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Received: 27 January 2025

Revised: 28 February 2025

Accepted: 4 March 2025

Published: 6 March 2025

Citation: Babadi Ataabadi, M.;

Pouliot, D.; Chen, D.; Oluwadare, T.S.

Landsat Time Series Reconstruction

Using a Closed-Form Continuous

Neural Network in the Canadian

Prairies Region. Sensors 2025, 25, 1622.

https://doi.org/10.3390/s25051622

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Landsat Time Series Reconstruction Using a Closed-Form
Continuous Neural Network in the Canadian Prairies Region †

Masoud Babadi Ataabadi 1 , Darren Pouliot 2, Dongmei Chen 1,* and Temitope Seun Oluwadare 1

1 Laboratory of Geographic Information and Spatial Analysis, Department of Geography and Planning,
Queen’s University, Kingston, ON K7L 3N6, Canada; 22mba1@queensu.ca (M.B.A.);
oluwadare.t@queensu.ca (T.S.O.)

2 Landscape Science and Technology Division, Environment and Climate Change Canada,
Ottawa, ON K1A0H3, Canada; darren.pouliot@ec.gc.ca

* Correspondence: chendm@queensu.ca
† This article is a revised and expanded version of a paper entitled Reconstructing Missing Data in Historical

Landsat Images Using Advanced Deep Learning Algorithms, which was presented at the Asia-Pacific Remote
Sensing Conference, Kaohsiung, Taiwan, 2–5 December 2024.

Abstract: The Landsat archive stands as one of the most critical datasets for studying
landscape change, offering over 50 years of imagery. This invaluable historical record
facilitates the monitoring of land cover and land use changes, helping to detect trends in
and the dynamics of the Earth’s system. However, the relatively low temporal frequency
and irregular clear-sky observations of Landsat data pose significant challenges for multi-
temporal analysis. To address these challenges, this research explores the application of a
closed-form continuous-depth neural network (CFC) integrated within a recurrent neural
network (RNN) called CFC-mmRNN for reconstructing historical Landsat time series in
the Canadian Prairies region from 1985 to present. The CFC method was evaluated against
the continuous change detection (CCD) method, widely used for Landsat time series recon-
struction and change detection. The findings indicate that the CFC method significantly
outperforms CCD across all spectral bands, achieving higher accuracy with improvements
ranging from 33% to 42% and providing more accurate dense time series reconstructions.
The CFC approach excels in handling the irregular and sparse time series characteristic of
Landsat data, offering improvements in capturing complex temporal patterns. This study
underscores the potential of leveraging advanced deep learning techniques like CFC to
enhance the quality of reconstructed satellite imagery, thus supporting a wide range of
remote sensing (RS) applications. Furthermore, this work opens up avenues for further
optimization and application of CFC in higher-density time series datasets such as MODIS
and Sentinel-2, paving the way for improved environmental monitoring and forecasting.

Keywords: remote sensing (RS); deep learning; Landsat time series reconstruction;
closed-form continuous neural network (CFC); Canadian Prairies

1. Introduction
For several reasons, the Landsat archive is widely regarded as one of the most crucial

data sources for studying landscape change. Firstly, the Landsat program has the longest
and highest spatial resolution collection of images spanning over 50 years, providing a
unique historical record of the Earth’s surface characteristics. This extensive dataset allows
for the development of time series algorithms that can monitor and analyze land cover and
land use changes over time, enabling the detection of trends and dynamics in the Earth’s
system [1,2]. Secondly, Landsat image calibration and processing to surface reflectance is
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well established, making it a reference point for other satellite systems. Thirdly, the Landsat
program’s commitment to free and open access data has revolutionized the field by allowing
users to access a vast archive of imagery. These factors, combined with the program’s
continuity, advancements in data processing, and its role as a reference instrument, make
the Landsat image time series an invaluable resource for understanding and addressing
global environmental challenges [3,4]. However, the relatively low temporal frequency
and, more importantly irregular, clear-sky observations are some of the main drawbacks of
Landsat data and other optical remote sensing (RS) satellites [5–8].

Reconstructing missing data in optical satellite images is crucial for improving data
availability and enabling multi-temporal analysis. For low-resolution earth observation
(EO) data with daily or close to daily samples, interpolation or smoothing methods can be
used to fill the gaps and generate regularly sampled time series [7]. For example, in 2018,
Whitney et al. applied a moving-window polynomial least-squares method to smooth
8-day composite NDVI data from MODIS, minimizing noise and generating daily values,
which they used to assess soil salinity in California’s Central Valley, USA [9]. In the case
of the Landsat historical data, challenges such as cloud cover, haze, shadows, and sensor
artifacts, coupled with the 16-day satellite revisit cycle, result in infrequent and irregularly
sampled clear-sky observations. Creating consistent and dense time series data becomes a
complex task, particularly when aiming to capture seasonal variations occurring over days
to weeks. Conventional interpolation methods often fall short, especially for very sparse
and irregular Landsat time series [7,10]. Therefore, further research is necessary to explore
the potential of new methods for Landsat time series reconstruction.

Several methods have been used for reconstructing RS irregular time series such as
spectral temporal metrics, interpolation, autoregressive (AR) modeling, double logistic
modeling, and harmonic modeling [11–14]. However, most of them are unable to handle
and model very sparse Landsat time series effectively. In recent years, there have been
numerous research efforts focused on refining the accuracy of Landsat time series modeling
by leveraging harmonic models as they have demonstrated superior performance with
sparse and irregular Landsat time series data. In one of these studies, Pouliot and Latifovic
(2018) developed an imputation-based approach to constrain the harmonic modeling
method using AVHRR or climate data (maximum daily temperature and precipitation).
Their findings indicated that the utilization of constrained harmonic models enhanced
the outcomes of the time series reconstruction, and climate data for imputation yielded
superior accuracy compared with the use of AVHRR [7].

Harmonic models have been used for Landsat time series modeling and change
detection largely based on the continuous change detection and classification (CCDC)
method [5,15]. CCDC has been employed by the United States Geological Survey for
development of the Land Change Monitoring, Assessment, and Projection data (LCMAP).
Within the framework of CCDC, a harmonic time series model incorporates elements of
seasonal variation and trends to estimate surface reflectance. To detect break points and
accommodate the diverse spectral responses associated with different types of land cover
change, the CCDC algorithm employs a threshold derived from all seven Landsat bands [5].
In follow-up research, the authors introduced a modified version of CCD known as Band-
First Probability (CCD-BFP). This approach involves initially assessing the probability of
change for each band. Subsequently, these probabilities from each band are aggregated
to calculate the overall probability of change [15]. CCDC was designed for time series
modeling and change detection where a perfect fit to the observed data is not required as
long as the unique temporal–spectral properties are captured for change comparison. Thus,
in many cases, the model predictions do not fit the time series well, especially when the
signal for a given band cannot be represented by a few harmonic frequencies. For instance,
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models based on CCDC encounter challenges in accurately modeling time series data
of cropped land and identifying their breakpoints. This is primarily because the surface
reflectance of cropped areas often exhibits significant variability and unpredictability due
to anthropogenic modification [15]. As a result, more suitable techniques are needed to
model and reconstruct missing observations in these kinds of challenging Landsat time
series. Moreover, improved reconstruction of Landsat time series can enhance temporal
information required for numerous applications related to monitoring of snow/ice, water,
or vegetation.

The development of deep learning-based approaches in recent years has shown signif-
icant potential for improving many RS applications including time series modeling [16].
However, there are still research gaps and limitations in using deep learning methods, as re-
ported in the literature. While deep learning methods have excelled in data modeling, they
often struggle with irregular time series datasets and capturing the temporal irregularities
present in incomplete time series [16,17]. In other words, most deep learning methods for
sequence modeling, such as the recurrent neural network (RNN) or its advanced version
the long short-term memory (LSTM) network, are generally designed for regular (evenly
spaced) time series modeling and are unable to handle irregular time series observations.
In RS, in particular, there has been little research focusing on irregular time series modeling
using deep learning techniques.

In 2022, Zhou et al. used an autoencoder-LSTM for similar pixel clustering and a
forward–backward LSTM to reconstruct missing data in Landsat time series. To deal
with the issue of using irregular time series, they introduced masking layers. In addition,
rather than employing conventional LSTM networks, they utilized a forward–backward
fusion LSTM network [16]. However, they only utilized a one-year Landsat time series for
constructing their model and evaluating its performance, which is insufficient to determine
its suitability for reconstructing historical Landsat time series data. In another study
addressing irregular time series in RS, Zhang et al. (2024) presented a model called
Classifying Raw Irregular Time series (CRIT) for Landsat land cover classification. To this
end, they used a masking layer (to mask missed samples) and a transformer architecture for
time series classification [18]. Despite the limited research on irregular time series modeling
using deep learning models in RS, existing approaches have focused on applications such
as land cover classification using irregular time series rather than time series reconstruction
or tried to just fill the missing samples at coarse time steps (e.g., 16 days) rather than
reconstructing dense regular time series.

Due to the limited studies addressing irregular time series reconstruction in RS, meth-
ods used for this purpose in other fields can provide valuable insights into the most
promising approaches for evaluation. Baytas et al. introduced a novel version of LSTM
termed Time-Aware LSTM (T-LSTM) in 2017, designed to manage irregular time intervals
within healthcare patient records. They employed the T-LSTM within an autoencoder
framework to classify patients into clinical subtypes. T-LSTM takes irregular elapsed time
into account by transforming it into a weight using a time decay function [19]. Nevertheless,
clinical data differ significantly from RS time series data due to the inherent uncertainties,
noise, and complexities involved in RS data analysis. In another study, Chen et al. (2019)
generalized the concept of RNNs to incorporate continuous-time hidden dynamics speci-
fied by ordinary differential equations (ODEs), introducing a model known as ODE-RNNs.
Continuous neural network structures constructed using ODEs are valuable for modeling
data exhibiting complex dynamics. They additionally suggested employing an ODE-RNN
within an encoder–decoder framework, creating a sequence-to-sequence model entirely
based on ODEs. In such an architecture, a sequence of varying lengths is transformed into
a fixed-dimensional representation by the encoder and then reconstructed into another
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variable-length sequence by the decoder. They showed that their models (an autoregressive
ODE-RNN model and encoder–decoder model based on ODE-RNN) outperformed other
models such as RNN-decay and RNN-based encoder–decoder for classification, interpo-
lation, and extrapolation/forecasting of irregular time series [20]. Nevertheless, training
neural networks based on ODEs is time-consuming due to the utilization of sophisticated
numerical solvers for differential equations [21]. This issue becomes even more challenging
as the complexity of both the data and the task grows. To address the time-consuming issue
of ODE-based models, Hasani et al. (2022) introduced a closed-form continuous-depth
(CFC) model, which possesses the modeling capabilities of ODE-based models but elimi-
nates the need for any solver to model data, making it much faster than their ODE-based
counterparts. They demonstrated that CFCs exhibit superior performance and less com-
putational burden compared to other baseline models capable of modeling irregular time
series, such as Phased-LSTM, RNN-Decay, Bi-directional RNN, and ODE-LSTM, in tasks
such as per time-step classification and per time-step regression [22].

This research evaluated CFC as an advanced deep learning method capable of handling
irregular and sparse time series for reconstructing the historical Landsat time series from
1985 to present in a sample area in the Canadian Prairies region. The performance of CFC
is also compared with that of the CCD method. Figure 1 presents a detailed flowchart
outlining the methodology used in the study for Landsat time series reconstruction.
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Figure 1. The flowchart of the method used in this study for Landsat time series reconstruction.

The rest of this paper is organized as follows. Section 2 details the study area
and dataset, provides an overview of CFC neural networks and introduces the evalu-
ation method. Section 3 presents and discusses the results. Finally, Section 4 presents
our conclusion.

2. Materials and Methods
2.1. Study Area and Dataset

The Great Plains in North America, including Canada’s Prairie region, comprises a
significant portion of the world’s grasslands, with Canada holding 16% of this landmass.
Specifically, the Canadian Prairies, spanning Alberta, Saskatchewan, and Manitoba, host
89% of the nation’s grasslands, both native and cultivated [23]. The study area is part of
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the Canadian Prairies region located in southeast Alberta, Canada (Figure 2). The main
land covers include grasslands and agricultural lands, with an elevation range between
953 and 1083 m above the mean sea level (MSL). This region was selected because the
agricultural areas are temporally dynamic due to the seasonal climate and its variability,
soil preparation for planting, and harvesting. Grasslands also have unique temporal
properties that can help separate native from cultivated land and could benefit from
better temporal characterization [24–26]. The dataset utilized in this study consists of
atmospherically corrected and orthorectified surface reflectance images, generated from
the data captured by the TM (Landsat 5), ETM+ (Landsat 7), OLI (Landsat 8), and OLI2
(Landsat 9) sensors. The Landsat data used in the study were obtained via the Google
Earth Engine platform. The study primarily focuses on the visible and near-infrared (VNIR)
spectral bands, covering a wavelength range of 0.43 to 0.90 µm, as well as the short-wave
infrared (SWIR) spectral bands, which extend across a wavelength range of 1.55 to 2.35 µm.
These spectral ranges are crucial for analyzing and monitoring changes across the Earth’s
surface. The image time series spans 39 years, covering the period from 1985 to 2023.
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of a Landsat 5 TM image captured on 27 July 1999, displayed with a true-color band composition.
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2.2. CFC Neural Networks

Continuous neural network architectures based on ODEs offer powerful models for
capturing complex dynamics in data. By transforming the depth of traditional neural
networks and the time step in RNNs into a continuous vector field, these models al-
low for parameter sharing, adaptive computations, and function approximation, making
them well-suited for handling irregularly sampled data [20]. These continuous-depth
(or continuous-time) models have demonstrated potential in various applications, in-
cluding modeling sequential and irregularly sampled data [27,28], hyperspectral image
classification [29], capturing spatiotemporal dynamics [30], and forecasting [31]. ODE-
based neural networks, despite their competitive performance compared to advanced
discretized recurrent models, suffer from slow training and inference due to the reliance on
complex numerical differential equation (DE) solvers. This issue worsens as data, task, and
state space complexity grow [32].

To address this, Hasani et al. introduced a CFC neural network in 2022, which
eliminates the need for numerical solvers by leveraging a closed-form solution [22]. These



Sensors 2025, 25, 1622 6 of 21

models retain key features of liquid-state neural networks, such as flexibility, causality,
robustness, and interpretability, but are significantly faster and more scalable. Unlike
traditional ODE-based models that require iterative integration, CFC explicitly models time
in its formulation, enabling efficient processing of irregular time steps.

The key advantage of CFC is its explicit time dependence, which allows the network
to incorporate time intervals directly into its computations. This feature ensures that
the model dynamically adjusts to varying time gaps between observations, making it
particularly effective for handling non-uniformly sampled data. CFC also employs a time-
gated mechanism, which regulates memory retention based on the elapsed time between
observations. The sigmoidal time gates adjust the influence of past states, preventing rapid
memory decay while ensuring smooth adaptation to irregular sampling intervals.

The CFC neural architecture is provided in Figure 3. Rather than training the three
neural network instances f, g, and m individually, they are designed to share the initial
layers through a backbone structure. This backbone neural network layer processes input
signals and channels them into the head networks g, f, and m. Here, f functions as a
liquid time constant for the network’s sigmoidal time gates, directly incorporating time
information, while g and m contribute to the nonlinear aspects of the overall CFC network.
Consequently, this shared architecture enables the model to learn common representations,
enhancing the speed and stability of the learning process [22,31].
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Figure 3. The architecture of the CFC neural network. A backbone neural network layer processes the
input signals and distributes them to three head networks: g, f , and h. In this configuration, f serves
as a liquid time constant that regulates the sigmoidal time gates, while g and h create the nonlinear
components of the complete CFC network [22].

The hidden states, x(t)D×1 with D hidden units at each time step t, can be explicitly
calculated using Equation (1):

x(t) =

Time-continuous gating︷ ︸︸ ︷
σ
(
−f

(
x, I; θ f

)
t
)

⊙ g
(
x, I; θg

)
+

Time-continuous gating︷ ︸︸ ︷[
1 − σ

(
−
[
f
(

x, I; θ f

)]
t
)]

⊙ m(x, I; θh) (1)

where I(t) denotes the system input and t represents the time step. The functions f , g,
and h are neural networks characterized by parameters θ f , θg and θh, respectively. Here,
σ denotes the sigmoid function, and ⊙ indicates the Hadamard (elementwise) product.

2.3. CFC Time Series Modeling

The CFC implementation used in this study for reconstructing the Landsat time series
involved multiple steps. First, snow, cloud, and shadow observations were filtered out
from the historical Landsat image time series. Next, training samples were extracted from
the filtered series and prepared to train the CFC-based model. Finally, the trained model
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was used to reconstruct missing Landsat data, and the model’s performance for time series
reconstruction was evaluated. Each step is detailed in the following sections.

2.3.1. Contaminated Observation Filtering

For Landsat image preprocessing, an important step in this study was to remove
clouds, cloud shadows, and snow. This was performed using a two-step method described
in [5]. To this end, pixels were initially masked using the Fmask object-based algorithm [33].
While the Fmask algorithm offers fairly precise masks for identifying clouds, cloud shad-
ows, and snow, it still has limitations. Additionally, it may struggle to distinguish other
temporary changes like dense aerosols, smoke, or flooding, which could be mistaken for
changes in land cover. Consequently, to identify outliers that were not initially detected
by the Fmask algorithm, an additional step called Tmask was implemented. This step
involves initially estimating a time series model using the observations and harmonic time
series modeling, followed by identifying outliers through a comparison between the model
estimates and Landsat observations [5].

2.3.2. Training Sample

From 1985 to 2024, considering Landsat 5, 7, 8, and 9 satellites, there were periods
when one or two Landsat satellites were actively capturing images of the Earth’s surface;
these periods are shown in Figure 4 with red and green markers, respectively. In reference
to Landsat 7, the small white arrow within its timeline arrow in Figure 4 shows the
period when data were collected without the Scan Line Corrector (SLC). Landsat 7’s SLC,
responsible for compensating for the satellite’s forward motion, failed on 31 May 2003.
Consequently, in this SLC-off mode, data exhibit zig-zag pattern gaps, although the ETM+
still captures around 78 percent of the data for each scene [34,35]. Furthermore, although
Landsat 7 remains in orbit and continues to collect surface data, we only used its data up to
August 2017. After that point, the satellite’s orbit began drifting outside its nominal mission
parameters, shifting toward earlier acquisition times due to limited onboard fuel. This
shift makes Landsat 7 data less reliable for scientific studies requiring precise quantitative
analysis [35]. Given the critical importance of data consistency in time series analysis, we
excluded any Landsat 7 data acquired after August 2017.

Sensors 2025, 25, x FOR PEER REVIEW 7 of 22 
 

 

2.3. CFC Time Series Modeling 

The CFC implementation used in this study for reconstructing the Landsat time se-
ries involved multiple steps. First, snow, cloud, and shadow observations were filtered 
out from the historical Landsat image time series. Next, training samples were extracted 
from the filtered series and prepared to train the CFC-based model. Finally, the trained 
model was used to reconstruct missing Landsat data, and the model’s performance for 
time series reconstruction was evaluated. Each step is detailed in the following sections. 

2.3.1. Contaminated Observation Filtering 

For Landsat image preprocessing, an important step in this study was to remove 
clouds, cloud shadows, and snow. This was performed using a two-step method de-
scribed in [5]. To this end, pixels were initially masked using the Fmask object-based al-
gorithm [33]. While the Fmask algorithm offers fairly precise masks for identifying clouds, 
cloud shadows, and snow, it still has limitations. Additionally, it may struggle to distin-
guish other temporary changes like dense aerosols, smoke, or flooding, which could be 
mistaken for changes in land cover. Consequently, to identify outliers that were not ini-
tially detected by the Fmask algorithm, an additional step called Tmask was implemented. 
This step involves initially estimating a time series model using the observations and har-
monic time series modeling, followed by identifying outliers through a comparison be-
tween the model estimates and Landsat observations [5]. 

2.3.2. Training Sample 

From 1985 to 2024, considering Landsat 5, 7, 8, and 9 satellites, there were periods 
when one or two Landsat satellites were actively capturing images of the Earth’s surface; 
these periods are shown in Figure 4 with red and green markers, respectively. In reference 
to Landsat 7, the small white arrow within its timeline arrow in Figure 4 shows the period 
when data were collected without the Scan Line Corrector (SLC). Landsat 7’s SLC, respon-
sible for compensating for the satellite’s forward motion, failed on May 31, 2003. Conse-
quently, in this SLC-off mode, data exhibit zig-zag pattern gaps, although the ETM+ still 
captures around 78 percent of the data for each scene [34,35]. Furthermore, although 
Landsat 7 remains in orbit and continues to collect surface data, we only used its data up 
to August 2017. After that point, the satellite’s orbit began drifting outside its nominal 
mission parameters, shifting toward earlier acquisition times due to limited onboard fuel. 
This shift makes Landsat 7 data less reliable for scientific studies requiring precise quan-
titative analysis [35]. Given the critical importance of data consistency in time series anal-
ysis, we excluded any Landsat 7 data acquired after August 2017. 

 

Figure 4. The Landsat missions’ timeline from 1985 to the present. Figure 4. The Landsat missions’ timeline from 1985 to the present.

Accurate training and test samples are essential for developing deep learning models.
For this, we set aside 15% of images with at least 60% clear observations for each season
as test images. Selecting test images with a minimum of 60% clear observations ensured
high-quality samples for assessment, as images with extensive cloud, shadow, or snow
cover often suffer from issues like haze and cloud adjacency effects. This process yielded
116 test images, with the distribution across seasons shown in Table 1.
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Table 1. The number of test images selected randomly from the image set with at least 60% clear
observations and the number of training images with less and more than 60% clear observations.

Season Spring Summer Fall Winter

Months March, April May June, July, August September, October,
November

December, January,
February

Number of test images 25 49 35 6

Number of training
images with more than

60% of clear observation
179 328 234 40

Number of training
images with less than

60% of clear observation
98 84 49 38

Training samples were used for forward and backward model training. In the forward
case, for predicting each target sample, its 12 previous clear observations were used as
training data to predict the target sample. In the backward case, a similar setting was used,
but instead of the previous clear observations, the next 12 clear observations following the
target observation were used as training data (Figure 5). The selection of 12 as the number
of training observations was made during the parameter-setting process and through trial-
and-error experimentation. Sample data preparation using available clear-sky observations
resulted in approximately 10,000,000 forward samples and another 10,000,000 backward
samples. In both cases, 90% of the data was allocated for training, while the remaining
10% was used as a validation set to monitor model performance across epochs and to
mitigate overfitting or underfitting.
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2.3.3. CFC Implementation

CFC is designed around forecasting and neural ODEs are, in theory, better for extrap-
olation than other deep learning approaches [20], which is an important advantage for
many applications. Various versions of CFC models exist. In this research, we employed a
CFC model integrated within a mixed memory architecture, where the CFC establishes the
memory state of an RNN—LSTM in this case to avoid vanishing gradients. This variant is
referred to as CFC-mmRNN (described in [22]). The integration of CFC with an RNN archi-
tecture results in a deep learning model that the CFC is wrapped inside a recurrent neural
network, as depicted in Figure 6, enabling the efficient capture of long-term dependencies
in irregularly sampled time series. In this figure, I(t) indicates the input, x(t) represents the
hidden state computed by CFC, and o(t) shows the output value of the model at time t.
By leveraging explicit time dependence and a time-gated mechanism, the CFC-mmRNN
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model dynamically adjusts to variable time gaps, ensuring robust handling of irregular
satellite time series data.
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The CFC-mmRNN model employed in this study comprises 128 recurrent units and
three backbone layers, each containing 128 hidden units with “relu” as the backbone
activation function. This configuration resulted in a total of 202,374 trainable parameters.
The network parameters were optimized using the Adaptive Moment Estimation (Adam)
optimizer [36]. The initial learning rate was set to 0.001 and was reduced progressively
using a decay rate of 0.98 to enhance convergence. A dropout rate of 0.1 was applied
to the backbone layers to mitigate overfitting by randomly deactivating neurons during
training. The input batch size was set to 8192, and the total number of epochs was set to 150,
which resulted in 178,200 iterations. All training and inference processes performed in this
study were conducted using Python 3.11 and TensorFlow 2.15 on an NVIDIA T1000 GPU
(Santa Clara, CA, USA).

2.3.4. Evaluation

To evaluate the accuracy, the root mean squared error (RMSE) was computed with the
hold-out images. Results were compiled for the full time series data and for four seasons
defined as spring (May–June), summer (July–August), fall (September–November), and
winter (December–February). Predicted images, difference images between the reference
and predicted, and error histograms, for example, images, were generated for visual
evaluation. To investigate the impact of sparsity on time series reconstruction, we randomly
removed between 10% and 90% of the clear-sky observations from each season of each time
series before training. This created ten different scenarios, including the original density
level and nine manipulated levels. For the dropout rate, we computed the average number
of clear-sky observations per year to help define the minimum sample requirements that
should be used with either method. For comparison, the CCD method (as the reference
method) was also included as it has been widely used in numerous RS applications to date.
We used the latest version of python lcmap-pyccd code (version 2021.7.19) acquired from
the USGS for CCD experiments [37].

3. Results and Discussion
3.1. Comparison of CCD and CFC for Landsat Image Reconstruction

The results of the Landsat time series reconstruction shows that CFC was better able
to estimate the hold out test image observations compared to CCD. Table 2 and Figure 7
present the reconstruction results for all test images using both CCD and CFC methods,
evaluated based on RMSE. Additionally, Table 2 shows the improvement of CFC over CCD,
while Figure 7 illustrates the error confidence levels for each band. As the results indicate,
the CFC method achieved higher accuracy across all six bands, with improvements ranging
from 33% to 42%. The greatest improvement was observed for the SWIR2 band, while the
SWIR1 and blue bands showed the smallest improvement. Figure 7 also reveals that CFC
produced narrower confidence intervals compared to CCD across all six bands. Figure 8
illustrates the time series reconstruction results for a sample grassland pixel across different
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bands over six years from 2008 to 2014. In this figure, observations used for training and
testing are presented by blue circles and red squares, respectively. The predicted values are
also presented by the green line and stars. Based on Figure 8, the CFC predicted missing
values in the time series with significantly higher accuracy than CCD. Notably, the superior
performance of CFC over CCD is even more evident in time series with greater complexity,
such as the SWIR bands. Here, complexity refers to the general seasonal fluctuations. For
the visible bands and the grassland example, there is one clearly defined seasonal cycle,
whereas for NIR and SWIR bands there are two cycles with varying amplitudes.

Table 2. Results of test image reconstruction based on RMSE.

Band
RMSE of Image
Reconstruction

Using CCD

RMSE of Image
Reconstruction

Using CFC

Improvement of
CFC Over CCD

Blue 0.01492 0.00983 34%

Green 0.01876 0.01228 35%

Red 0.0255 0.01488 42%

NIR 0.03201 0.01978 38%

SWIR1 0.03928 0.02574 34%

SWIR2 0.03927 0.02262 42%
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Figure 9 presents the average error maps and error histograms based on the absolute
difference for the 116 test images reconstructed using CCF and CCD methods. The results
indicate that CFC consistently outperformed CCD in image reconstruction across all six
bands, as demonstrated by both the error maps and histograms. Figure 10 further illustrates
the reconstruction errors for each land cover type across different image bands. It is
noteworthy that based on the results, errors associated with cropland areas (visible as
rectangular regions in the error maps and green lines in Figure 10a) are higher than those
for grassland areas. This distinction is also evident in the error histograms, which display
two distinct peaks (Figure 9), each corresponding to a specific land cover type. The
underlying reason for this difference is the more complex temporal patterns and the higher
reflectance in cropland time series compared to grasslands, which often display greater
variability and unpredictability (Figure 10b,c). This complexity in cropland dynamics
contributes to higher error rates in those areas.
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Figure 11 presents the average of the test image reconstruction results for different
seasons and across different bands. The CFC model achieved higher accuracy and con-
fidence levels for all seasons and bands, except for SWIR1 and SWIR2 in winter. This
slight advantage of the CCD model in winter for these two bands can be attributed to the
reduced density of clear observations during the winter months, leading to a scarcity of
training data. Unlike the CFC model, the CCD method employs a harmonic time series
model, which incorporates seasonal variations and trends to estimate surface reflectance.
This approach allows the CCD model to perform more reliably in cases of very sparse and
irregular time series, as it is inherently more constrained than the CFC model under such
conditions. Additionally, winter months tend to have increased noise and a higher likeli-
hood of pixel contamination from clouds and haze, impacting the quality of the recorded
surface reflectance. This effect is illustrated in Figure 12, which shows an example time
series of a grassland pixel for bands SWIR1 and SWIR2 reconstructed using both the CFC
and CCD models. In this example, red squares mark three of the test observations in winter
and the predicted values are presented by a green line. Another factor contributing to the



Sensors 2025, 25, 1622 12 of 21

higher accuracy of the CCD model in these instances is its tendency to remain closer to
the mean of the time series relative to CFC. Thus, it is less likely to predict larger residual
errors but sacrifices the model fit.
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Figure 11. Results of image reconstruction based on RMSE for (a) spring, (b) summer, (c) fall and
(d) winter.

Figure 13 presents several examples of test image reconstructions across different
seasons using both the CFC and CCD models, along with error maps for the NIR band pre-
dictions. The results indicate that the CFC model consistently reconstructed the test images
with greater accuracy, closely matching the observed images. In contrast, reconstructions
using the CCD model show more significant differences, with the majority of errors related
to cropland areas. This difference is due to the higher variability and frequent changes in
cropland areas compared to the more stable grassland regions.
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Figure 12. Results of time series reconstructions for a sample grassland pixel in the study area using
CCD (left) and CFC (right) for SWIR bands from 2010 to 2015. Although variations arise due to
cloud cover and haze around the winter test samples (red dots), CCD yielded a lower RMSE for these
samples, as it is more closely centered around the time series mean.
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Figure 13. Image reconstruction using CCD and CFC for four test images, each selected from a
different season.

3.2. Assessing the Effect of Density on Landsat Time Series Reconstruction

This section analyzes the impact of observation density on Landsat time series re-
construction using the CCD and CFC methods. As outlined in the methodology section,
between 10% and 90% of clear observations from each season were randomly selected
and excluded from further processing to evaluate how varying density affects time series
reconstruction. For each of these dropout rates, the average number of clear observations
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per year was calculated to indicate where CFC results should not be used or used with
caution. Figure 14 illustrates the relationship between observation density and reconstruc-
tion error across test image bands. In each plot, the x-axis represents the yearly average
number of clear observations (density) and the dropout rate, while the y-axis indicates the
reconstruction error for each test image band, measured by the RMSE. The margins around
each point denote confidence interval errors.
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The results indicate that as observation density decreases, the CCD method exhibits
a smaller increase in error compared to the CFC method, demonstrating that CCD is
more resilient to sparsity. However, across all bands and density levels, the CFC method
consistently achieved higher overall reconstruction accuracy than CCD. In terms of error
confidence, while CFC generally provides narrower confidence intervals compared to
CCD, no significant widening of confidence intervals was observed for the methods as
observation density decreased.

It is also important to note that the reconstruction accuracy of test image bands using
the CFC method drops sharply once approximately 50% of clear observations are excluded,
particularly when the density falls below 10 clear observations per year. For the CCD
method, there is a slight increase in RMSE for the red, SWIR1, and SWIR2 bands when the
density drops to 16 per year. However, beyond this point, the CCD method maintains stable
RMSE values across all bands, showing no substantial increase in error even at the lowest
density level, where only two observations per year remain on average. This suggests that
CCD is notably more robust for very sparse observations and these land cover conditions.
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The relationship between observation density and RMSE for NIR band reconstruction
is further analyzed across different seasons (Figure 15) and land covers (Figure 16). In
Figure 15, the x-axis represents the yearly average number of clear observations for each
season and the dropout rate. Overall, the relationship between density and reconstruction
error displays similar patterns across both land covers and seasons. Consistent with
previous observations, the CFC method experiences a significant increase in RMSE when
50% of clear observations are excluded. As shown in Figure 16, cropland areas exhibit
lower reconstruction accuracy compared to grasslands for both the CCD and CFC methods.
Additionally, in cropland areas, the CFC method shows a more pronounced increase in
RMSE as density decreases, indicating that cropland reconstruction is more sensitive to
sparse observations than grassland reconstruction. However, it is important to note that for
cropland (as a more complex land cover), the CFC method provides a greater improvement
over the CCD method.
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Figure 17 illustrates the effect of observation density on reconstructing the NIR band
for a sample cropland pixel as an example. In the case of CCD, consistent with the findings
shown in Figures 14–16, decreasing observation density has minimal impact on the Landsat
time series reconstruction. Notably, after a 20% reduction in observations, CCD employs
a simpler harmonic model to represent the time series, which remains more stable with
lower-density observations. In contrast, CFC exhibits greater variation in response to
changes in observation density, highlighting its greater dependence on observation density.
Additionally, at high observation densities, CFC shows signs of overfitting, indicating its
susceptibility to noise within the time series data. Applying noise reduction or increasing
regularization in CFC may help mitigate this issue and improve CFC’s robustness to noise.
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In a further analysis, we investigated the effect of observation density on reconstruct-
ing two adjacent segments of the Landsat time series, each spanning seven years but
with different satellite coverage. The first period, from 1992 to 1999, represents a single-
satellite scenario where only Landsat 5 was operational. The second period, from 2000 to
2007, represents a double-satellite scenario, with both Landsat 5 and Landsat 7 actively
capturing imagery.
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Figure 18 presents the results of reconstructing the NIR band at different observation
densities for the single-satellite case (14 test images) and the dual-satellite case (30 test
images) using CFC and CCD methods. The results show that the CFC method achieved
higher reconstruction accuracy across all density levels. Additionally, in the dual-satellite
period, both CFC and CCD demonstrated improved reconstruction performance, in large
part due to the increased frequency of observations provided by two active satellites. These
findings highlight that denser time series data, enabled by multiple satellites, significantly
enhance the reconstruction quality. The dual-satellite period allows for more consistent
data capture, which benefits both methods, particularly the CFC method, which relies
heavily on observation density. This improvement underscores the potential advantage
of multi-satellite coverage in achieving reliable reconstructions, especially in regions or
periods with sparse observational data.
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To summarize the findings of this research, some of the key points are outlined in
the following section. CFC has been shown here to be superior for estimating missing
observations compared to CCD and thus has potential to enhance many RS time series
applications. The results also indicated that the predicted images using CFC were much
closer to real observed images compared to CCD. Even at low density (around 2 obser-
vations per year), the CFC results were more accurate, and the shape of the time series
was maintained relative to the full time series results. Only at very low density did CFC
deviate such that its use for applications was considered compromised. For example,
considering time series reconstruction at a 90% dropout rate (Figure 17), the CFC results
have much more strongly deviated from the full time series results compared to CCD. Thus,
CFC is applicable where there are a sufficient number of observations, which, based on
these results, is an average of four observations per year (the case of an 80% dropout rate).
Clearly, where these observations occur in the time series is important, as shown by [38].

The density of clear-sky observations in optical RS data varies globally due to factors
beyond the satellite’s revisit cycle [39]. Regions near the equator, with limited scene overlap,
northern areas experiencing rapid seasonal changes, and locations with frequent cloud
cover such as coastal and mountainous zones present significant challenges for time series
modeling [7]. Given satellite revisit limitations, the early Landsat archive from 1985 to 1999
is anticipated to be more problematic in these areas. However, higher-density time series
data such as those from MODIS and Sentinel 2 are expected to yield more accurate results.

For time series classification, a potential advantage of CCD is that it provides between
4 and 8 model parameters indicating the structure of the time series [37]. However, with
deep learning methods, this is not a feasible approach as there are a huge number of
parameters. For example, the CFC model (CFC-mmRNN) used in this study includes
202,374 parameters. However, with better estimation of the time series using CFC, de-
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rived spectral–temporal metrics should be better characterized and theoretically provide
enhanced input for classification.

In the examples presented in this study, croplands exhibited greater temporal complex-
ity than grasslands, leading to lower accuracies in time series reconstruction. However, CFC
provided greater improvements over CCD for cropland pixels, which have more complex
patterns, and smaller improvements for grassland pixels, with less complex patterns. This
is also an important consideration as the extent of CFC’s improvement over CCD can vary
depending on the land cover type, density level, spectral bands, or indices analyzed. The
results for winter showed the lowest accuracy among other seasons. Snow was removed
from the time series using Fmask and Tmask, significantly reducing the number of clear
observations available during this season. Additionally, the snow masking used in the
study is not entirely accurate, and this results in higher reflectance variability due to snow
compared to other seasons. These factors contributed to the similar performance observed
between CFC and CCD in winter for some spectral bands.

4. Conclusions
The study demonstrated the capabilities of the CFC-based deep neural network in

reconstructing historical Landsat time series data, significantly advancing beyond the per-
formance of the commonly used CCD method. Specifically, CFC improved reconstruction
accuracy by 33% to 42% across the six bands analyzed, demonstrating superior capability
in handling irregular and sparse time series data. The CFC method consistently achieved
higher reconstruction accuracy across all spectral bands and seasons, except for the SWIR
bands in winter, where its performance was similar to the CCD method due to the very
sparse time series during the winter months.

One of the notable strengths of the CFC method is its ability to maintain the integrity
of time series shapes, even at lower observation densities. The study revealed that CFC
provided accurate reconstructions, closely matching the observed images, particularly for
regions with complex temporal patterns like croplands. In test image reconstructions, CFC
produced narrower confidence intervals and was able to predict missing values in the
time series with significantly higher precision than CCD. Furthermore, the CFC method’s
robustness in handling varying observation densities was evident. Although both CFC
and CCD showed reduced performance with fewer clear observations, CFC consistently
outperformed CCD at all density levels. This highlights CFC’s potential for enhancing
RS applications, particularly in areas where data are sparse or irregular. The analysis also
underscored the benefits of multi-satellite coverage. During periods with dual-satellite
observations, both CFC and CCD demonstrated improved reconstruction performance due
to increased data density.

CFC offers a promising solution for reconstructing historical Landsat data, enhancing
the quality and reliability of time series analysis. Future research should focus on opti-
mizing CFC’s robustness against noise and exploring its applicability to other datasets,
such as MODIS and Sentinel-2. Integrating CFC with noise reduction techniques or
adding regularization methods could further improve its performance, paving the way
for more accurate environmental monitoring and assessment. By addressing these chal-
lenges, the CFC method can significantly contribute to the field of RS, providing a robust
framework for analyzing complex and irregular time series data and supporting various
environmental applications.
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