FDA-MIMO Radar Rapid Target Localization via Reconstructed Reduce Dimension Rooting
<p>Collocated FDA-MIMO radar.</p> "> Figure 2
<p>Complexity comparison versus the number of receive sensors.</p> "> Figure 3
<p>Complexity comparison versus the number of snapshots.</p> "> Figure 4
<p>Scatter figure.</p> "> Figure 5
<p>DOA estimation performance comparison of different algorithms versus SNR.</p> "> Figure 6
<p>Range estimation performance comparison of different algorithms versus SNR.</p> "> Figure 7
<p>DOA estimation performance comparison of different algorithms versus the number of snapshots.</p> "> Figure 8
<p>Range estimation performance comparison of different algorithms versus the number of snapshots.</p> ">
Abstract
:1. Introduction
- (1)
- We decouple DOA and range by reconstructing the steering vector, and all DOA information is fully used in PRF, which prevents DOA estimation performance degradation.
- (2)
- We construct a transformation mechanism between DOA and range, and eliminate the error conduction caused by the extra decoupling operation, which prevents range estimation performance degradation.
- (3)
- We achieve the automatic pairing of DOA estimates and range estimates.
- (4)
- We reduce the large computational costs and realize rapid target localization using RDT and PRF.
2. System Model
3. Proposed Method
Algorithm 1 RDRR-MUSIC |
Input: The output signal Output: |
4. Complexity Analysis
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Li, P.; Li, P.; Tang, L.; Zhang, X.; Wu, Q. Self-Position Awareness Based on Cascade Direct Localization Over Multiple Source Data. IEEE Trans. Intell. Transp. Syst. 2024, 25, 796–804. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, X.; Liu, W.; Li, J. Sparse Enhancement of MIMO Radar Exploiting Moving Transmit and Receive Arrays for DOA Estimation: From the Perspective of Synthetic Coarray. IEEE Trans. Signal Process. 2024, 72, 4022–4036. [Google Scholar] [CrossRef]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006. [Google Scholar] [CrossRef]
- Zubair, M.; Ahmed, S.; Alouini, M.S. Frequency Diverse Array Radar: New Results and Discrete Fourier Transform Based Beampattern. IEEE Trans. Signal Process. 2020, 68, 2670–2681. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C.; Xue, B.; Xu, J. A Novel Deceptive Jamming Approach Against Frequency Diverse Array Radar. IEEE Sensors J. 2021, 21, 8323–8332. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C. Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Li, J. FDA-MIMO radar for 3D localization: Virtual coprime planar array with unfolded coprime frequency offset framework and TRD-MUSIC algorithm. Digit. Signal Process. 2021, 113, 1–15. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Li, J. FDA-MIMO radar for DOD, DOA, and range estimation: SA-MCFO framework and RDMD algorithm. Signal Process. 2021, 188, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Shao, H. Range-Angle Localization of Targets by A Double-Pulse Frequency Diverse Array Radar. IEEE J. Sel. Top. Signal Process. 2014, 8, 106–114. [Google Scholar] [CrossRef]
- Wang, W.; So, H.C. Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar. IEEE Trans. Signal Process. 2014, 62, 2000–2011. [Google Scholar] [CrossRef]
- Li, B.; Bai, W.; Zheng, G. Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar. IEEE Access 2018, 6, 36376–36382. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Gui, R.; Wang, W.; Wu, W. Search-Free DOD, DOA and Range Estimation for Bistatic FDA-MIMO Radar. IEEE Access 2018, 6, 15431–15445. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Liu, W. Augmented Quaternion ESPRIT-Type DOA Estimation With a Crossed-Dipole Array. IEEE Commun. Lett. 2020, 24, 548–552. [Google Scholar] [CrossRef]
- Jie, X.; Wang, W.; Gao, K. FDA-MIMO radar Range–Angle estimation: CRLB, MSE, and resolution analysis. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 284–294. [Google Scholar]
- Zhang, X.; Xu, L.; Xu, L.; Xu, D. Direction of Departure (DOD) and Direction of Arrival (DOA) Estimation in MIMO Radar with Reduced-Dimension MUSIC. IEEE Commun. Lett. 2010, 14, 1161–1163. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Pan, J.; Sun, M.; Wang, Y.; Zhang, X.; Li, J.; Jin, B. Simplified Spatial Smoothing for DOA Estimation of Coherent Signals. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 841–845. [Google Scholar] [CrossRef]
RDRR-MUSIC | |
ESPRIT | |
2D-MUSIC | |
RD-MUSIC |
Algorithm | Complexity Multiplications | Computation Time, s |
---|---|---|
ESPRIT | ||
RDRR-MUSIC | ||
RD-MUSIC | ||
2D-MUSIC |
Parameter | M | N | K | |||
---|---|---|---|---|---|---|
Value | 6 | 8 | 10 GHz | 300 KHz | 3 | m m m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zheng, Z.; Wang, W.-Q. FDA-MIMO Radar Rapid Target Localization via Reconstructed Reduce Dimension Rooting. Sensors 2025, 25, 513. https://doi.org/10.3390/s25020513
Wang C, Zheng Z, Wang W-Q. FDA-MIMO Radar Rapid Target Localization via Reconstructed Reduce Dimension Rooting. Sensors. 2025; 25(2):513. https://doi.org/10.3390/s25020513
Chicago/Turabian StyleWang, Cheng, Zhi Zheng, and Wen-Qin Wang. 2025. "FDA-MIMO Radar Rapid Target Localization via Reconstructed Reduce Dimension Rooting" Sensors 25, no. 2: 513. https://doi.org/10.3390/s25020513
APA StyleWang, C., Zheng, Z., & Wang, W.-Q. (2025). FDA-MIMO Radar Rapid Target Localization via Reconstructed Reduce Dimension Rooting. Sensors, 25(2), 513. https://doi.org/10.3390/s25020513