanced Pedestrian Visibility. Sensors 2019, 19, 3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Hong, H.G.; Park, K.R. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors. Sensors 2017, 17, 1065. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, F.; Wei, L.; Yang, T.; Lu, Z. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model. Sensors 2017, 17, 2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teutsch, M.; Mueller, T.; Huber, M.; Beyerer, J. Low Resolution Person Detection with a Moving Thermal Infrared Camera by Hot Spot Classification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 209–216. [Google Scholar]
- Kim, T.; Kim, S. Pedestrian detection at night time in FIR domain: Comprehensive study about temperature and brightness and new benchmark. Pattern Recognit. 2018, 79, 44–54. [Google Scholar] [CrossRef]
- Nanda, H.; Davis, L. Probabilistic template based pedestrian detection in infrared videos. In Proceedings of the Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002. [Google Scholar]
- Makantasis, K.; Nikitakis, A.; Doulamis, A.D.; Doulamis, N.D.; Papaefstathiou, I. Data-Driven Background Subtraction Algorithm for In-Camera Acceleration in Thermal Imagery. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2090–2104. [Google Scholar] [CrossRef] [Green Version]
- Bertozzi, M.; Broggi, A.; Del Rose, M.; Felisa, M.; Rakotomamonjy, A.; Suard, F. A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier. In Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Seattle, WA, USA, 30 September–3 October 2007; pp. 143–148. [Google Scholar]
- Liu, Q.; Zhuang, J.; Kong, S. Detection of pedestrians at night time using learning-based method and head validation. In Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, Manchester, UK, 16–17 July 2012; pp. 398–402. [Google Scholar]
- Angelova, A.; Krizhevsky, A.; Vanhoucke, V.; Ogale, A.; Ferguson, D. Real-Time Pedestrian Detection with Deep Network Cascades. In Proceedings of the BMVC, Swansea, UK, 7–10 September 2015. [Google Scholar]
- John, V.; Mita, S.; Liu, Z.; Qi, B. Pedestrian detection in thermal images using adaptive fuzzy C-means clustering and convolutional neural networks. In Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; pp. 246–249. [Google Scholar]
- Hou, Y.-L.; Song, Y.; Hao, X.; Shen, Y.; Qian, M.; Chen, H. Multispectral pedestrian detection based on deep convolutional neural networks. Infrared Phys. Technol. 2018, 94, 69–77. [Google Scholar] [CrossRef]
- Park, K.; Kim, S.; Sohn, K. Unified multi-spectral pedestrian detection based on probabilistic fusion networks. Pattern Recognit. 2018, 80, 143–155. [Google Scholar] [CrossRef]
- Kim, S.-S.; Gwak, I.-Y.; Lee, S.-W. Coarse-to-Fine Deep Learning of Continuous Pedestrian Orientation Based on Spatial Co-Occurrence Feature. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2522–2533. [Google Scholar] [CrossRef]
- Bilal, M.; Hanif, M.S. High Performance Real-Time Pedestrian Detection Using Light Weight Features and Fast Cascaded Kernel SVM Classification. J. Signal Process. Syst. 2019, 91, 117–129. [Google Scholar] [CrossRef]
- Padierna, L.C.; Carpio, M.; Rojas-Domínguez, A.; Puga, H.; Fraire, H. A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: The Gegenbauer family. Pattern Recognit. 2018, 84, 211–225. [Google Scholar] [CrossRef]
- Dhamecha, T.I.; Noore, A.; Singh, R.; Vatsa, M. Between-subclass piece-wise linear solutions in large scale kernel SVM learning. Pattern Recognit. 2019, 95, 173–190. [Google Scholar] [CrossRef]
- Bilal, M.; Hanif, M.S. Benchmark Revision for HOG-SVM Pedestrian Detector Through Reinvigorated Training and Evaluation Methodologies. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1277–1287. [Google Scholar] [CrossRef]
- Luo, J.H.; Lin, C.H. Pure FPGA Implementation of an HOG Based Real-Time Pedestrian Detection System. Sensors 2018, 18, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Liu, W.; Cheng, S.; Tian, H.; Yuan, H.; Zhao, H. Real-time Pedestrian Detection using Convolutional Neural Network on Embedded Platform. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2016, 10, 35–40. [Google Scholar] [CrossRef]
- Wang, J.; Yan, K.; Guo, K.; Yu, J.; Sui, L.; Yao, S.; Han, S.; Wang, Y. Real-time pedestrian detection and tracking on customized hardware. In Proceedings of the 2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia), Pittsburgh, PA, USA, 6–7 October 2016; p. 1. [Google Scholar]
- Socarrás, Y.; Ramos, S.; Vázquez, D.; Lopez, A.M.; Gevers, T. Adapting Pedestrian Detection from Synthetic to Far Infrared Images. In Proceedings of the Conference: ICCV—Workshop on Visual Domain Adaptation and Dataset Bias, Sydney, Australia, 7 December 2013. [Google Scholar]
- Zhang, Y.; Zhao, Y.; Li, G. Grey self-similarity feature for night-time pedestrian detection. J. Comput. Inf. Syst. 2014, 10, 2967–2974. [Google Scholar]
- Olmeda, D.; Premebida, C.; Nunes, U.; Armingol, J.M.; Escalera, A. De la Pedestrian detection in far infrared images. Integr. Comput. Aided Eng. 2013, 20, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.W.; Keck, M.A. A Two-Stage Template Approach to Person Detection in Thermal Imagery. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)-Volume 1, Breckenridge, CO, USA, 5–7 January 2005; pp. 364–369. [Google Scholar]
- Hurney, P.; Waldron, P.; Morgan, F.; Jones, E.; Glavin, M. Night-time pedestrian classification with histograms of oriented gradients-local binary patterns vectors. IET Intell. Transp. Syst. 2015, 9, 75–85. [Google Scholar] [CrossRef]
- Pawłowski, P.; Dąbrowski, A.; Balcerek, J.; Konieczka, A.; Piniarski, K. Visualization techniques to support CCTV operators of smart city services. Multimed. Tools Appl. 2020. [Google Scholar] [CrossRef]
- Pawłowski, P.; Piniarski, K.; Dąbrowski, A. Pedestrian detection in low resolution night vision images. In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2015; pp. 185–190. [Google Scholar]
- Zhang, S.; Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. Towards Reaching Human Performance in Pedestrian Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 973–986. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2016, arXiv:1506.01497 [cs]. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767 [cs]. [Google Scholar]
- Piniarski, K.; Pawłowski, P.; Dąbrowski, A. Pedestrian detection by video processing in automotive night vision system. In Proceedings of the 2014 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 22–24 September 2014; pp. 104–109. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Cao, Y.; Pranata, S.; Nishimura, H. Local Binary Pattern features for pedestrian detection at night/dark environment. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 2053–2056. [Google Scholar]
- Zhang, S.; Bauckhage, C.; Cremers, A.B. Efficient Pedestrian Detection via Rectangular Features Based on a Statistical Shape Model. IEEE Trans. Intell. Transp. Syst. 2014, 1–13. [Google Scholar] [CrossRef]
- Wei, Y.; Tian, Q.; Guo, T. An Improved Pedestrian Detection Algorithm Integrating Haar-Like Features and HOG Descriptors. Adv. Mech. Eng. 2013, 5, 546206. [Google Scholar] [CrossRef]
- Yu, T.; Mo, B.; Liu, F.; Qi, H.; Liu, Y. Robust thermal infrared object tracking with continuous correlation filters and adaptive feature fusion. Infrared Phys. Technol. 2019, 98, 69–81. [Google Scholar] [CrossRef]
- Dollar, P.; Tu, Z.; Perona, P. Integral Channel Features. In Proceedings of the British Machine Vision Conference, London, UK, 7–10 September 2009. [Google Scholar]
- Dollar, P.; Appel, R.; Belongie, S.; Perona, P. Fast Feature Pyramids for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1532–1545. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Benenson, R.; Schiele, B. Filtered channel features for pedestrian detection. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1751–1760. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv 2014, arXiv:1408.5093 [cs]. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556 [cs]. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385 [cs]. [Google Scholar]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory. In Information Science and Statistics, 2nd ed.; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98780-4. [Google Scholar]
- Guo, L.; Ge, P.-S.; Zhang, M.-H.; Li, L.-H.; Zhao, Y.-B. Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Syst. Appl. 2012, 39, 4274–4286. [Google Scholar] [CrossRef]
- Wang, Z.; Yoon, S.; Xie, S.J.; Lu, Y.; Park, D.S. A High Accuracy Pedestrian Detection System Combining a Cascade AdaBoost Detector and Random Vector Functional-Link Net. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.-K.; Hong, K.-S. Design of coupled strong classifiers in AdaBoost framework and its application to pedestrian detection. Pattern Recognit. Lett. 2015, 68, 63–69. [Google Scholar] [CrossRef]
- Piniarski, K.; Pawłowski, P. Multi-branch classifiers for pedestrian detection from infrared night and day images. In Proceedings of the 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 21–23 September 2016; pp. 248–253. [Google Scholar]
- Jeon, S.P.; Lee, Y.S.; Choi, K.N. Movement direction-based approaches for pedestrian detection in road scenes. In Proceedings of the 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Mokpo, Korea, 28–30 January 2015; pp. 1–4. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning. In Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Piniarski, K.; Pawłowski, P. Infrared pedestrian datasets, Project of pedestrian detection in infrared images, Poznan University of Technology. Available online: http://dsp.org.pl/IR_pedestrian_detection/185/ (accessed on 4 August 2020).
- Open Source Computer Vision–OpenCV. Available online: http://opencv.org (accessed on 4 August 2020).
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
No. of Training Samples | No. of Test Samples | |||
---|---|---|---|---|
Dataset | Positive Samples | Negative Samples | Positive Samples | Negative Samples |
CVC-09 FIR Day-time | 11,839 | 25,410 | 6711 | 75,398 |
CVC-09 FIR Night-time | 6998 | 30,030 | 7862 | 72,985 |
Extended NTPD | 1998 | 8730 | 2370 | 12,600 (*) |
LSI FIR | 10,208 | 43,390 | 5944 | 22,050 |
OSU | 1004 | 1932 | 964 | 1932 |
Number of Features | Number of Parameters | ||
---|---|---|---|
Frame Size [px] | HOG | ACF | CNN |
64 × 128 | 3780 | 4096 | 38,686,369 |
56 × 120 | 3024 | 3360 | 32,657,057 |
56 × 112 | 2808 | 3136 | 30,822,049 |
56 × 104 | 2592 | 2912 | 28,987,041 |
48 × 96 | 1980 | 2304 | 24,006,305 |
40 × 88 | 1440 | 1760 | 19,549,857 |
40 × 80 | 1296 | 1600 | 18,239,137 |
40 × 72 | 1152 | 1440 | 16,928,417 |
32 × 64 | 756 | 1024 | 13,520,545 |
24 × 56 | 432 | 672 | 10,636961 |
24 × 48 | 360 | 576 | 9,850,529 |
24 × 40 | 288 | 480 | 9,064,097 |
16 × 32 | 108 | 256 | 7,229,089 |
No. | Layer Type | Elements | Activation Function | Remarks |
---|---|---|---|---|
1 | convolutional | 48, 7 × 7 filters | ReLU | maximum pooling, filter size 2 × 2, local response normalisation |
2 | convolutional | 128, 5 × 5 filters | ReLU | maximum pooling, filter size 2 × 2, local response normalisation |
3 | convolutional | 192, 3 × 3 filters | ReLU | - |
4 | convolutional | 192, 3 × 3 filters | ReLU | - |
5 | convolutional | 128, 3 × 3 filters | ReLU | maximum pooling, filter size 2 × 2 |
6 | fully connected | 2048 neurons | ReLU | dropout ratio of 0.5 |
7 | fully connected | 2048 neurons | ReLU | dropout ratio of 0.5 |
8 | output | 1 neuron | sigmoid | pedestrian detection score |
Dataset | Set | Frame Size [px] | Classification Accuracy (*) [%] | Calculation Time (**) [ms] | ||||
---|---|---|---|---|---|---|---|---|
HOG+SVM | ACF | CNN | HOG+SVM | ACF | CNN | |||
CVC-09 day-time subset | 1 | 64 × 128 | 92.9 | 98.12 | 99.56 | 0.74 | 1.17 | 24.41 |
2 | 56 × 120 | 93.4 | 97.24 | 99.20 | 0.59 | 0.99 | 20.79 | |
3 | 56 × 112 | 93.5 | 96.83 | 99.38 | 0.57 | 0.93 | 19.70 | |
4 | 56 × 104 | 93.7 | 96.72 | 99.32 | 0.52 | 0.85 | 18.48 | |
5 | 48 × 96 | 93.6 | 96.88 | 99.12 | 0.49 | 0.79 | 15.53 | |
6 | 40 × 88 | 94.2 | 96.55 | 99.24 | 0.34 | 0.59 | 13.05 | |
7 | 40 × 80 | 94.0 | 96.43 | 99.21 | 0.30 | 0.51 | 12.32 | |
8 | 40 × 72 | 93.8 | 96.18 | 99.34 | 0.27 | 0.45 | 11.35 | |
9 | 32 × 64 | 93.8 | 95.83 | 98.83 | 0.21 | 0.40 | 9.25 | |
10 | 24 × 56 | 93.1 | 94.34 | 98.92 | 0.15 | 0.32 | 7.71 | |
11 | 24 × 48 | 92.9 | 94.48 | 98.75 | 0.13 | 0.28 | 7.39 | |
12 | 24 × 40 | 92.3 | 93.89 | 98.93 | 0.11 | 0.26 | 6.83 | |
13 | 16 × 32 | 90.7 | 91.83 | 98.34 | 0.08 | 0.23 | 5.23 | |
CVC-09 night-time subset | 1 | 64 × 128 | 96.6 | 98.53 | 98.28 | 0.73 | 1.15 | 24.60 |
2 | 56 × 120 | 95.5 | 97.77 | 98.71 | 0.59 | 0.95 | 20.62 | |
3 | 56 × 112 | 95.3 | 97.75 | 98.07 | 0.56 | 0.93 | 19.63 | |
4 | 56 × 104 | 95.5 | 97.50 | 98.61 | 0.55 | 0.84 | 18.54 | |
5 | 48 × 96 | 94.8 | 97.14 | 98.43 | 0.40 | 0.79 | 15.54 | |
6 | 40 × 88 | 94.7 | 96.67 | 98.31 | 0.36 | 0.59 | 12.97 | |
7 | 40 × 80 | 94.4 | 96.72 | 98.26 | 0.29 | 0.52 | 12.26 | |
8 | 40 × 72 | 94.2 | 96.48 | 98.59 | 0.27 | 0.45 | 11.25 | |
9 | 32 × 64 | 93.3 | 96.34 | 98.14 | 0.21 | 0.39 | 9.34 | |
10 | 24 × 56 | 93.2 | 95.38 | 98.42 | 0.14 | 0.30 | 7.72 | |
11 | 24 × 48 | 92.5 | 94.64 | 98.15 | 0.13 | 0.29 | 7.42 | |
12 | 24 × 40 | 92.2 | 93.82 | 98.48 | 0.11 | 0.25 | 6.88 | |
13 | 16 × 32 | 89.4 | 91.67 | 97.85 | 0.08 | 0.23 | 5.46 | |
NTPD | 1 | 64 × 128 | 98.94 | 98.69 | 99.23 | 0.76 | 1.14 | 27.37 |
2 | 56 × 120 | 98.78 | 98.70 | 99.16 | 0.60 | 0.98 | 20.53 | |
3 | 56 × 112 | 98.61 | 98.71 | 99.14 | 0.55 | 0.89 | 19.70 | |
4 | 56 × 104 | 98.56 | 98.74 | 98.98 | 0.55 | 0.84 | 18.46 | |
5 | 48 × 96 | 98.57 | 98.85 | 98.99 | 0.43 | 0.79 | 15.55 | |
6 | 40 × 88 | 98.74 | 99.03 | 98.99 | 0.34 | 0.61 | 12.99 | |
7 | 40 × 80 | 98.91 | 99.03 | 98.96 | 0.31 | 0.52 | 12.29 | |
8 | 40 × 72 | 98.78 | 98.98 | 99.26 | 0.28 | 0.44 | 11.32 | |
9 | 32 × 64 | 98.34 | 98.61 | 98.92 | 0.22 | 0.39 | 9.58 | |
10 | 24 × 56 | 97.77 | 98.02 | 98.61 | 0.16 | 0.32 | 7.70 | |
11 | 24 × 48 | 97.65 | 97.43 | 98.81 | 0.18 | 0.29 | 7.50 | |
12 | 24 × 40 | 97.25 | 97.21 | 98.94 | 0.14 | 0.23 | 6.93 | |
13 | 16 × 32 | 95.02 | 94.26 | 98.48 | 0.09 | 0.21 | 5.50 | |
LSI FIR | 9 | 32 × 64 | 98.74 | 99.33 | 99.47 | 0.22 | 0.37 | 9.50 |
10 | 24 × 56 | 99.01 | 98.96 | 99.33 | 0.19 | 0.35 | 7.75 | |
11 | 24 × 48 | 98.72 | 98.82 | 99.33 | 0.17 | 0.29 | 7.44 | |
12 | 24 × 40 | 98.31 | 98.64 | 99.45 | 0.13 | 0.27 | 6.87 | |
13 | 16 × 32 | 96.58 | 97.04 | 99.41 | 0.10 | 0.23 | 5.48 | |
OSU | 9 | 32 × 64 | 99.79 | 99.87 | 99.77 | 0.22 | 0.40 | 9.24 |
10 | 24 × 56 | 99.58 | 99.90 | 99.93 | 0.19 | 0.32 | 7.69 | |
11 | 24 × 48 | 99.65 | 99.31 | 99.96 | 0.18 | 0.31 | 7.45 | |
12 | 24 × 40 | 99.27 | 98.83 | 99.89 | 0.13 | 0.25 | 6.86 | |
13 | 16 × 32 | 95.03 | 97.81 | 98.87 | 0.09 | 0.24 | 5.53 |
Dataset | Type of Classifier | Best Performance Resolution | Difference in Accuracy (*) [%] | Processing Time Reduction (*) [%] |
---|---|---|---|---|
LSIFIR | SVM | 24 × 56 | 0.27 | −13.64 |
ACF | 24 × 40 | −0.69 | −65.56 | |
CNN | 16 × 32 | −0.06 | −42.31 | |
OSU | SVM | 24 × 48 | −0.14 | −18.18 |
ACF | 24 × 56 | 0.03 | −13.64 | |
CNN | 24 × 40 | 0.12 | −25.76 | |
NTPD | SVM | 40 × 72 | −0.16 | −63.16 |
ACF | 40 × 72 | 0.29 | −61.41 | |
CNN | 40 × 72 | 0.03 | −58.64 | |
CVC-09 Day-time | SVM | 32 × 64 | 0.97 | −71.62 |
ACF | 48 × 96 | −1.06 | −33.33 | |
CNN | 24 × 40 | −0.63 | −72.02 | |
CVC-09 Night-time | SVM | 40 × 80 | −2.28 | −60.27 |
ACF | 32 × 64 | −2.22 | −66.09 | |
CNN | 24 × 40 | 0.21 | −73.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piniarski, K.; Pawłowski, P.; Dąbrowski, A. Tuning of Classifiers to Speed-Up Detection of Pedestrians in Infrared Images. Sensors 2020, 20, 4363. https://doi.org/10.3390/s20164363
Piniarski K, Pawłowski P, Dąbrowski A. Tuning of Classifiers to Speed-Up Detection of Pedestrians in Infrared Images. Sensors. 2020; 20(16):4363. https://doi.org/10.3390/s20164363
Chicago/Turabian StylePiniarski, Karol, Paweł Pawłowski, and Adam Dąbrowski. 2020. "Tuning of Classifiers to Speed-Up Detection of Pedestrians in Infrared Images" Sensors 20, no. 16: 4363. https://doi.org/10.3390/s20164363
APA StylePiniarski, K., Pawłowski, P., & Dąbrowski, A. (2020). Tuning of Classifiers to Speed-Up Detection of Pedestrians in Infrared Images. Sensors, 20(16), 4363. https://doi.org/10.3390/s20164363