A Priori-Based Subarray Selection Algorithm for DOA Estimation
<p>The singular values of different weighted sensing matrices.</p> "> Figure 2
<p>The number of smaller singular values of the sensing matrix with different weight widths versus array sensor numbers.</p> "> Figure 3
<p>Direction-of-arrival (DOA) estimation error in the optimal subpattern alignment (OSPA) distance via different arrays based on different weights and uniform linear arrays (ULAs) when <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>; the prior information of DOA is reliable and <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>DOA estimation error in the “optimal subpattern assignment” (OSPA) distance via different arrays based on different weights and uniform linear arrays when <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>; the prior information of DOA is reliable and <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Singular value spectrum of different weighted sensing matrices with weight widths given by (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Coherence curve of each subarray generated in Simulation 1 at direction <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>6</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Coherence curve of each subarray generated in Simulation 1 at direction <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>6</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>The DOA estimation error in terms of OSPA distance with the prior distribution given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> when the true distributions are given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>500</mn> <mo>,</mo> <msup> <mn>30</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1500</mn> <mo>,</mo> <msup> <mn>30</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>The DOA estimation error in terms of OSPA distance with the prior distribution given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> when the true distributions are given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>500</mn> <mo>,</mo> <msup> <mn>100</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1500</mn> <mo>,</mo> <msup> <mn>100</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Coherence curves in each subarray generated in Simulation 2 at direction <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>6</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Positions of elements in each subarray generated in Simulation 2.</p> "> Figure 12
<p>The DOA estimation error in terms of the OSPA distance via different subarrays when the prior distributions are given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>400</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>800</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and the true distributions are given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1200</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1600</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Coherence curves and positions of elements in each subarray generated in Simulation 3 at direction <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mo form="prefix">arcsin</mo> <mo>(</mo> <mn>0.2</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 14
<p>Positions of elements in each subarray generated in Simulation 3.</p> "> Figure 15
<p>The DOA estimation error in terms of OSPA distance via different subarrays based on an arbitrary array when the prior distribution and the true distribution are both given by <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mn>1500</mn> <mo>,</mo> <msup> <mn>50</mn> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 16
<p>Coherence curves in each subarray generated in Simulation 4 at direction <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>6</mn> </mrow> </semantics></math>.</p> "> Figure 17
<p>Positions of elements in each subarray generated in Simulation 4.</p> ">
Abstract
:1. Introduction
2. Compressed Sensing-Based Single Snapshot DOA Estimation
2.1. Mathematical Model
2.2. Coherence of Sensing Matrix
3. Low-Rank Approximation of Weighted Sensing Matrix
3.1. Weighted Sensing Matrix
3.2. Low-Rank Matrix Approximation
4. Proposed Algorithm
4.1. Subarray Selection Algorithm
Algorithm 1: Subarray element selection |
4.2. Design of Weight
Algorithm 2: Weight generating algorithm |
5. Numerical Simulation
5.1. Comparison of Runtime
5.2. Simulation 1
5.3. Simulation 2
5.4. Simulation 3
5.5. Simulation 4
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shieh, W.Y.; Hsu, C.C.J.; Chen, H.C.; Wang, T.H.; Chen, C.C. Construction of Infrared Signal-Direction Discriminator for Intervehicle Communication. IEEE Trans. Veh. Technol. 2015, 64, 2436–2447. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, Y.M. Noise Suppression for Direction of Arrival Estimation in Colocated MIMO Sonar. Sensors 2019, 19, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.M.; Xin, J.M.; Wang, J.; Zheng, N.N.; Sano, A. Subspace-based two-dimensional direction estimation and tracking of multiple targets. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1386–1402. [Google Scholar] [CrossRef]
- Eng, F.; Fredrik, G.; Fredrik, G. Frequency domain analysis of signals with stochastic sampling times. IEEE Trans. Signal Process. 2008, 56, 3089–3099. [Google Scholar] [CrossRef]
- Chen, K.; Yun, X.; He, Z.; Han, C. Synthesis of sparse planar arrays using modified real genetic algorithm. IEEE Trans. Antennas Propag. 2007, 55, 1067–1073. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Nie, Z. The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Trans. Antennas Propag. 2008, 56, 1919–1927. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Ouyang, J.; Nie, Z.; Zhou, H. Synthesis of Nonuniform Array Antennas Using Particle Swarm Optimization. Electromagnetics 2010, 30, 237–245. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse Sensing With Co-Pprime Samplers and Arrays. IEEE Trans. Signal Process. 2011, 59, 573–586. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.M.D.; Amin, M.G. Generalized Coprime Array Configurations for Direction-of-Arrival Estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, Z.; Liu, Q.H. Reducing the number of elements in a linear antenna array by the matrix pencil method. IEEE Trans. Antennas Propag. 2008, 56, 2955–2962. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.H.; Nie, Z. Reducing the Number of Elements in Multiple-Pattern Linear Arrays by the Extended Matrix Pencil Methods. IEEE Trans. Antennas Propag. 2014, 62, 652–660. [Google Scholar] [CrossRef]
- Elbir, A.M.; Mishra, K.V.; Eldar, Y.C. Cognitive radar antenna selection via deep learning. IET Radar Sonar Navig. 2019, 13, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Yang, P.; Yang, Y.; Zhou, L.; Gao, M. Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method. IEEE Trans. Antennas Propag. 2017, 65, 602–611. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acpist. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Dres, D.; Bimpas, M. Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals. Comput. Intell. Neurosci. 2017, 2017. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, C.W.; Yu, P.S. Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [Google Scholar] [CrossRef]
- Huang, H.J.; Yang, J.; Huang, H.; Song, Y.W.; Gui, G. Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System. IEEE Trans. Veh. Technol. 2018, 67, 8549–8560. [Google Scholar] [CrossRef]
- Carin, L. On the Relationship Between Compressive Sensing and Random Sensor Arrays. IEEE Antennas Propag. Mag. 2009, 51, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Lee, O.K.; Ye, J.C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing. IEEE Trans. Inf. Theory 2012, 58, 278–301. [Google Scholar] [CrossRef]
- Liu, J.; Mallick, M.; Lian, F.; Han, C.Z.; Sheng, M.X.; Yao, X.H. General similar sensing matrix pursuit: An efficient and rigorous reconstruction algorithm to cope with deterministic sensing matrix with high coherence. Signal Process. 2015, 114, 150–163. [Google Scholar] [CrossRef]
- Dogandzic, Z.; Nehorai, A. Cramer–Rao Bounds for Estimating Range, Velocity, and Direction with an Active Array. IEEE Trans. Signal Process. 2001, 49, 1122–1137. [Google Scholar] [CrossRef] [Green Version]
- Endra. Joint optimization of measurement matrix and sparse dictionary in compressive sensing. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 420–425. [Google Scholar]
- Li, J.; Lin, Q.H.; Kang, C.Y.; Wang, K.; Yang, X.T. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing. Sensors 2018, 18, 902. [Google Scholar] [CrossRef] [Green Version]
- Saucan, A.A.; Chonavel, T.; Sintes, C.; Caillec, J.M.L. CPHD-DOA Tracking of Multiple Extended Sonar Targets in Impulsive Environments. IEEE Trans. Signal Process. 2016, 64, 1147–1160. [Google Scholar] [CrossRef] [Green Version]
- Eckart, C.; Young, G. The Approximation of One Matrix by Another of Lower Rank. Psychometrika 1936, 1, 211–218. [Google Scholar] [CrossRef]
- Joachim, H.G.E. On compressive sensing applied to radar. IEEE Trans. Signal Process. 2010, 90, 1402–1414. [Google Scholar]
- Li, F.; Liu, H.; Vaccaro, R.J. Performance Analysis for DOA Estimation Algorithms: Unification, Simplification, and Observations. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1170–1184. [Google Scholar] [CrossRef]
- Zeng, L.H.; Liu, J.; Han, C.Z. A subspace searching approximation message passing algorithm for single snapshot DOA estimation. Acta Autom. Sin. 2018, 44, 443–452. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Hoang, H.G. An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter. IEEE Trans. Signal Process. 2017, 65, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 1996, 27, 2–23. [Google Scholar] [CrossRef]
- Golub, G.H.; Hoffman, A.; Stewart, G.W. A Generalization of the Eckart-Young-Mirsky Matrix Approximation Theorem. Linear Algebra Appl. 1987, 88–89, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, R. High Resolution Direction of Arrival (DOA) Estimation Based on Improved Orthogonal Matching Pursuit (OMP) Algorithm by Iterative Local Searching. Sensors 2013, 13, 11167–11183. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
Method | Effective Width | Number of Alternative Elements (M) | Runtime/s |
---|---|---|---|
Narrow Rectangular | 202 | 100 | 0.0054 |
Wide Rectangular | 404 | 100 | 0.0102 |
Gaussian | 742 | 100 | 0.0266 |
Mixed | 770 | 100 | 0.0316 |
FOCUSS | 202 | 100 | 0.0352 |
MPM | 202 | 100 | 0.0027 |
Method | Effective Width | Number of Alternative Elements (M) | Runtime/s |
---|---|---|---|
Narrow Rectangular | 202 | 500 | 0.0332 |
Wide Rectangular | 404 | 500 | 0.0661 |
Gaussian | 742 | 500 | 0.1329 |
Mixed | 770 | 500 | 0.1415 |
FOCUSS | 202 | 500 | 0.1779 |
MPM | 202 | 500 | 0.0568 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Zhang, G.; Han, C. A Priori-Based Subarray Selection Algorithm for DOA Estimation. Sensors 2020, 20, 4626. https://doi.org/10.3390/s20164626
Zeng L, Zhang G, Han C. A Priori-Based Subarray Selection Algorithm for DOA Estimation. Sensors. 2020; 20(16):4626. https://doi.org/10.3390/s20164626
Chicago/Turabian StyleZeng, Linghao, Guanghua Zhang, and Chongzhao Han. 2020. "A Priori-Based Subarray Selection Algorithm for DOA Estimation" Sensors 20, no. 16: 4626. https://doi.org/10.3390/s20164626
APA StyleZeng, L., Zhang, G., & Han, C. (2020). A Priori-Based Subarray Selection Algorithm for DOA Estimation. Sensors, 20(16), 4626. https://doi.org/10.3390/s20164626