Stereo Event-Based Visual–Inertial Odometry
<p>(<b>Top left</b>): scene. (<b>Bottom left</b>): inverse depth map at time <span class="html-italic">t</span>, and different colors represent different depths. (<b>Right</b>): global map and pose estimation.</p> "> Figure 2
<p>Overview of our proposed stereo event-based visual–inertial odometry.</p> "> Figure 3
<p>Time-surface. (<b>Left</b>): output of an event camera, and different colors represent different times. (<b>Right</b>): time-surface map. Figure adapted from [<a href="#B16-sensors-25-00887" class="html-bibr">16</a>].</p> "> Figure 4
<p>Time-surface and its included historical information.</p> "> Figure 5
<p>Algorithm performance. The left image shows the experimental scene, while the right image displays the local point clouds and trajectories.</p> "> Figure 6
<p>The first column shows images from a traditional camera. The second column is the time-surface. The third column is the inverse depth map. The last column is the warping depth map overlaid on the time-surface negative.</p> ">
Abstract
:1. Introduction
- A novel visual–inertial odometry is presented for stereo event cameras based on ESKF.
- Our method relies solely on visual information from event cameras and does not incorporate traditional cameras. Some approaches use images from traditional cameras, and in certain challenging scenarios, the failure of the traditional camera can lead to system failure, negatively impacting the performance of the event camera.
- A quantitative evaluation of our pipeline is compared with other methods on the public event camera datasets, demonstrating the effectiveness of our system.
2. Related Work
2.1. Event-Based Depth Estimation
2.2. Event-Based 3-DOF Estimation
2.3. Event-Based VO
2.4. Event-Based VIO
3. Visual–Inertial Pipeline
3.1. Framework Overview
3.2. Event Representation (Time-Surface)
3.3. Vision Module
3.3.1. The 3D Point Cloud Reconstruction
3.3.2. Pose Estimation by Events
3.4. ESKF Description
3.4.1. Structure of the ESKF State Vector
Algorithm 1 Framework of SEVIO |
Input: The event data from two event-based cameras; The acceleration and angular velocity from IMU. Output: The pose of the body frame with respect to the global frame . |
3.4.2. Process Model
3.4.3. Measurement Model
3.4.4. Fuse Poses from IMU and Vision
4. Experiments
4.1. Datasets Used
4.2. Accuracy Evaluation
4.3. Real-Time Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
References
- Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M. Visual simultaneous localization and mapping: A survey. Artif. Intell. Rev. 2015, 43, 55–81. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128×128 120 dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef]
- Gallego, G.; Delbruck, T.; Orchard, G.M.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-Based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [Google Scholar] [CrossRef]
- Zhu, A.Z.; Atanasov, N.; Daniilidis, K. Event-based feature tracking with probabilistic data association. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4465–4470. [Google Scholar] [CrossRef]
- Gehrig, D.; Rebecq, H.; Gallego, G.; Scaramuzza, D. EKLT: Asynchronous Photometric Feature Tracking Using Events and Frames. Int. J. Comput. Vis. 2020, 128, 601–618. [Google Scholar] [CrossRef]
- Cook, M.; Gugelmann, L.; Jug, F.; Krautz, C.; Steger, A. Interacting maps for fast visual interpretation. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 770–776. [Google Scholar] [CrossRef]
- Kim, H.; Handa, A.; Benosman, R.; Ieng, S.-H.; Davison, A. Simultaneous mosaicing and tracking with an event camera. J. Solid Circuits 2008, 43, 566–576. [Google Scholar]
- Reinbacher, C.; Munda, G.; Pock, T. Real-time panoramic tracking for event cameras. In Proceedings of the 2017 IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Gallego, G.; Scaramuzza, D. Accurate Angular Velocity Estimation With an Event Camera. IEEE Robot. Autom. Lett. 2017, 2, 632–639. [Google Scholar] [CrossRef]
- Kim, H.; Leutenegger, S.; Davison, A.J. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; ECCV 2016. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9910. [Google Scholar] [CrossRef]
- Rebecq, H.; Horstschaefer, T.; Gallego, G.; Scaramuzza, D. EVO: A Geometric Approach to Event-Based 6-DOF Parallel Tracking and Mapping in Real Time. IEEE Robot. Autom. Lett. 2017, 2, 593–600. [Google Scholar] [CrossRef]
- Liu, D.; Parra, A.; Latif, Y.; Chen, B.; Chin, T.-J.; Reid, I. Asynchronous Optimisation for Event-based Visual Odometry. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 9432–9438. [Google Scholar] [CrossRef]
- Chamorro, W.; Solà, J.; Andrade-Cetto, J. Event-Based Line SLAM in Real-Time. IEEE Robot. Autom. Lett. 2022, 7, 8146–8153. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Peng, X.; Wu, P.; Gao, L.; Huang, K.; Chen, J.; Kneip, L. Visual Odometry with an Event Camera Using Continuous Ray Warping and Volumetric Contrast Maximization. Sensors 2022, 22, 5687. [Google Scholar] [CrossRef]
- Zhou, Y.; Gallego, G.; Shen, S. Event-Based Stereo Visual Odometry. IEEE Trans. Robot. 2021, 37, 1433–1450. [Google Scholar] [CrossRef]
- Rebecq, H.; Gallego, G.; Mueggler, E.; Scaramuzza, D. EMVS: Event-Based Multi-View Stereo 3D Reconstruction with an Event Camera in Real-Time. Int. J. Comput. Vis. 2018, 126, 1394–1414. [Google Scholar] [CrossRef]
- Gallego, G.; Rebecq, H.; Scaramuzza, D. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kogler, J.; Sulzbachner, C.; Humenberger, M.; Eibensteiner, F. Address-event based stereo vision with bio-inspired silicon retina imagers. In Advances in Theory and Applications of Stereo Vision; InTechOpen: Rijeka, Croatia, 2011; pp. 165–188. [Google Scholar]
- Schraml, S.; Belbachir, A.N.; Milosevic, N.; Schon, P. Dynamic stereo vision system for real-time tracking. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 1409–1412. [Google Scholar] [CrossRef]
- Ieng, S.-H.; Carneiro, J.; Osswald, M.; Benosman, R. Neuromorphic Event-Based Generalized Time-Based Stereovision. Front. Neurosci. 2018, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gallego, G.; Rebecq, H.; Kneip, L.; Li, H.; Scaramuzza, D. Semi-dense 3D reconstruction with a stereo event camera. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Kogler, J.; Humenberger, M.; Sulzbachner, C. Event-Based Stereo Matching Approaches for Frameless Address Event Stereo Data. In Advances in Visual Computing; Bebis, G., Boyle, R., Parvin, B., Eds.; ISVC 2011 Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6938. [Google Scholar] [CrossRef]
- Lee, J.; Delbruck, T.; Park, P.K.J.; Pfeiffer, M.; Shin, C.-W.; Ryu, H.; Kang, B.C. Live demonstration: Gesture-based remote control using stereo pair of dynamic vision sensors. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Republic of Korea, 20–23 May 2012; pp. 741–745. [Google Scholar] [CrossRef]
- Weikersdorfer, D.; Hoffmann, R.; Conradt, J. Simultaneous Localization and Mapping for Event-Based Vision Systems. In Computer Vision Systems; Chen, M., Leibe, B., Neumann, B., Eds.; ICVS 2013. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7963. [Google Scholar] [CrossRef]
- Zhu, Z.; Alex, N.A.; Daniilidis, K. Event-based visual inertial odometry. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Real-time visual-inertial odometry for event cameras using keyframe-based nonlinear optimization. In Proceedings of the British Machine Vision Conference, London, UK, 4–7 September 2017; pp. 1–8. [Google Scholar]
- Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001. [Google Scholar] [CrossRef]
- Mueggler, E.; Gallego, G.; Rebecq, H.; Scaramuzza, D. Continuous-Time Visual-Inertial Odometry for Event Cameras. IEEE Trans. Robot. 2018, 34, 1425–1440. [Google Scholar] [CrossRef]
- Le Gentil, C.; Tschopp, F.; Alzugaray, I.; Vidal-Calleja, T.; Siegwart, R.; Nieto, J. IDOL: A Framework for IMU-DVS Odometry using Lines. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5863–5870. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, D.; Li, R.; Yang, S. ESVIO: Event-Based Stereo Visual-Inertial Odometry. Sensors 2023, 23, 1998. [Google Scholar] [CrossRef] [PubMed]
- Elamin, A.; El-Rabbany, A.; Jacob, S. Event-Based Visual/Inertial Odometry for UAV Indoor Navigation. Sensors 2025, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [Google Scholar] [CrossRef]
- Geneva, P.; Eckenhoff, K.; Lee, W.; Yang, Y.; Huang, G. OpenVINS: A Research Platform for Visual-Inertial Estimation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4666–4672. [Google Scholar] [CrossRef]
- Delbruck, T. Frame-free dynamic digital vision. In Proceedings of the International Symposium on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Tokyo, Japan, 6–7 March 2008; Volume 1. [Google Scholar]
- Lagorce, X.; Orchard, G.; Galluppi, F.; Shi, B.E.; Benosman, R.B. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1346–1359. [Google Scholar] [CrossRef]
- Zhu, A.Z.; Thakur, D.; Ozaslan, T.; Pfrommer, B.; Kumar, V.; Daniilidis, K. The Multivehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception. IEEE Robot. Autom. Lett. 2018, 3, 2032–2039. [Google Scholar] [CrossRef]
- Gao, L.; Liang, Y.; Yang, J.; Wu, S.; Wang, C.; Chen, J.; Kneip, L. VECtor: A Versatile Event-Centric Benchmark for Multi-Sensor SLAM. IEEE Robot. Autom. Lett. 2022, 7, 8217–8224. [Google Scholar] [CrossRef]
Dataset | Camera | IMU | Resolution (pixel) | Baseline (cm) |
---|---|---|---|---|
MVSEC | DAVIS 346 | MPU6150 | 10.0 | |
VECtor | Prophesee Gen3 | MTi-30 | 17.0 |
Sequences | ESVO | U-SLAM | SEVIO (Ours) | |||
---|---|---|---|---|---|---|
APE (m) | RPE (m) | APE (m) | RPE (m) | APE (m) | RPE (m) | |
indoor_flying1_edit | 0.190 | 0.014 | - | - | 0.299 | 0.011 |
indoor_flying3_edit | 0.342 | 0.027 | 0.473 | 0.024 | 0.266 | 0.010 |
school_dolly_edit | 0.990 | 0.077 | 1.260 | 0.082 | 0.703 | 0.075 |
school_scooter_edit | 2.666 | 0.233 | - | - | 1.291 | 0.195 |
units_dolly_edit | 0.714 | 0.096 | 0.628 | 0.089 | 0.514 | 0.084 |
units_scooter_edit | 0.652 | 0.083 | - | - | 0.461 | 0.072 |
sofa_normal_edit | 0.368 | 0.031 | - | - | 0.286 | 0.024 |
desk_normal_edit | 0.416 | 0.034 | 0.752 | 0.048 | 0.325 | 0.027 |
hdr_normal_edit | 0.157 | 0.012 | - | - | 0.126 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhao, K.; Lu, W.; You, Z. Stereo Event-Based Visual–Inertial Odometry. Sensors 2025, 25, 887. https://doi.org/10.3390/s25030887
Wang K, Zhao K, Lu W, You Z. Stereo Event-Based Visual–Inertial Odometry. Sensors. 2025; 25(3):887. https://doi.org/10.3390/s25030887
Chicago/Turabian StyleWang, Kunfeng, Kaichun Zhao, Wenshuai Lu, and Zheng You. 2025. "Stereo Event-Based Visual–Inertial Odometry" Sensors 25, no. 3: 887. https://doi.org/10.3390/s25030887
APA StyleWang, K., Zhao, K., Lu, W., & You, Z. (2025). Stereo Event-Based Visual–Inertial Odometry. Sensors, 25(3), 887. https://doi.org/10.3390/s25030887