Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control
<p>MCC-IMS data acquired from an olive oil sample. An MCC chromatogram and an IMS spectrum are also shown. IMS spectra show prominent peak (RIP) close to 6 ms. The region of the image in which most of the peaks appear is also shown in a three-dimensional plot, showing the complexity of the captured data. Note the non-uniform color scale to highlight the peaks in data.</p> "> Figure 2
<p>Steps involved in the development of calibration models for MCC-IMS data 2.2.1 preprocessing.</p> "> Figure 3
<p>Double cross-validation scheme utilized to evaluate the classification performance of models.</p> "> Figure 4
<p>(<b>a</b>) Segment of a spectrum before and after applying a second derivative Savitzky–Golay filter with window sizes of n = 7 and n = 9; (<b>b</b>) a different segment of the same spectrum filtered with window sizes of n = 35 and n = 39. Note the presence of an optimal window size that minimizes noise while preserving the spectral shape; (<b>c</b>) filtered spectrum and baseline estimation using AsLS after various iterations, showing rapid convergence toward accurate baseline estimation; (<b>d</b>) filtered spectrum and the resulting spectrum after baseline correction; (<b>e</b>) three spectra (acquired at tret = 104 s), each corresponding to one of the olive oil classes (LOO, VOO, and EVOO) after noise removal and baseline correction, demonstrating misaligned peaks; (<b>f</b>) the same spectra after peak alignment.</p> "> Figure 5
<p>The selection of latent variables was based on optimizing classification accuracy during internal validation. The figure indicates that data preprocessing reduces model complexity while maintaining performance. Baseline removal followed by peak alignment are the preprocessing steps that contribute most to this improvement.</p> "> Figure 6
<p>Scores for the first two latent variables of the training set. The same projection is used for the test samples. EVOO samples tend to exhibit higher scores on LV1.</p> "> Figure 7
<p>Average VIP scores of the final PLS-DA models. Relevant features for samples’ class separation (VIP score higher than 1) are colored in red hues.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Dataset
2.2. Methods
- Noise Reduction
- Baseline correction
- Peak alignment
2.3. Methods for Data Analysis
2.3.1. Model Selection
2.3.2. Evaluation of Model Performance
3. Results and Discussion
3.1. Preprocessing
3.2. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlett, P.N. Electronic Noses: Principles and Applications; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Wang, M.; Chen, Y. Electronic nose and its application in the food industry: A review. Eur. Food Res. Technol. 2024, 250, 21–67. [Google Scholar] [CrossRef]
- Khorramifar, A.; Karami, H.; Lvova, L.; Kolouri, A.; Łazuka, E.; Piłat-Rożek, M.; Łagód, G.; Ramos, J.; Lozano, J.; Kaveh, M.; et al. Environmental engineering applications of electronic nose systems based on MOX gas sensors. Sensors 2023, 23, 5716. [Google Scholar] [CrossRef]
- Pal, S.; Kumar, D.; Ulucan-Karnak, F.; Narang, J.; Shukla, S.K. Bio-inspired electronic sensors for healthcare applications. Chem. Eng. J. 2024, 499, 155894. [Google Scholar] [CrossRef]
- Wang, F.; Bai, D.; Liu, Z.; Yao, Z.; Weng, X.; Xu, C.; Fan, K.; Zhao, Z.; Chang, Z. A two-step e-nose system for vehicle drunk driving rapid detection. Appl. Sci. 2023, 13, 3478. [Google Scholar] [CrossRef]
- Kress-Rogers, E. Biosensors and electronic noses for practical applications. In Handbook of Biosensors and Electronic Noses; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Muhammad, N.; Sulong, M.S.; Bakar, M.F.; Bakar, M.A.; Mayzan, M.Z.; Rahim, N.F.; Marzuki, W.N.; Pauzi, A.N.; Hussin, N.B.; Ismail, N.I.; et al. Electronic nose investigation and antioxidant assessment of CHARMS™ skincare cosmetics toward skin tone improvement. J. Dermatol. Sci. Cosmet. Technol. 2024, 2, 100060. [Google Scholar] [CrossRef]
- Liu, P.; Guo, X.; Liang, C.; Du, B.; Tan, Y.; Zheng, H.; Min, C.; Guo, Y.; Yang, X. Rapid Detection of Trace Nitro-Explosives under UV Irradiation by Electronic Nose with Neural Networks. ACS Appl. Mater. Interfaces 2023, 15, 36539–36549. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, L.; Wang, M.; Su, C.; Wang, D.; Dong, H.; Chen, J.; Wu, W. Review on algorithm design in electronic noses: Challenges, status, and trends. Intell. Comput. 2023, 2, 0012. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P. Tripathi, A review on chemiresistive gas sensors based on carbon nanotubes: Device and technology transformation. Sens. Actuators A Phys. 2018, 283, 174–186. [Google Scholar] [CrossRef]
- Fernandez, L.; Guney, S.; Gutierrez-Galvez, A.; Marco, S. Calibration transfer in temperature modulated gas sensor arrays. Sens. Actuators B Chem. 2016, 231, 276–284. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Y.; Zhu, H.; Zhang, H.; Yuan, Z.; Meng, F. Interference suppression strategies for trace minor component of semiconductor gas sensor based on temperature modulation mode. Sens. Actuators B Chem. 2023, 388, 133874. [Google Scholar] [CrossRef]
- Meng, F.; Mi, C.; Luan, X.; Ji, H.; Zhu, H.; Yuan, Z. Detection of drug-producing chemicals based on gas sensor array with dynamic temperature modulation. IEEE Sens. J. 2023, 8, 8109–8119. [Google Scholar] [CrossRef]
- Iwata, T.; Saeki, M.; Okura, Y.; Yoshikawa, T. Gas discrimination based on enhanced gas-species related information obtained by a single gas sensor with novel temperature modulation. Sens. Actuators B Chem. 2022, 354, 131225. [Google Scholar] [CrossRef]
- Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Dai, X.; Yao, G.; Xiao, Z. Application of gas chromatography-based electronic nose for classification of Chinese rice wine by wine age. Food Anal. Methods 2014, 7, 1489–1497. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Stürmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G.C. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 2005, 105, 400–406. [Google Scholar] [CrossRef]
- Pavón, J.L.; del Nogal Sánchez, M.; Ferreira, A.M.; Cordero, B.M. Mass Spectrometry-Based Electronic Nose for Bioanalysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 1–9. [Google Scholar]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2020, 21, 5763–5770. [Google Scholar] [CrossRef]
- Salleras, M.; Kalms, A.; Krenkow, A.; Kessler, M.; Goebel, J.; Müller, G.; Marco, S. Electrostatic shutter design for a miniaturized ion mobility spectrometer. Sens. Actuators B Chem. 2006, 118, 338–342. [Google Scholar] [CrossRef]
- Borsdorf, H.; Mayer, T.; Zarejousheghani, M.; Eiceman, G.A. Recent developments in ion mobility spectrometry. Appl. Spectrosc. Rev. 2011, 46, 472–521. [Google Scholar] [CrossRef]
- Karpas, Z. Ion mobility spectrometry in forensic science. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Hill, H.H.; Simpson, G. Capabilities and limitations of ion mobility spectrometry for field screening applications. Field Anal. Chem. Technol. 1997, 1, 119–134. [Google Scholar] [CrossRef]
- Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gracia, I. Review on ion mobility spectrometry. Part 1: Current instrumentation. Analyst 2015, 140, 1376–1390. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Eiceman, G.A.; Stone, J.A. Ion mobility spectrometers in national defense. Anal. Chem. 2004, 76, 390a–397a. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Hauschild, A.C.; Fijten, R.R.; Dallinga, J.W.; Baumbach, J.; Van Schooten, F.J. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 2014, 8, 027105. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Davies, A.N.; Buydens, L.M. Chemometrics for ion mobility spectrometry data: Recent advances and future prospects. Analyst 2016, 141, 5689–5708. [Google Scholar] [CrossRef] [PubMed]
- Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gracia, I. Review on ion mobility spectrometry. Part 2: Hyphenated methods and effects of experimental parameters. Analyst 2015, 140, 1391–1410. [Google Scholar] [CrossRef]
- Kanu, A.B.; Hill, H.H., Jr. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 2008, 1177, 12–27. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Cárdenas, S.; Sielemann, S.; Valcárcel, M. On-line headspace-multicapillary column-ion mobility spectrometry hyphenation as a tool for the determination of off-flavours in foods. J. Chromatogr. A 2014, 1333, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.I. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: Results of a pilot study. Thorax 2009, 64, 744–748. [Google Scholar] [CrossRef]
- Guamán, A.V.; Carreras, A.; Calvo, D.; Agudo, I.; Navajas, D.; Pardo, A.; Marco, S.; Farré, R. Rapid detection of sepsis in rats through volatile organic compounds in breath. J. Chromatogr. B 2012, 881, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Vautz, W.; Seifert, L.; Liedtke, S.; Hein, D. GC/IMS and GC/MS analysis of pre-concentrated medical and biological samples. Int. J. Ion Mobil. Spectrom. 2014, 17, 25–33. [Google Scholar] [CrossRef]
- Scheinemann, A.; Sielemann, S.; Walter, J.; Doll, T. Evaluation strategies for coupled GC-IMS measurement including the systematic use of parametrized ANN. Open J. Appl. Sci. 2012, 2, 257. [Google Scholar] [CrossRef]
- Szymańska, E.; Brodrick, E.; Williams, M.; Davies, A.N.; van Manen, H.J.; Buydens, L.M. Data size reduction strategy for the classification of breath and air samples using multicapillary column-ion mobility spectrometry. Anal. Chem. 2015, 87, 869–875. [Google Scholar] [CrossRef]
- Bader, S.; Urfer, W.; Baumbach, J.I. Preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. Int. J. Ion Mobil. Spectrom. 2008, 11, 43–49. [Google Scholar] [CrossRef]
- Bunkowski, A. MCC-IMS Data Analysis Using Automated Spectra Processing and Explorative Visualisation Methods. Ph.D. Thesis, Bielefeld University, Bielefeld, Germany, 2012. [Google Scholar]
- Hauschild, A.C.; Schneider, T.; Pauling, J.; Rupp, K.; Jang, M.; Baumbach, J.I.; Baumbach, J. Computational methods for metabolomic data analysis of ion mobility spectrometry data—Reviewing the state of the art. Metabolites 2012, 2, 733–755. [Google Scholar] [CrossRef] [PubMed]
- Eilers, P.H.; Boelens, H.F. Baseline correction with asymmetric least squares smoothing. Leiden Univ. Med. Cent. Rep. 2005, 1, 5. [Google Scholar]
- Gerretzen, J.; Buydens, L.M.; Tromp–van den Beukel, A.O.; Koussissi, E.; Brouwer, E.R.; Jansen, J.J.; Szymańska, E. A novel approach for analyzing gas chromatography-mass spectrometry/olfactometry data. Chemom. Intell. Lab. Syst. 2015, 146, 290–296. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S.B. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, G.; Savorani, F.; Engelsen, S.B. icoshift: An effective tool for the alignment of chromatographic data. J. Chromatogr. A 2011, 1218, 7832–7840. [Google Scholar] [CrossRef]
- Bloemberg, T.G.; Gerretzen, J.; Wouters, H.J.; Gloerich, J.; van Dael, M.; Wessels, H.J.; van den Heuvel, L.P.; Eilers, P.H.; Buydens, L.M.; Wehrens, R. Improved parametric time warping for proteomics. Chemom. Intell. Lab. Syst. 2010, 104, 65–74. [Google Scholar] [CrossRef]
- Tomasi, G.; Van Den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. A J. Chemom. Soc. 2004, 18, 231–241. [Google Scholar] [CrossRef]
- Freire, R.; Fernandez, L.; Mallafré-Muro, C.; Martín-Gómez, A.; Madrid-Gambin, F.; Oliveira, L.; Pardo, A.; Arce, L.; Marco, S. Full workflows for the analysis of gas chromatography—Ion mobility spectrometry in foodomics: Application to the analysis of iberian ham aroma. Sensors 2021, 21, 6156. [Google Scholar] [CrossRef] [PubMed]
- Christmann, J.; Rohn, S.; Weller, P. gc-ims-tools–A new Python package for chemometric analysis of GC–IMS data. Food Chem. 2022, 394, 133476. [Google Scholar] [CrossRef]
- Oller-Moreno, S.; Mallafré-Muro, C.; Fernandez, L.; Caballero, E.; Blanco, A.; Guma, J.; Marco, S.; Pardo, A. GCIMS: An R package for untargeted gas chromatography–Ion mobility spectrometry data processing. Chemom. Intell. Lab. Syst. 2023, 241, 104938. [Google Scholar] [CrossRef]
- Casadei, E.; Valli, E.; Panni, F.; Donarski, J.; Gubern, J.F.; Lucci, P.; Conte, L.; Lacoste, F.; Maquet, A.; Brereton, P.; et al. Emerging trends in olive oil fraud and possible countermeasures. Food Control 2021, 124, 107902. [Google Scholar] [CrossRef]
- Yalcin, S.; Schreiner, M. Stabilities of tocopherols and phenolic compounds in virgin olive oil during thermal oxidation. J. Food Sci. Technol. 2018, 55, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Escudero, A.; Ramos, N.; La Rubia, M.D.; Pacheco, R. Influence of Extreme Storage Conditions on Extra Virgin Olive Oil Parameters: Traceability Study. J. Anal. Methods Chem. 2016, 2016, 7506807. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Arce, L.; Valcárcel, M. Multi-capillary column-ion mobility spectrometry: A potential screening system to differentiate virgin olive oils. Anal. Bioanal. Chem. 2012, 402, 489–498. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Schafer, R.W. What is a savitzky-golay filter?[lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Sadeghi, M.; Behnia, F.; Amiri, R. Window selection of the Savitzky–Golay filters for signal recovery from noisy measurements. IEEE Trans. Instrum. Meas. 2020, 69, 5418–5427. [Google Scholar] [CrossRef]
- Vivó-Truyols, G.; Schoenmakers, P.J. Automatic selection of optimal Savitzky—Golay smoothing. Anal. Chem. 2006, 78, 4598–4608. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, M.; Kubiak, W.W. Adaptive-degree polynomial filter for voltammetric signals. Anal. Chim. Acta 2004, 512, 241–250. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach; CRC Press: New York, NY, USA, 1993. [Google Scholar]
- Liang, Y.Z.; Leung, A.K.; Chau, F.T. A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data. J. Chemom. A J. Chemom. Soc. 1999, 13, 511–524. [Google Scholar] [CrossRef]
- Schulze, G.; Jirasek, A.; Yu, M.M.; Lim, A.; Turner, R.F.; Blades, M.W. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectrosc. 2005, 59, 545–574. [Google Scholar] [CrossRef] [PubMed]
- Gan, F.; Ruan, G.; Mo, J. Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemom. Intell. Lab. Syst. 2006, 82, 59–65. [Google Scholar] [CrossRef]
- Eilers, P.H. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Chen, S.; Liang, Y.Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Peng, J.; Peng, S.; Jiang, A.; Wei, J.; Li, C.; Tan, J. Asymmetric least squares for multiple spectra baseline correction. Anal. Chim. Acta 2010, 683, 63–68. [Google Scholar] [CrossRef]
- Shao, X.G.; Leung, A.K.; Chau, F.T. Wavelet: A new trend in chemistry. Acc. Chem. Res. 2003, 36, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Boelens, H.F.; Dijkstra, R.J.; Eilers, P.H.; Fitzpatrick, F.; Westerhuis, J.A. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J. Chromatogr. A 2004, 1057, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Oller-Moreno, S.; Pardo, A.; Jiménez-Soto, J.M.; Samitier, J.; Marco, S. Adaptive Asymmetric Least Squares baseline estimation for analytical instruments. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Castelldefels, Spain, 11–14 February 2014. [Google Scholar]
- Boelens, H.F.; Eilers, P.H.; Hankemeier, T. Sign constraints improve the detection of differences between complex spectral data sets: LC−IR as an example. Anal. Chem. 2005, 77, 7998–8007. [Google Scholar] [CrossRef] [PubMed]
- Perl, T.; Bödeker, B.; Jünger, M.; Nolte, J.; Vautz, W. Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal. Bioanal. Chem. 2010, 397, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Oller-Moreno, S. Data Processing for Life Sciences Measurements with Hyphenated Gas Chromatography-Ion Mobility Spectrometry. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2018. [Google Scholar]
- Berry, M.W.; Mohamed, A.; Yap, B.W. Supervised and Unsupervised Learning for Data Science; Springer International Publishing: New York, NY, USA, 2020. [Google Scholar]
- Marco, S. Chapter 24. Machine Learning and Artificial Intelligence. In Volatile Biomarkers for Human Health: From Nature to Human Senses; Royal Society of Chemistry: Cambridge, UK, 2022; pp. 454–471. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, R.; Fernández, L.; Marco, S. Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: A systematic study. Anal. Bioanal. Chem. 2018, 410, 5981–5992. [Google Scholar] [CrossRef]
- Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; González, D.L.G.; Toschi, T.G. An HS-GC-IMS method for the quality classification of virgin olive oils as screening support for the panel test. Foods 2020, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.M.; Jurado-Campos, N.; Arce, L.; Arroyo-Manzanares, N. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chem. 2019, 288, 315–324. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Dobao-Prieto, M.M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.M.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control 2019, 98, 82–93. [Google Scholar] [CrossRef]
- Jurado-Campos, N.; Arroyo-Manzanares, N.; Viñas, P.; Arce, L. Quality authentication of virgin olive oils using orthogonal techniques and chemometrics based on individual and high-level data fusion information. Talanta 2020, 219, 121260. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Ruiz Pérez-Cacho, P.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Venturini, F.; Sperti, M.; Michelucci, U.; Gucciardi, A.; Martos, V.M.; Deriu, M.A. Extraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oil. J. Food Eng. 2023, 336, 111198. [Google Scholar] [CrossRef]
Reference | Type of Separation | Number of Samples | Accuracy (%) | Chemometric Approach |
---|---|---|---|---|
[55] | MCC | 98 | 87 | PCA-LDA |
[84] | MCC/GC | 55 | 79/83 | PCA-LDA |
[83] | GC | 701 | 79 | PCA-LDA |
[85] | GC | 268 | 94 | OPLS |
[82] | GC | 198 | 67–95 * | PLS-DA |
[86] | GC | 120 | 72–87 * | PCA-LDA |
[87] | GC | 94 | 83 | PCA-LDA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, L.; Oller-Moreno, S.; Fonollosa, J.; Garrido-Delgado, R.; Arce, L.; Martín-Gómez, A.; Marco, S.; Pardo, A. Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control. Sensors 2025, 25, 737. https://doi.org/10.3390/s25030737
Fernandez L, Oller-Moreno S, Fonollosa J, Garrido-Delgado R, Arce L, Martín-Gómez A, Marco S, Pardo A. Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control. Sensors. 2025; 25(3):737. https://doi.org/10.3390/s25030737
Chicago/Turabian StyleFernandez, Luis, Sergio Oller-Moreno, Jordi Fonollosa, Rocío Garrido-Delgado, Lourdes Arce, Andrés Martín-Gómez, Santiago Marco, and Antonio Pardo. 2025. "Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control" Sensors 25, no. 3: 737. https://doi.org/10.3390/s25030737
APA StyleFernandez, L., Oller-Moreno, S., Fonollosa, J., Garrido-Delgado, R., Arce, L., Martín-Gómez, A., Marco, S., & Pardo, A. (2025). Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control. Sensors, 25(3), 737. https://doi.org/10.3390/s25030737