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Abstract: This article proposes a fault diagnosis method based on an adaptive sliding
mode observer (SMO) for current sensors (CSs) in the charging modules of DC charging
piles. Firstly, we establish a model of the phase-shift full-bridge (PSFB) converter with CS
faults. Secondly, the fault of the CS is reconstructed through system augmentation and
non-singular coordinate transformation. Then, an adaptive SMO is designed to estimate
the reconstructed state, and the residual between the actual value of the reconstructed state
and the observed value is used as the fault detection variable. Finally, by using norms
to design adaptive thresholds and comparing them with fault detection variables, the
diagnosis of incipient faults, significant faults, and failure faults in CSs can be achieved.
The experimental results verify the effectiveness of the proposed method in this paper; the
robustness of the method has been verified under the conditions of DC voltage fluctuations
and load fluctuations.

Keywords: the charging module of DC charging piles; current sensor; fault diagnosis;
adaptive sliding mode observer; adaptive threshold

1. Introduction
The charging module of a DC charging pile, as a crucial piece of equipment for electric

vehicle (EV) charging, holds paramount importance in the widespread adoption of EVs
(in terms of its stability and reliability) [1–3]. Nevertheless, due to the intricate and ever-
changing operational environments in which these charging modules reside, their failure
rates remain unacceptably high, posing a formidable challenge to the development of EVs.
Notably, the CS, an indispensable feedback component within the charging module, poses
an immediate threat to the stability of the entire charging system in the event of a malfunc-
tion. Consequently, a thorough exploration and investigation into fault diagnosis methods
for CSs in charging modules is profoundly significant in ensuring the safe operation of
DC charging piles and driving the healthy development of the EV industry. At present,
significant achievements have been made in the research of fault diagnosis methods for DC
charging piles [4,5].

Currently, fault diagnosis methods for CSs are primarily divided into two categories:
data-driven approaches [6,7] and model-based approaches [8,9]. Data-driven fault diag-
nosis relies heavily on signal processing and artificial intelligence technologies to conduct
deep mining and analysis of sensor data, thereby enabling fault detection. For example,
reference [10] constructed fault detection variables by extracting fault information from cur-
rent, voltage, and speed sensors in high-speed trains using principal component analysis,
enabling multi-sensor fault diagnosis in high-speed trains. In addition, fault diagnosis and
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adaptive multichannel fusion calibration of filament CSs for mass spectrometers, based on
a convolutional neural network–long short-term memory (CNN-LSTM), is proposed in [11].
Benefiting from the rapid advancements in data processing technologies, methods such as
wavelet transform [12], support vector machines [13], and Hilbert transform [14] have been
utilized in fault diagnosis. These data-driven methods exhibit flexibility and adaptability,
capable of handling complex nonlinear systems and uncertain fault patterns. However,
they typically necessitate significant amounts of training data and computational resources
and may require retraining and model adjustment for different application scenarios.

Model-based fault diagnosis methods focus on detecting and analyzing sensor faults
by establishing mathematical models and observers for the system, typically offering faster
diagnosis speeds and lower data requirements. For instance, reference [15] addresses
the early fault diagnosis problem for Lipschitz nonlinear systems with sensor biases by
decomposing the original system into two subsystems, isolating sensor faults from system
disturbances. Subsequently, a total measurable fault information residual is constructed to
detect early faults in multiple sensors. Reference [16] initially explored the differences in
the mechanisms underlying CS faults and phase break faults, and subsequently introduced
a fault diagnosis algorithm that leveraged a neutral point voltage observer. Reference [17]
constructed three fault detection variables based on the average normalized value of the
product of phase currents in a permanent magnet synchronous motor (PMSM) to achieve
fault diagnosis of CSs in the PMSM drive system. Meanwhile, reference [18] first established
a proportional full-state observer and then normalized the estimated error calculated from
the observed current and actual current to identify changes in the output current rate
of the CS in PMSM, thereby determining the fault type. Additionally, methods such as
reduced-order observers [19] and fault estimation [20] have been established to achieve
typical sensor fault diagnosis. However, existing methods primarily target significant
faults in CSs. Due to their low amplitudes and the ease with which they can be confused
with various noises, minor faults in CSs are not effectively diagnosed by these methods
designed for significant faults. Therefore, research on the diagnosis of minor faults in CSs
is highly essential.

Existing research on incipient fault diagnosis methods for various sensors has been
widely applied. For instance, in reference [21], a novel interval SMO was constructed
by introducing a new reaching law, and an instantaneous fault detection system with a
novel residual algorithm and fault detection threshold was proposed. The effectiveness
and practicality of this method have been verified through an example involving rectifier
DC voltage sensor faults in high-speed railway traction equipment. While the above fault
diagnosis methods focus on individual power electronic devices, the charging modules
of DC charging piles also necessitate consideration of the impact of high-frequency trans-
formers on inverter and rectifier circuits, leading to significant differences in diagnostic
targets compared to the mentioned methods. Consequently, these methods are difficult to
apply directly.

It is noteworthy that this paper introduces an innovative fault diagnosis method for
CSs in the charging modules of DC charging piles, utilizing an adaptive SMO. The main
contributions of this work are as follows:

(1) Fault diagnosis method for CSs: This paper proposes a fault diagnosis method
for CSs in the charging modules of DC charging piles based on an adaptive SMO. The
proposed method is capable of diagnosing incipient, significant, and failure faults of CSs.

(2) Design of adaptive SMO: By reconstructing CS faults, this paper innovatively
introduces a novel adaptive reaching law to design the adaptive SMO. This observer
can estimate the reconstructed states and achieve rapid convergence while effectively
suppressing high-frequency chattering. Additionally, the residual between the actual
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and observed values of the reconstructed states is utilized as the fault detection variable,
enhancing the accuracy of fault detection.

(3) Adaptive threshold fault diagnosis strategy: To meet the practical requirements
under different operating conditions, this paper designs three adaptive thresholds using
norms, enabling precise diagnosis of CS faults. Experimental results validate the effective-
ness and robustness of this strategy, providing strong support for the safe operation of DC
charging piles.

2. Modeling
2.1. The Charging Module PSFB Converter Model

Figure 1 shows the two-stage conversion electrical structure of the charging module
in a DC charging pile. The rectifier circuit, as the front-stage structure, is responsible
for rectification and active power factor correction. The PSFB converter is the rear-stage
structure, which is responsible for realizing voltage conversion and electrical isolation.
Since the PSFB converter achieves high-efficiency energy conversion in the charging module
and directly provides DC input to the load, it is an important component of the charging
module. Therefore, this paper mainly studies the CS fault diagnosis method of the PSFB
converter.

Figure 1. The topology of the charging module.

The PSFB converter, as illustrated in Figure 2, is composed of an inverter bridge, a
high-frequency transformer T, a rectifier bridge, and a filter [22]. The inverter side of
the PSFB converter utilizes a fully controlled full-bridge inverter circuit, where the power
modules within the inverter bridge each contain four switching tubes, S1, S2, S3, S4, parasitic
capacitors, C1, C2, C3, C4, and anti-parallel diodes, D1, D2, D3, D4. Each switching tube is
paralleled with a parasitic capacitor and an anti-parallel diode. Between the midpoints of
the bridge arms, a series resonant inductor and the primary winding of the high-frequency
transformer are connected. The rectifier side employs a non-controllable full-bridge rectifier
circuit, with the rectifier bridge consisting of four diodes, Q1, Q2, Q3, Q4. The secondary
winding of the high-frequency transformer serves as the input for the rectifier bridge. The
voltage ratio between the primary and secondary sides of the high-frequency transformer is
νs(t):us(t) = 2.5:1. The filter module, which comprises filter inductors and filter capacitors,
Ro, serves as the load for the PSFB converter.

Figure 2. The topology of the PSFB converter.
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According to the working principle of the PSFB converter, the mathematical model of
the PSFB converter can be expressed as follows [23]:{

ẋ = Ax + B1u1 + B2u2 + B3u3

y = Cx
(1)

where x = io, u1 = νp, u2 = il1, u3 = dil1
/

dt, A = −Ro/L, B1 = 1
/
(2.5L(sgn(il2))),

sgn(il2) is the signum function. il2 is the current on the secondary side of the high-frequency
transformer T. L is the equivalent inductance value of the leakage inductance of the
transformer and the resonant inductance of the circuit. B2 = Rt

/
(2.5Lsgn(il2)), Rt is the

equivalent resistance value of the resonant components as well as the parasitic resistance of
the transformer. B3 = 1

/
(2.5sgn(il2)), C = 1.

2.2. Fault Description

While the PSFB converter is in operation, the aging and degradation of its internal
components are inevitable phenomena that occur over time. Among these components, the
classification of current CS failures depends on the comparison between the magnitude
of the fault current with the magnitude of the normal output current. This classification
is divided into the following three separate categories: incipient fault stage, significant
fault stage, and failure stage. To simulate the occurrence of CS faults, we represent CS fault
evolution model as follows [24]:

Fs =
∫ t

0
eAs(t−τ)ϕdτ (2)

In this model, the variable Fs denotes the malfunction within the CS, and ϕ stands for
the excitation signal of the fault, influencing its magnitude. Moreover, As represents the
coefficient for fault amplitude, dictating the rate at which the magnitude of faults varies.
According to (2), the CS fault Fs, with the specific form, is given as follows:

Ḟs = AsFs + ϕ (3)

Additionally, the following fault amplitude variable Γ is defined to represent the
degree of fault in the CS:

Γ =
∥Fs∥
∥io∥

× 100% (4)

In the equation, ∥Fs∥ represents the fault amplitude, while ∥io∥ denotes the amplitude
of the output current, which is generally required to be within the rated load range with
the THD of the output current lower than 5%.

• When 5% ≤ Γ ≤ 15%, the sensor is defined as being in a state of incipient fault. At
this stage, the output value deviates slightly from the normal value, indicating the
initial stage of the fault. Due to the small fault amplitude, the impact on the system is
relatively minor.

• When 15% ≤ Γ ≤ 50%, the sensor is defined as being in a state of significant fault. At
this stage, the output value deviates significantly from the normal value, indicating the
intermediate stage of the fault. Due to the larger fault amplitude, it can significantly
affect the stability of the system and reduce its performance.

• When Γ > 50%, the sensor is defined as being in a state of failure. At this stage, the
output value deviates greatly from the normal value, indicating the final stage of the
fault. Due to the very large fault amplitude, it can severely impact the stability of the
system and potentially lead to system collapse.
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Combining (1) and (3), while also considering the presence of unknown disturbances
such as external measurement noise in the actual operation of the PSFB converter, the
mathematical model of the PSFB converter with a faulty CS can be expressed as follows:{

ẋ = Ax + B1u1 + B2u2 + B3u3 + Gd
y = Cx + KFs

(5)

In the equation, Fs represents the fault in the output CS of the PSFB converter, K is
the coefficient matrix of the fault Fs, and G is the coefficient matrix of the disturbances. It
is important to note that CSs may be prone to unknown disturbances and system noise
during the actual measurement process. To accurately represent the measured values, d(t)
is introduced.

3. CS Fault Diagnosis Methods
Based on the mathematical model proposed in (5), this paper presents a fault diagnosis

method for CSs in the charging modules of DC charging piles using an adaptive SMO. The
diagnostic principle is illustrated in Figure 3. Firstly, the mathematical model of the PSFB
converter circuit within the charging module, which contains a faulty CS, undergoes state
augmentation to obtain an augmented system. This augmentation enables the system to
more comprehensively reflect the state information of the CS. Secondly, a non-singular
coordinate transformation is applied to the augmented system to reconstruct the CS fault,
making the fault characteristics more prominent and facilitating subsequent observation
and diagnosis. Then, the adaptive SMO is established to estimate the reconstructed state.
By incorporating an innovative adaptive reaching law, the observer attains swift conver-
gence and efficiently mitigates high-frequency chattering. The fault detection variable is
represented by the difference between the actual and observed values of the reconstructed
state. Finally, an adaptive threshold is designed using norm theory to realize the fault
diagnosis of the CS.

Figure 3. Schematic diagram of the fault diagnosis.
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3.1. System Augmentation and Transformation

To achieve fault detection of the CS in the PSFB converter, the mathematical model (5)
containing the CS fault is augmented to obtain the following augmented system [25]:{

˙̄x = Āx̄ + B̄1u1 + B̄2u2 + B̄3u3 + Ḡd + Ēϕ

y = C̄x
(6)

where Ā = diag
(

A As

)
, x̄ =

(
x
Fs

)
, B̄1 =

(
B1

0

)
, B̄2 =

(
B2

0

)
, B̄3 =

(
B3

0

)
,

C̄ =
(

C K
)

, Ḡ =

(
G
0

)
, Ē =

(
0
I

)
.

Lemma 1 ([26]). There exists a non-singular transformation matrix, P, such that PĀP−1 =(
A1 A2

A3 A4

)
, PB̄1 =

(
B11

B12

)
, PB̄1 =

(
B11

B12

)
, PB̄2 =

(
B21

B22

)
, PB̄3 =

(
B31

B32

)
,

PḠ =

(
G1

G2

)
, PĒ =

(
0

E2

)
.

According to Lemma 1, if a non-singular coordinate transformation z = Px̄ = ( z1 z2 )T is
performed on the augmented matrix, the result of the system (6) after the coordinate transformation
is as follows: 

ż1 = A1z1 + A2z2 + B11u1 + B21u2 + B31u3 + G1d
ż2 = A3z1 + A4z2 + B12u1 + B22u2 + B32u3 + G2d + E2ϕ

y = C1z1 + C2z2

(7)

3.2. Adaptive SMO Design

Based on the non-singularly transformed system (7), we design an adaptive SMO:
˙̂z1 = A1ẑ1 + A2ẑ2 + B11u1 + B21u2 + B31u3 + K1(z1 − ẑ1) + v(s1)
˙̂z2 = A3ẑ1 + A4ẑ2 + B12u1 + B23u2 + B32u3 + K2(z2 − ẑ2) + v(s2)

ŷ = C1ẑ1 + C2ẑ2

(8)

In the expressions, ẑ1, ẑ2 are the observed values of z1, z2, while K1, K2 are the pa-
rameters to be designed, satisfying A1 − K1 < 0 and A4 − K2 < 0. v(s1), v(s2) represent
the designed adaptive reaching laws. To enhance the approaching speed and dimin-
ish high-frequency chattering, the adaptive reaching laws v(s1), v(s2) are formulated as
outlined below:

v(s1) = k1/
(

λ + (1 + |s1|−1 − λ)e−α|S1|
)

tanh(s1) (9)

v(s2) = k2/
(

λ + (1 + |s2|−1 − λ)e−α|S2|
)

tanh(s2) (10)

where k1, k2 are the designed sliding mode gains, λ, α are positive constants, tanh(s) = es−e−s

es+e−s ,
with the condition that 0 < λ < 1, and s1, s2 represent the sliding surfaces to be determined.

3.3. Calculate the Residual

Based on this, taking the residual e1 = z1 − ẑ1 and e2 = z2 − ẑ2, we can obtain the
following error dynamic system from (7) and (8):

ė1 = (A1 − K1)e1 + A2e2 + G1d − v(s1)

ė2 = A3e1 + (A4 − K2)e2 + G2d + E2ϕ − v(s2)

ŷ = C1ẑ1 + C2ẑ2

(11)
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According to (11), the expression in the error dynamic system ė2 contains the fault
excitation signal ϕ, meaning that ė2 can directly reflect the magnitude of the CS fault. The
residual e2 can be selected as the fault detection variable, and an adaptive threshold for CS
fault diagnosis can be designed based on e2.

To prove the asymptotic stability of the error dynamic system shown in (11), Theorem 1
is presented.

Theorem 1. When the sensor fault does not occur, if there exist P1, P2, and K1, K2 that satisfy the
following conditions:

P1(A1 − K1) + (A1 − K1)
T P1 < 0

P2
(

A4 − K2
)
+
(

A4 − K2
)T P2 < 0

P1 A2 + AT
3 P2 < 0

Then the error dynamic system is asymptotically stable, and the adaptive SMO can estimate the
system output current.

Proof of Theorem 1. Taking the Lyapunov function V1 = eT
1 P1e1 and V2 = eT

2 P2e2, with
the conditions ∥ν(s1)∥ > ∥G1d∥ and ∥ν(s2)∥ > ∥G2d∥, from the error dynamic system (11),
we can derive the following:

V̇1 =ėT
1 P1e1 + eT

1 P1 ė1

=((A1 − K1)e1 + A2e2 + G1d −ν(s1))
T P1e1 + eT

1 P1((A1 − K1)e1 + A2e2 + G1d −ν(s1))

=eT
1

(
P1(A1 − K1) + (A1 − K1)

T P1

)
e1 + 2eT

1 P1 A2e2 + 2eT
1 P1(G1d − ν(s1))

≤eT
1

(
P1(A1 − K1) + (A1 − K1)

T P1

)
e1 + 2eT

1 P1 A2e2

(12)

V̇2 =ėT
2 P2e2 + eT

2 P2 ė2

=(A3e1 + (A4 − K2)e2 + G2d + E2 φ−ν(s2))
T P2e2 + eT

2 P2(A3e1 + (A4 − K2)e2 + G2d + E2 φ−ν(s2))

=eT
2

(
P2(A4 − K2) + (A4 − K2)

T P2

)
e2 + 2eT

2 P2 A3e1 + 2eT
2 P2(G2d + E2 φ − ν(s2))

≤eT
2

(
P2(A4 − K2) + (A4 − K2)

T P2

)
e2 + 2eT

2 P2 A3e1

(13)

V̇ =V̇1 + V̇2

=((A1 − K1)e1 + A2e2 + G1d −ν(s1))
T P1e1 + eT

1 P1((A1 − K1)e1 + A2e2 + G1d −ν(s1))

+ (A3e1 + (A4 − K2)e2 + G2d + E2 φ−ν(s2))
T P2e2 + eT

2 P2(A3e1 + (A4 − K2)e2 + G2d + E2 φ−ν(s2))

≤eT
1

(
P1(A1 − K1) + (A1 − K1)

T P1

)
e1 + eT

2

(
P2(A4 − K2) + (A4 − K2)

T P2

)
e2 + 2eT

1

(
P1 A2 + A3

T P2

)
e2

=eTΠe

(14)

where Ψ1 = P1(A1 − K1) + (A1 − K1)
T P1, Ψ2 = P1 A2 + AT

3 P2, Ψ3 = P2
(

A4 − K2
)
+(

A4 − K2
)T P2, Π =

(
Ψ1 Ψ2

ΨT
2 Ψ3

)
, e =

(
e1 e2

)T
Since the conditions A1 − K1 < 0

and A4 − K2 < 0 are met when constructing the adaptive SMO, it can be concluded
from the above that V̇ < 0, which means that the error of the error dynamic system (11)
will eventually converge to 0, indicating that (11) is asymptotically stable. The proof is
complete.
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3.4. Adaptive Threshold Design for Fault Diagnosis

Based on the adaptive SMO designed above, ∥e2∥ incorporating the fault excitation
signal ϕ is utilized to construct the fault detection variable. According to (11), e2 can be
calculated, and the expression of e2 is given as follows:

e2 =
∫ t

0
e(A4−K2)t(A3e1 + G2d + E2ϕ − v(s2))dr + e(A4−K2)te2(0) (15)

Utilizing the properties of the norm triangle inequality, the following can be derived
from (18):

∥e2∥ ≤
∫ t

0
eλst(∥A3∥∥e1∥+ ∥G2d∥+ ∥E2∥∥ϕ∥)dr + eλstωs (16)

where λs satisfies e(A4−K2)t < eλst, and ωs is the upper bound of ∥e2(0)∥, ∥e2(0)∥ ≤ ωs.
On this basis, adaptive thresholds for different stages are designed based on the evolu-

tion progress of the CS fault in the PSFB converter circuit, aiming to achieve more accurate
diagnostic results. It is essential to emphasize that the process of selecting parameters
for the adaptive thresholds involves a meticulous balance between the sensitivity and
robustness of fault detection, aimed at preventing both false negatives and false positives.
• In the stage of incipient fault in the CS of the PSFB converter circuit, where

5% ≤ Γ ≤ 15%, the adaptive threshold, Th1, for detecting incipient faults is designed
as follows, based on (19):

Th1=
∫ t

0
eλst(∥A3∥∥e1∥+ ∥G2d∥+ ∥E2∥ϕ1)dr + eλstωs (17)

where ϕ1 represents the critical value of the fault excitation signal ϕ corresponding
to the occurrence of an incipient fault in the CS. Assuming T1 is the time when the
incipient fault in CS occurs, the diagnosis time Tth1 for this incipient fault in the sensor
can be expressed as follows:

Tth1 = inf{t > T1||e2| > Th1} (18)

• In the stage of significant fault in the CS of the PSFB converter circuit, where
15% ≤ Γ ≤ 50%, the adaptive threshold Th2 for detecting significant faults is de-
signed as follows, based on (19):

Th2=
∫ t

0
eλst(∥A3∥∥e1∥+ ∥G2d∥+ ∥E2∥ϕ2)dr + eλstωs (19)

where ϕ2 represents the critical value of the fault excitation signal ϕ corresponding
to the occurrence of a significant fault in the CS. Assuming T2 is the time when the
significant fault in the sensor occurs, the diagnosis time Tth2 for this significant fault in
the sensor can be expressed as follows:

Tth2 = inf{t > T2||e2| > Th2} (20)

• In the failure state of the CS in the PSFB converter circuit, where Γ > 50%, the
adaptive threshold Th3 for detecting the failure fault is designed as follows, based on
Equation (19):

Th3=
∫ t

0
eλst(∥A3∥∥e1∥+ ∥G2d∥+ ∥E2∥ϕ3)dr + eλstωs (21)
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where ϕ3 represents the critical value of the fault excitation signal ϕ corresponding
to the occurrence of the CS failure. Given that T3 is the time when the sensor failure
occurs, the diagnosis time Tth3 for the sensor failure fault can be calculated as follows:

Tth3 = inf{t > T3||e2| > Th3} (22)

4. Experimental Verification
To validate the effectiveness and robustness of the fault diagnosis method proposed in

this paper, the HIL simulation experimental setup, as illustrated in Figure 4, was employed
for experimental verification. This experimental setup comprises a dSPACE MicroLabBox,
a host computer, a digital signal processor (DSP) controller with the model TMS320F28335,
and an oscilloscope. Table 1 provides the detailed key parameters of the PSFB converter
used in the experiments.

Figure 4. HIL experimental device.

Table 1. Key parameters of the PSFB converter.

Parameter Value Parameter Value

Switching frequency 100 kHz Output Power 400 W
Output Voltage 200 V Output Current 22 A

Resonant Inductance 40 uH Filter Inductance 44 nH
Filter Capacitor 500 uF Turns Ratio 2.5

4.1. Fault Diagnosis of Faults in CSs
4.1.1. Fault Diagnosis of CS Incipient Faults

This section validates the efficacy of the proposed fault diagnosis methodology by
exemplifying an incipient fault in the CS. As evident from Figure 5, subsequent to the
occurrence of an incipient fault in the CS at t = 0.265 s, z2 gradually increases with
the augmentation of the fault amplitude, while ẑ2 remains largely stable, resulting in a
continuous escalation of the ∥e2∥. At t = 0.3 s, ∥e2∥ surpasses Th1, suggesting the presence
of an incipient fault in the CS. As the fault amplitude continues to intensify, ∥e2∥ exceeds
Th2 at 0.35 s, signifying a significant fault in the CS. Finally, at t = 0.438 s, ∥e2∥ once more
transcends the adaptive threshold Th3, indicating that the CS is in a state of failure.
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Figure 5. Incipient fault diagnosis results of CS.

4.1.2. Fault Diagnosis of CS Offset Faults

As shown in Figure 6, at t = 0.25 s, a significant deviation between the measurement
result of the output CS and the actual value is observed. Moreover, z2 varies with the change
in fault amplitude, while ẑ2 remains largely unchanged. Moreover, ∥e2∥ also exhibits a
notable change. At t = 0.254 s, ∥e2∥ surpasses the adaptive threshold Th2, with a detection
time of 4 ms, confirming that the CS is experiencing a significant fault condition.

Figure 6. Offset fault diagnosis results of CS.

4.1.3. Fault Diagnosis of CS Stuck Faults

As depicted in Figure 7, a stuck fault occurs in the CS at 0.25 s. Due to the subtle
fluctuations in the output value of the CS, z2 undergoes a transformation according to the
fault amplitude, while ẑ2 remains largely unchanged. Notably, ∥e2∥ exhibits a significant
change. At t = 0.252 s, ∥e2∥ surpasses the adaptive threshold, Th1, indicating that the CS is
in an incipient fault state, with a detection time of 2 ms.
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Figure 7. Stuck fault diagnosis results of CS.

4.1.4. Fault Diagnosis of CS Disconnection Faults

As illustrated in Figure 8, upon the occurrence of a disconnection fault in CS at
0.25 s, the measured value of the CS drops to zero, resulting in a pronounced change in z2.
Meanwhile, ẑ2 remains largely unchanged, and ∥e2∥ also exhibits a significant variation.
Notably, ∥e2∥ surpasses the adaptive thresholds Th1, Th2, and Th3 almost simultaneously,
with a detection time of 5 ms, indicating a fault in the CS.

Figure 8. Disconnection fault diagnosis results of CS.

4.2. Robustness Verification
4.2.1. DC-Side Voltage Fluctuations

• To verify the robustness of the fault detection method proposed in this paper, Figure 9
presents the diagnosis results of the incipient fault in the CS under DC-side voltage
fluctuations. In this scenario, a DC-side voltage fluctuation is introduced at t = 1 s,
followed by an incipient fault in the CS occurring at t = 1.5 s. Upon the introduction
of the DC-side voltage fluctuation at t = 1 s, the output current experiences slight
fluctuations; however, ∥e2∥ remains close to zero, indicating no false alarm. Subse-
quently, when the CS fault occurs at 1.5 s, as depicted in Figure 9d, ∥e2∥ sequentially
exceeds Th1, Th2, and Th3, demonstrating that the proposed fault detection method
successively identifies the occurrence of an incipient fault, a significant fault, and a
complete failure in the sensor.
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Figure 9. Robustness verification results of the CS incipient fault under DC-side voltage fluctuations.

• To demonstrate the robustness of the fault detection method introduced in this paper,
Figure 10 displays the diagnostic results for a CS disconnection fault under Udc

fluctuations. In detail, Udc fluctuations are introduced at t = 1 s, followed by a CS
disconnection fault at t = 1.5 s. Despite slight fluctuations in the output current
following the Udc fluctuations after 1 s, ∥e2∥ remains stable near zero and avoids
triggering any false alarms. Nevertheless, upon the occurrence of the CS failure at
t = 1.5 s, Figure 10d clearly illustrates that ∥e2∥ surpasses the Th3 rapidly, confirming
the successful detection of the sensor failure by the fault detection method presented
in this paper.

Figure 10. Robustness verification results of the CS disconnection fault under the DC-side voltage
fluctuation.
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4.2.2. Load Fluctuations

• To validate the robustness of the fault detection method proposed in this paper under
load fluctuations, Figure 11 presents the diagnostic results of an incipient fault in
the CS when the load resistance abruptly changes. Specifically, at t = 1 s, the load
increases to 1.2 times its original value, and an incipient fault occurs in the CS at 1.4 s.
Following the load fluctuation, there is a slight variation in the output current, and
the fault detection thresholds undergo significant changes. Nevertheless, ∥e2∥ does
not exceed the threshold, thus avoiding false alarms. When the CS fault occurs at
1.5 s, as depicted in Figures 10 and 11c, the observer residuals sequentially exceed Th1,
Th2, and Th3, indicating the detection of an incipient fault, a significant fault, and a
complete failure in the sensor, respectively.

Figure 11. Robustness verification results of the CS incipient fault under load torque variation.

• To assess the robustness of the fault detection approach introduced in this paper when
subjected to load torque variation, Figure 12 demonstrates the diagnostic results of
a CS offset fault scenario where the load torque abruptly rises to 1.2 times its initial
value. The load change takes place at t = 1 s, followed by the occurrence of a CS offset
fault at t = 1.5 s. This load torque variation leads to minor fluctuations in the output
current and necessitates a substantial adjustment in the fault detection threshold.
Nevertheless, ∥e2∥ remains below the predefined threshold, thereby avoiding any
false alarms. Upon the actual manifestation of the CS fault at t = 1.5 s, as depicted
in Figure 12c, the observer’s residual experiences a rapid increase and exceeds Th2,
confirming the successful identification of the significant fault by the fault detection
method presented in this paper.

The final results of the aforementioned experiments demonstrate that the innovative
fault diagnosis method proposed in this paper exhibits exceptional robustness when dealing
with complex and variable interference scenarios such as Udc fluctuations and load torque
variation. This method does not generate false alarms under adverse conditions and
maintains a high level of diagnostic stability across various interference scenarios, ensuring
the continuity and reliability of diagnostic results. Moreover, it demonstrates extremely
high diagnostic accuracy, capable of precisely identifying fault types and locations. This
provides a strong guarantee for rapid fault handling and the safe operation of the system.
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Figure 12. Robustness verification results of the CS offset fault under load torque variation.

4.3. Comparison of Fault Diagnosis Methods for Various CSs

To demonstrate the advantages of the method introduced in this paper, Table 2
contrasts it with existing fault diagnosis techniques for CSs. According to the table,
while reference [27] necessitates the incorporation of new hardware structures into the
existing topology and is limited to diagnosing significant faults in CSs, references [6,28,29]
do not require any additional hardware. However, the diagnostic approach suggested
in [6] requires a considerable amount of data for training a random vector functional link
network, leading to an extended diagnosis duration. In contrast, references [28,29] solely
concentrate on disconnection faults in CSs, thereby covering a narrow spectrum of fault
types. In comparison to these methods, the fault diagnosis method for CSs presented in
this paper is applicable to scenarios encompassing incipient faults, significant faults, and
complete failure faults. The method offers a faster diagnosis time, necessitates no extra
hardware, and demonstrates superior diagnostic capabilities.

Table 2. Comparison of different fault diagnosis methods for CS.

Methods Topological Structure Additional Hardware Diagnosis
Time Complexity Fault Types

[6] Three-Phase Two-Level Inverter No ≈20 ms High Sensor Disconnection, Stuck, and Gain Faults
[28] Three-Phase Two-Level Inverter No 6–18 ms Medium Sensor Disconnection Fault
[27] Three-Phase Two-Level Inverter Yes <12.3 ms Medium Sensor Stuck Fault
[29] Single-Phase Two-Level Rectifier No >6 ms High CS Disconnection Fault
This method PSFB Converter No <5 ms Medium CS Disconnection, Stuck, and Offset Faults

5. Conclusions
Addressing the issue of CS faults in the PSFB converter of DC charging piles, this

paper innovatively proposes a fault diagnosis method based on an adaptive SMO. This
approach ingeniously integrates techniques such as state augmentation and non-singular
coordinate transformation to design the adaptive SMO. By introducing a novel adaptive
reaching law, the observer not only achieves fast convergence but also effectively suppresses
high-frequency chattering, thereby enhancing the observation accuracy of the system’s
reconstructed state. In practical applications, this method enables more precise diagnosis
of CS faults, significantly reducing the likelihood of misdiagnosis. Furthermore, this paper
designs an adaptive threshold based on norm criteria, which not only strengthens the
accuracy of fault diagnosis but also enhances its robustness. By dynamically adjusting
the threshold, the method can more flexibly adapt to fault detection requirements under
different operating conditions, effectively mitigating misjudgments caused by environmen-
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tal variations or noise interference, thus demonstrating higher reliability and stability in
practical applications.

Nevertheless, there remain several unresolved issues in this paper. Future work should
further explore the following directions: First, optimize the fault diagnosis algorithm to
enhance diagnostic efficiency and accuracy. Second, investigate a wider range of CS faults
to broaden the applicability of the diagnostic method. Third, apply the research findings to
practical DC charging systems for long-term performance evaluation and validation. It is
hoped that this work will provide more comprehensive and effective safeguards for the
safe operation of DC charging piles.
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