The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s
<p>Structural diagram of the <span class="html-italic">Agaricus bisporus</span>-harvesting platform: 1. harvesting robot; 2. U-shaped guide rail; 3. mushroom rack; 4. mushroom bed; 5. climbing device.</p> "> Figure 2
<p>Structural diagram of the intelligent <span class="html-italic">Agaricus bisporu</span>-harvesting device: 1. frame; 2. frame stepper motor; 3. track wheel; 4. flexible manipulator; 5. camera; 6. gantry-style robotic arm; 7. control system.</p> "> Figure 3
<p>Workflow diagram of the <span class="html-italic">Agaricus bisporus</span>-harvesting device.</p> "> Figure 4
<p>Truss-type mechanical arm structure diagram. 1. Y-axis stepper motor; 2. synchronous pulley; 3. Y-axis sliding module; 4. timing belt; 5. beam; 6. X-axis sliding module; 7. synchronous pulley; 8. X-axis stepper motor; 9. lead screw sliding platform.</p> "> Figure 5
<p>Manipulator structure and pneumatic driving diagram: (<b>a</b>) flexible manipulator structure diagram; (<b>b</b>) pneumatic drive circuit. 1. Servo motor; 2. connector; 3. spring flange; 4. telescopic rod; 5. air inlet; 6. pneumatic flexible fingers.</p> "> Figure 6
<p>Hardware system of the <span class="html-italic">Agaricus bisporus</span>-harvesting device.</p> "> Figure 7
<p>Upper computer page diagram. The (<b>left</b>) side of the diagram shows the unit’s function buttons, operating hours, and total amount of picking. On the (<b>right</b>) side is the real-time detection screen for <span class="html-italic">Agaricus bisporus</span>.</p> "> Figure 8
<p>The improved network structure of FES-YOLOv5s. The left side of the figure shows the network structure of FES-YOLOv5s, and the right side shows the network structure of some modules. Adapted from Ma et al. [<a href="#B21-sensors-25-00519" class="html-bibr">21</a>].</p> "> Figure 9
<p>Coordinate relationship diagram: O is the world coordinate system (red coordinate system); Om is the flexible manipulator coordinate system (yellow coordinate system); Opo is the camera coordinate system (green coordinate system); xoy is the image coordinate system; and tow is the pixel coordinate system.</p> "> Figure 10
<p>S-type acceleration and deceleration schematic: (<b>a</b>) S-type acceleration and deceleration curves; (<b>b</b>) acceleration process. T1 and T2 are the acceleration time periods; T3 is the constant speed time period; T4 and T5 are the deceleration time periods; a is the point of maximum acceleration.</p> "> Figure 11
<p><span class="html-italic">Agaricus bisporus</span> mushroom growing room.</p> "> Figure 12
<p>Full system test: (<b>a</b>) picking device picking area; (<b>b</b>) reciprocating line-by-line detection method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climbing Mechanism
2.2. Structure of the Intelligent Harvesting Device
2.3. Working Principle
2.4. Key Component Design
2.4.1. Structure of the Gantry-Style Robotic Arm
2.4.2. Structure of the Flexible Manipulator
2.5. Control System Design
2.5.1. Control System Design and Working Principle
2.5.2. Upper-Level Computer Interface Design
2.5.3. Agaricus bisporus Recognition and Localization Method
- (1)
- Recognition Method of Agaricus bisporus
- (2)
- Localization Method of Agaricus bisporus
2.5.4. Control Method for Stepper Motors in Agaricus Bisporus-Picking Robots
- (1)
- Principle of Stepper Motor Control Algorithms
- (2)
- Algorithm Implementation
2.6. Experimental Section
2.6.1. Experimental Environment
2.6.2. Stability Test of the Harvesting Device
2.6.3. Robotic Arm Repetitive Positioning Test
2.6.4. Full-Machine Harvesting Test Experiment
- (1)
- Full-Machine Harvesting Test Method
- (2)
- Evaluation Metrics of Test Results
3. Results
3.1. Stability Test Results of the Harvesting Device
3.2. Robotic Arm Repetitive Positioning Test Results
3.3. Full-Machine Harvesting Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Murtaza, G.; Ditta, A. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A Review. Appl. Sci. 2021, 11, 5943. [Google Scholar] [CrossRef]
- Thakur, M.P. Advances in mushroom production: Key to food, nutritional and employment security: A review. Indian Phytopathol. 2020, 73, 377–395. [Google Scholar] [CrossRef]
- Singh, M.; Kamal, S.; Sharma, V.P. Status and trends in world mushroom production-III-World Production of different mushroom species in 21st century. Mushroom Res. 2020, 29, 3261. [Google Scholar] [CrossRef]
- Beghi, R.; Giovenzana, V.; Tugnolo, A.; Pessina, D.; Guidetti, R. Evaluation of energy requirements of an industrial scale plant for the cultivation of white button mushroom (Agaricus bisporus). J. Agric. Eng. 2020, 51, 57–63. [Google Scholar] [CrossRef]
- Hubay, C.; Geösel, A.; Horváth, N.H.; Géczy, A. Technological Development of Automated Harvesting for Cultivated But-ton Mushroom Using Image Processing. Period. Polytech. Electr. Eng. Comput. Sci. 2024, 68, 413–423. [Google Scholar] [CrossRef]
- Jang, K.Y.; Oh, Y.L.; Oh, M.; Woo, S.I.; Shin, P.G.; Im, J.H.; Kong, W.S. Introduction of the representative mushroom cul-tivars and groundbreaking cultivation techniques in Korea. J. Mushroom 2016, 14, 136–141. [Google Scholar] [CrossRef]
- Ghahraei, O.; Kheshtzarrin, M.; Saghafinia, A. Development of a Button Mushroom Harvesting Robot using Expert System and Image Processing in Shelf Cultivation Method. Majlesi J. Electr. Eng. 2023, 17, 53–61. [Google Scholar]
- Qian, Y.; Jiacheng, R.; Pengbo, W.; Zhan, Y.; Changxing, G. Real-time detection and localization using SSD method for oys-ter mushroom picking robot. In Proceedings of the 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa, Japan, 28–29 September 2020; Volume 14, pp. 158–163. [Google Scholar]
- Sun, C.Z.; Hu, X.M.; Yu, T.; Lu, X.Y. Structural Design of Agaricus bisporus Picking Robot based on Cartesian Coordinate System. Electr. Eng. Comput. Sci. 2019, 2, 103–106. [Google Scholar]
- Koirala, B.; Zakeri, A.; Kang, J.; Kafle, A.; Balan, V.; Merchant, F.; Benhaddou, D.; Zhu, W.H. Robotic Button Mushroom Harvesting Systems: A Review of Design, Mechanism, and Future Directions. Appl. Sci. 2024, 14, 9229. [Google Scholar] [CrossRef]
- Reed, J.N.; Tillett, R.D. Initial experiments in robotic mushroom harvesting. Mechatronics 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Recchia, A.; Strelkova, D.; Urbanic, J.; Kim, E.; Anwar, A.; Murugan, A.S. A prototype pick and place solution for harvesting white button mushrooms using a collaborative robot. Robot. Rep. 2023, 1, 67–81. [Google Scholar] [CrossRef]
- Hu, X.M.; Chuan, W.; Yu, T. Design and application of visual system in the Agaricus bisporus picking robot. J. Phys. Conf. Ser. 2019, 1187, 032034. [Google Scholar]
- Yang, S.; Ji, J.; Cai, H.; Chen, H. Modeling and force analysis of a harvesting robot for button mushrooms. IEEE Access 2022, 10, 78519–78526. [Google Scholar] [CrossRef]
- Zhong, M.; Han, R.; Liu, Y.; Huang, B.; Chai, X.; Liu, Y. Development, integration, and field evaluation of an autonomous Agaricus bisporus picking robot. Comput. Electron. Agric. 2024, 220, 108871. [Google Scholar] [CrossRef]
- Wang, L.; Xu, W.; Du, K.W.; Lu, W.; Zhu, J.H.; Zhang, J. Portabella mushrooms measurement in situ based on SR300 depth camera. Nongye Jixie Xuebao 2018, 49, 13–19. [Google Scholar]
- The Last Mile of Mushroom Automated Production: Picking. Available online: https://new.qq.com/rain/a/20230418V05NPA00 (accessed on 19 August 2024).
- Huang, M.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Picking dynamic analysis for robotic harvesting of Agaricus bisporus mush-rooms. Comput. Electron. Agric. 2021, 185, 106145. [Google Scholar] [CrossRef]
- Zhao, K.; Li, H.; Ji, J.; Li, Q.; Li, M.; He, Y.; Li, J.; Xing, S. Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus. Agriculture 2023, 13, 2256. [Google Scholar] [CrossRef]
- Ji, J.T.; Li, M.S.; Zhao, K.X.; Ma, H. Design and experiment of flexible profiling picking end-effector for Agaricus bisporus. Trans. Chin. Soc. Agric. Mach. 2023, 54, 104–115. [Google Scholar]
- Ma, H.; Ma, H.G.; Ji, J.T.; Cui, H.W. FES-YOLOv5s: A lightweight model for Agaricus bisporus detection. IEEE Access 2024, 12, 71219–71231. [Google Scholar] [CrossRef]
- Chen, C.; Wang, F.; Cai, Y.; Yi, S.; Zhang, B. An improved YOLOv5s-based Agaricus bisporus detection algorithm. Agronomy 2023, 13, 1871. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, D.; Fu, W. Speed planning algorithm based on improved S-type acceleration and deceleration model. J. Shanghai Jiaotong Univ. 2021, 2, 786–793. [Google Scholar] [CrossRef]
- Ni, H.P.; Ji, S.; Liu, Y.A.; Ye, Y.X.; Zhang, C.G.; Chen, J.W. Velocity planning method for position–velocity–time control based on a modified S-shaped acceleration/deceleration algorithm. Int. J. Adv. Robot. Syst. 2022, 19, 17298814211072418. [Google Scholar] [CrossRef]
- Crnosija, P.; Kuzmanovic, B.; Ajdukovic, S. Microcomputer implementation of optimal algorithms for closed-loop control of hybrid stepper motor drives. IEEE Trans. Ind. Electron. 2000, 47, 1319–1325. [Google Scholar]
- Guo, X.; Wu, S.; Wang, Q.; Wen, Y.; Wu, T. Trajectory planning of multi-dimensional actuator based on improved s-shaped velocity curve. Electroteh. Electron. Autom. 2020, 68, 66–73. [Google Scholar]
- Gaan, D.R.; Kumar, M.; Sudhakar, S. Real-time precise position tracking with stepper motor using frequency modulation based microstepping. IEEE Trans. Ind. Appl. 2017, 54, 693–701. [Google Scholar] [CrossRef]
- NY/T 1790-2009; Grades and specifications of Agaricus bisporus. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2019.
- Koirala, B.; Kafle, A.; Nguyen, H.C.; Kang, J.; Zakeri, A.; Balan, V.; Merchant, F.; Benhaddou, D.; Zhu, W. A Hybrid Three-Finger Gripper for Automated Harvesting of Button Mushrooms. Actuators 2024, 13, 287. [Google Scholar] [CrossRef]
Algorithm | Vibration Direction | Maximum Vibration Velocity (mm·s−1) | Maximum Vibration Displacement (µm) | Maximum Vibration Frequency (Hz) |
---|---|---|---|---|
Trapezoidal | x | 10 | 94 | 170.9 |
y | 104 | 4201 | 0 | |
z | 7 | 169 | 10.7 | |
Average value | 40.33 | 1487 | 60.23 | |
S-curve | x | 6 | 37 | 24.5 |
y | 10 | 55 | 4 | |
z | 7 | 57 | 27.9 | |
Average value | 7.67 | 149 | 18.80 |
Algorithm | Vibration Direction | Maximum Vibration Velocity (mm·s−1) | Maximum Vibration Displacement (µm) | Maximum Vibration Frequency (Hz) |
---|---|---|---|---|
Trapezoidal | x | 25 | 1273 | 223.3 |
y | 43 | 2198 | 19.2 | |
z | 2 | 1162 | 55.3 | |
Average value | 23.33 | 1544.33 | 99.27 | |
S-curve | x | 5 | 43 | 52.9 |
y | 7 | 115 | 19.2 | |
z | 25 | 40 | 12.5 | |
Average value | 12.33 | 198 | 84.6 |
Algorithm | Vibration Direction | Maximum Vibration Velocity (mm·s−1) | Maximum Vibration Displacement (µm) | Maximum Vibration Frequency (Hz) |
---|---|---|---|---|
Trapezoidal | x | 6 | 154 | 177.1 |
y | 8 | 144 | 102.9 | |
z | 5 | 73 | 0 | |
Average value | 6.33 | 123.67 | 93.33 | |
S-curve | x | 4 | 39 | 82.1 |
y | 4 | 33 | 43.9 | |
z | 2 | 95 | 0 | |
Average value | 3.33 | 55.67 | 42 |
Algorithm | Displacement Axis | Short Distance (mm) | Medium Distance (mm) | Long Distance (mm) | Average Value (mm) |
---|---|---|---|---|---|
Trapezoidal | X-axis | 0.46 | 0.23 | 0.22 | 0.30 |
Y-axis | 0.92 | 0.71 | 0.70 | 0.78 | |
Z-axis | 0.13 | 0.13 | 0.12 | 0.13 | |
S-curve | X-axis | 0.42 | 0.25 | 0.20 | 0.29 |
Y-axis | 0.91 | 0.60 | 0.68 | 0.73 | |
Z-axis | 0.11 | 0.12 | 0.12 | 0.12 |
Serial Number | Recognition Accuracy (%) | Missed Detection Rate (%) | False Detection Rate (%) |
---|---|---|---|
1 | 96.84 | 1.05 | 2.10 |
2 | 97.17 | 1.88 | 0.94 |
3 | 97.73 | 2.27 | 1.14 |
4 | 97.47 | 1.21 | 1.32 |
5 | 95.54 | 2.57 | 1.89 |
6 | 96.26 | 0.00 | 3.74 |
7 | 98.46 | 1.54 | 0.00 |
8 | 94.31 | 3.25 | 2.44 |
Average value | 96.72 | 2.13 | 1.72 |
Serial Number | Harvesting Success Rate (%) | Damage Rate (%) | Yield Rate (%) |
---|---|---|---|
1 | 94.74 | 2.11 | 89.81 |
2 | 94.34 | 2.83 | 89.08 |
3 | 96.59 | 1.14 | 91.13 |
4 | 96.2 | 2.53 | 82.09 |
5 | 92.86 | 4.46 | 86.39 |
6 | 95.33 | 1.87 | 92.69 |
7 | 98.46 | 1.56 | 81.82 |
8 | 91.06 | 4.88 | 86.06 |
Average value | 94.95 | 2.67 | 87.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Ding, Y.; Cui, H.; Ji, J.; Jin, X.; Ding, T.; Wang, J. The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s. Sensors 2025, 25, 519. https://doi.org/10.3390/s25020519
Ma H, Ding Y, Cui H, Ji J, Jin X, Ding T, Wang J. The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s. Sensors. 2025; 25(2):519. https://doi.org/10.3390/s25020519
Chicago/Turabian StyleMa, Hao, Yulong Ding, Hongwei Cui, Jiangtao Ji, Xin Jin, Tianhang Ding, and Jiaoling Wang. 2025. "The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s" Sensors 25, no. 2: 519. https://doi.org/10.3390/s25020519
APA StyleMa, H., Ding, Y., Cui, H., Ji, J., Jin, X., Ding, T., & Wang, J. (2025). The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s. Sensors, 25(2), 519. https://doi.org/10.3390/s25020519