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Abstract: The automated detection of yarn margins is crucial for ensuring the continuity and
quality of production in textile workshops. Traditional methods rely on workers visually
inspecting the yarn margin to determine the timing of replacement; these methods fail to
provide real-time data and cannot meet the precise scheduling requirements of modern
production. The complex environmental conditions in textile workshops, combined with
the cylindrical shape and repetitive textural features of yarn bobbins, limit the application
of traditional visual solutions. Therefore, we propose a visual measurement method
based on the geometric characteristics of binocular imaging: First, all contours in the
image are extracted, and the distance sequence between the contours and the centroid is
extracted. This sequence is then matched with a predefined template to identify the contour
information of the yarn bobbin. Additionally, four equations for the tangent line from the
camera optical center to the edge points of the yarn bobbin contour are established, and the
angle bisectors of each pair of tangents are found. By solving the system of equations for
these two angle bisectors, their intersection point is determined, giving the radius of the
yarn bobbin. This method overcomes the limitations of monocular vision systems, which
lack depth information and suffer from size measurement errors due to the insufficient
repeat positioning accuracy when patrolling back and forth. Next, to address the self-
occlusion issues and matching difficulties during binocular system measurements caused
by the yarn bobbin surface’s repetitive texture, an imaging model is established based
on the yarn bobbin’s cylindrical characteristics. This avoids pixel-by-pixel matching in
binocular vision and enables the accurate measurement of the remaining yarn margin. The
experimental data show that the measurement method exhibits high precision within the
recommended working distance range, with an average error of only 0.68 mm.

Keywords: yarn margin detection; binocular vision; rotary body; imaging model

1. Introduction
In recent years, the degree of equipment automation in Chinese textile workshops has

significantly increased. Automated equipment not only simplifies the originally complex
mechanical structures but also enables the production of more diverse products, with
a notable improvement in stability observed [1–3]. However, in this highly automated
production process, the detection of yarn margins still relies on manual labor, contrasting
sharply with the overall efficiency of the automated production system. To meet the high-
precision requirements of modern production scheduling and achieve seamless integration
from raw materials to finished products, the accurate detection of yarn margins has become
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particularly important. The traditional approach involves inspection workers visually ob-
serving the remaining yarn on spindles within the workshop and estimating the remaining
usage time based on personal experience, manually deciding when to replace the spindles.
This method lacks real-time data support, leading to inflexible and unpredictable produc-
tion planning. Given rising labor costs and limited human resources, this traditional work
mode no longer meets the demands of modern production for precise scheduling [4–6].

In these textile workshops, each row contains 10–20 weaving machines, with
5–10 columns. Each weaving machine has an independent yarn supply frame, and each
frame vertically holds 1–4 yarn bobbins. The yarn bobbins are connected to the weaving
machines via yarn guides (as shown in Figure 1a), and the margin of the yarn is calculated
based on the difference in diameter between the yarn bobbin (the full part of the yarn bob-
bin) and the core (the empty center part of the bobbin). Inspection workers patrol the aisle
(in the direction indicated by the arrows in Figure 1b), visually inspecting the remaining
yarn on the yarn bobbins. They typically estimate the remaining yarn by comparing the
radius difference between the yarn bobbin and the central yarn spindle to decide whether
to replace the package. Due to the lack of automated detection methods, workers must
frequently move between the aisles, checking the status of each yarn frame individually.
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Achieving the automated detection of yarn margins faces several challenges: First,
the workshop environment is complex and variable, with yarn bobbins varying in color
and size. This variation makes it extremely difficult to extract the contours of the yarn
bobbins and position them using traditional threshold segmentation or color analysis
methods. Second, the large number of yarn bobbins and their widespread distribution
within the workshop make it challenging to efficiently collect image data for all of them.
Additionally, the top space structure of the weaving machines is complex, featuring nu-
merous yarn guides, power bridges, and fire protection pipes. These obstacles undermine
capturing images from the end faces of the yarn bobbins, further increasing the difficulty of
image acquisition.

Current methods primarily rely on tension and weight sensors to detect whether the
yarn has been depleted; however, these methods only provide information on whether
depletion has occurred and do not enable the real-time monitoring of the remaining yarn
quantity [7–9]. To improve the accuracy and real-time capability of monitoring, Zhiwei
Shi et al. proposed a monocular vision-based solution [10,11]. This method estimates the
remaining amount of yarn by calculating the size of the yarn bobbin from detected contour
circles in images of the end face of the bobbin. However, monocular vision systems cannot
perceive depth information, which restricts measurement accuracy [12]. Furthermore, the
applicability of this approach is affected by obstacles surrounding the bobbin end face.
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In contrast, binocular vision technology can be used to calculate depth information via
pixel-wise matching on acquired images [13–15], enabling more accurate comparisons of
depth differences between the yarn and the bobbin, thus estimating the remaining yarn
quantity. However, in the specific application of bobbin residual detection, self-occlusion
issues caused by the cylindrical shape of the bobbin lead to errors in feature point matching
within binocular vision systems, especially when parts of the bobbin are occluded by other
sections, affecting the accuracy of feature point matching [16–20]. Moreover, the presence
of repetitive texture features on the surface of the bobbin increases the complexity of feature
point matching, so traditional binocular vision algorithms struggle to distinguish similar
areas, further impacting the accuracy and reliability of bobbin size measurements.

To overcome existing detection methods’ limitations, we propose a visual measure-
ment method based on the geometric characteristics of binocular imaging. This method
constructs an imaging model between the binocular camera and the bobbin, extracting
dimensional information directly from it. Compared with existing methods, this approach
not only provides binocular depth perception but also addresses inaccurate feature point
matching due to self-occlusion and repetitive textures. Additionally, extracting dimen-
sional information directly from the imaging model avoids the need for the pixel-wise
matching computation step required in traditional binocular vision systems, enhancing the
computational efficiency. This method not only offers the textile industry a more precise
and efficient solution for monitoring the remaining yarn quantity but also provides new
insights into the dimensional measurement of objects with similar geometric characteristics.

The rest of this paper is organized as follows: Section 2 provides an analysis of the
current research status. Section 3 introduces the proposed binocular imaging model for
yarn bobbins and its measurement principles. Section 4 details the experimental procedures
and measurement results and Section 5 summarizes this study.

2. Related Works
Currently, few attempts are being made in the industry to solve similar problems.

Common methods involve using tension sensors or weight sensors to detect changes in
tension to determine when the yarn bobbin is depleted [7–9]. However, these methods
have significant limitations, as they only detect whether the yarn is exhausted and cannot
provide real-time monitoring or sufficient precision. In contrast, vision-based detection
methods offer higher flexibility and accuracy [10–15]. Among these methods, monocular
vision systems typically require only one camera, making them relatively inexpensive in
terms of hardware, easy to deploy and maintain, and simple to install and set up without
the need for complex calibration procedures. They can quickly acquire and process images,
leading to their widespread use in the textile industry. On the other hand, binocular vision
technology has shown great potential in recent years as it non-invasively provides depth
information about the measured object, enabling precise perception in three-dimensional
space. In the textile industry, the application of binocular vision technology is gradually
expanding to areas such as fiber identification and fabric defect detection. However, the
real-time and accurate detection of yarn margins using binocular vision is still in the
exploratory stage. The main research content of vision-based detection methods includes
the topics outlined below.

2.1. Monocular Solution

Zhiwei Shi, Weimin Shi, and Junru Wang proposed a low-cost and high-precision
method for detecting the edges of yarn bobbins based on monocular vision [10]. Their
method uses a monocular camera mounted on a mobile robot to capture images and
calculate the edges of the yarn bobbins using monocular vision techniques. Additionally,
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they introduced an improved neural network algorithm [11]. This method integrates an
enhanced YOLO algorithm with contour detection algorithms. The YOLO model detects
each yarn bobbin and its size, and based on the detection results from YOLO, the contours
and dimensions of each bobbin are then accurately extracted. The diameters of the yarn
bobbins detected by both the YOLO and contour detection algorithms are fused, and the
lengths and edges of the bobbins are calculated as measurement values. To completely
eliminate error detection, the method estimates the remaining yarn amount using the yarn
consumption rate and fuses the measurement values with the estimated values using a
Kalman filter, enabling the real-time detection of yarn margins.

2.2. Binocular Solution

Some methods using binocular vision have been developed, primarily for optimizing
surface reconstruction. For example, Wang M, Sun Q, Gao C et al. proposed a 3D visual
measurement method based combining dual-line structured light [13]. This method allows
the scanning laser plane to slide along a rail while intersecting with the positioning laser
plane, eliminating the need to determine the scanning direction and step size. Zhou Y,
Zhao J, and Luo C developed a new method for reconstructing general 3D curves from
stereo images [14]. This method uses B-spline curve fitting techniques to fit the 2D edge
point sets extracted from stereo images. It then constructs conic surfaces using the approxi-
mated parametric curves and finds the corresponding conic surfaces’ intersections using a
robust iterative algorithm to recover the 3D curves. This method can reconstruct both open
and closed 3D curves, meeting the precision requirements of various practical applications.
Li G and Zucker S W proposed a method for extending stereo vision to surfaces using
differential geometric consistency [15]. This method involves differential geometric studies
of surfaces and supports the use of Cartan’s moving frame model on locally quadratic
approximations of smooth surfaces to encode geometric context information. This ensures
geometric consistency in depth and surface normal. The authors demonstrated the impor-
tance of using this geometric context information through a simple stereo algorithm and
showcased its powerful detection capabilities on facial images.

Monocular vision detection methods are widely used in various applications due
to their low cost and ease of implementation. However, monocular vision systems lack
depth information and require a fixed working distance to ensure measurement accuracy.
Before use, the system must be calibrated to obtain the relationship between pixels and
actual physical dimensions at the specified working distance. During inspection tasks, the
system’s limited repeatability accuracy can cause changes in the shooting position, leading
to variations in the working distance. To maintain measurement accuracy, recalibration
is necessary. Although binocular vision technology can non-invasively provide depth
information about the measured object, enabling precise perception in three-dimensional
space, it has limitations when applied to yarn margin detection. The primary issues arise
from the cylindrical shapes of the yarn packages, which cause self-occlusion, and the
repetitive texture features on the surface of the yarn packages. Self-occlusion leads to
errors in feature point matching in binocular vision systems, especially when parts of the
yarn package are obscured by other parts, resulting in inaccurate feature point matching.
Additionally, the repetitive texture features on the surfaces of the yarn packages increase
the difficulty of performing feature point matching, making it challenging for traditional
binocular vision algorithms to distinguish similar texture regions, which further affects the
accuracy of 3D reconstruction. Therefore, traditional binocular vision methods struggle to
achieve high-precision real-time detection for objects with special geometric shapes and
texture features such as yarn packages. This paper proposes an improved binocular vision
method to overcome these limitations.
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3. Methods
3.1. Measurement Principle

The basic principle of conventional binocular stereovision for depth measurement is
shown in Figure 2a. Point P in 3D space could be determined based on the intersection
of the lines connecting the projection centers of the two cameras with the imaging points
p1 and p2 [21]. Using the principle of similar triangles, the distance Z from point P to
the camera could be calculated. After the depth information was obtained by matching
pixels one by one according to the process shown in Figure 2c, the relationship between
pixel length and real length could be calculated using the pinhole camera model shown in
Figure 2b, thereby calculating the planar dimensions.

Sensors 2025, 25, x FOR PEER REVIEW 5 of 24 
 

 

accuracy of 3D reconstruction. Therefore, traditional binocular vision methods struggle to 
achieve high-precision real-time detection for objects with special geometric shapes and 
texture features such as yarn packages. This paper proposes an improved binocular vision 
method to overcome these limitations. 

3. Methods 
3.1. Measurement Principle 

The basic principle of conventional binocular stereovision for depth measurement is 
shown in Figure 2a. Point 𝑃 in 3D space could be determined based on the intersection 
of the lines connecting the projection centers of the two cameras with the imaging points 𝑝ଵ and 𝑝ଶ [21]. Using the principle of similar triangles, the distance 𝑍 from point 𝑃 to 
the camera could be calculated. After the depth information was obtained by matching 
pixels one by one according to the process shown in Figure 2c, the relationship between 
pixel length and real length could be calculated using the pinhole camera model shown 
in Figure 2b, thereby calculating the planar dimensions. 

 

Figure 2. A schematic diagram of binocular stereovision measurement: (a) the principle of binocular 
triangulation. Here, 𝑃 is a point in the world coordinate system, 𝑝1 and 𝑝2 are the image points 
on the image planes 𝐿 and 𝑅, and 𝑙ଵ and 𝑙ଶ are the epipolars. (b) A basic model of a pinhole cam-
era. The length in world coordinates is imaged as the pixel on the imaging plane through the cam-
era’s optical center 𝑂, 𝑓 is the camera focal length, and 𝑍 is the distance between point and the 
binocular camera. (c) The process of binocular pixel matching. 

When using conventional binocular schemes to perform stereo reconstruction of yarn 
bobbins, the following issues arise: 1. Matching Failure Due to Self-Occlusion—In the 
right camera view, parts visible in the left camera view may not be seen, appearing as 
missing or invisible regions in the right image. This self-occlusion prevents the binocular 
matching algorithm from finding corresponding pixel points in these regions, leading to 
matching failures in the occluded areas. This results in the loss of depth information for 
these parts of the cylinder, affecting the reconstruction of the entire scene’s depth map 
[11,12]. 2. Impact of Repeated Textures on the Surface of the Yarn Bobbin—The surface of 
the yarn bobbin has a large number of repeated textures, which makes traditional feature-
based matching algorithms less effective. The repeated textures make it difficult to distin-
guish similar regions during the matching process, thus affecting the accuracy and stabil-
ity of matching [16,17]. 3. Effect of the Pinhole Camera Model on Cylindrical Objects—

Figure 2. A schematic diagram of binocular stereovision measurement: (a) the principle of binocular
triangulation. Here, P is a point in the world coordinate system, p1 and p2 are the image points on
the image planes L and R, and l1 and l2 are the epipolars. (b) A basic model of a pinhole camera. The
length in world coordinates is imaged as the pixel on the imaging plane through the camera’s optical
center O, f is the camera focal length, and Z is the distance between point and the binocular camera.
(c) The process of binocular pixel matching.

When using conventional binocular schemes to perform stereo reconstruction of yarn
bobbins, the following issues arise: 1. Matching Failure Due to Self-Occlusion—In the right
camera view, parts visible in the left camera view may not be seen, appearing as missing or
invisible regions in the right image. This self-occlusion prevents the binocular matching
algorithm from finding corresponding pixel points in these regions, leading to matching
failures in the occluded areas. This results in the loss of depth information for these
parts of the cylinder, affecting the reconstruction of the entire scene’s depth map [11,12].
2. Impact of Repeated Textures on the Surface of the Yarn Bobbin—The surface of the yarn
bobbin has a large number of repeated textures, which makes traditional feature-based
matching algorithms less effective. The repeated textures make it difficult to distinguish
similar regions during the matching process, thus affecting the accuracy and stability of
matching [16,17]. 3. Effect of the Pinhole Camera Model on Cylindrical Objects—Due to
the pinhole camera model, the width of the cylinder captured in the image does not directly
represent the cylinder’s actual diameter. This means that the width in the image does not
directly reflect the cylinder’s actual diameter. This distortion affects the measurement of
the cylinder’s diameter based on the image.

To address the aforementioned issues, we proposed a visual measurement method
based on the geometric characteristics of binocular imaging, considering the imaging
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features of yarn bobbins in binocular cameras. First, we observed the imaging process of
a single camera, as shown in Figure 3: The yarn bobbin was considered to be a cylinder
with its axis perpendicular to the ground. We focused on a cross-section of the cylinder
perpendicular to its axis, which was regarded as a circular plane. When light passed
through the cylinder and entered the camera lens, it formed a series of pixel points on the
camera’s imaging plane. These pixel points constituted the projection of the cylinder on
the imaging plane. For a cross-section of the cylinder along a vertical axis, we obtained
a segment of pixel points on the camera’s imaging plane, with the endpoints being the
projections of the outer contour points. According to the pinhole camera model, the
projection points of the outer contour on the imaging plane did not correspond to the
outermost edge points of the cylinder’s cross-section. Instead, they corresponded to the
imaging points of the two tangent lines that passed through the camera’s optical center
and were tangent to the circular cross-section of the cylinder. As shown in Figure 3, the red
dashed line represents the true diameter of the circular cross-section, whereas the projection
size corresponding to the outer contour projection points on the image plane is indicated
by the red solid line. Estimating the diameter or width of the cylinder using the outer
contour projection points introduced errors, making the calculation inaccurate. This error
was related to the shooting distance and the cylinder’s diameter, and it was difficult to
decouple. Therefore, the outer contour projection points in monocular vision could not be
used to estimate the diameter or width of the cylinder, and additional information was
required. Thus, we considered a binocular solution.

Sensors 2025, 25, x FOR PEER REVIEW 6 of 24 
 

 

Due to the pinhole camera model, the width of the cylinder captured in the image does 
not directly represent the cylinder’s actual diameter. This means that the width in the im-
age does not directly reflect the cylinder’s actual diameter. This distortion affects the 
measurement of the cylinder’s diameter based on the image. 

To address the aforementioned issues, we proposed a visual measurement method 
based on the geometric characteristics of binocular imaging, considering the imaging fea-
tures of yarn bobbins in binocular cameras. First, we observed the imaging process of a 
single camera, as shown in Figure 3: The yarn bobbin was considered to be a cylinder with 
its axis perpendicular to the ground. We focused on a cross-section of the cylinder per-
pendicular to its axis, which was regarded as a circular plane. When light passed through 
the cylinder and entered the camera lens, it formed a series of pixel points on the camera’s 
imaging plane. These pixel points constituted the projection of the cylinder on the imaging 
plane. For a cross-section of the cylinder along a vertical axis, we obtained a segment of 
pixel points on the camera’s imaging plane, with the endpoints being the projections of 
the outer contour points. According to the pinhole camera model, the projection points of 
the outer contour on the imaging plane did not correspond to the outermost edge points 
of the cylinder’s cross-section. Instead, they corresponded to the imaging points of the 
two tangent lines that passed through the camera’s optical center and were tangent to the 
circular cross-section of the cylinder. As shown in Figure 3, the red dashed line represents 
the true diameter of the circular cross-section, whereas the projection size corresponding 
to the outer contour projection points on the image plane is indicated by the red solid line. 
Estimating the diameter or width of the cylinder using the outer contour projection points 
introduced errors, making the calculation inaccurate. This error was related to the shoot-
ing distance and the cylinder’s diameter, and it was difficult to decouple. Therefore, the 
outer contour projection points in monocular vision could not be used to estimate the di-
ameter or width of the cylinder, and additional information was required. Thus, we con-
sidered a binocular solution. 

 

Figure 3. The monocular camera imaging process, where light rays pass through the cylinder, cross 
the image plane at points 𝑟1 and 𝑟2, and converge at the optical center 𝑂2. Point 𝑂 represents the 
center of the cylinder’s circular cross-section. 

The imaging process of a binocular camera system is illustrated in Figure 4. In this 
system, light rays converge from different angles at the optical centers 𝑂ଵ and 𝑂ଶ, form-
ing corresponding pixel points on the image planes. Due to the cylindrical shape of the 
yarn bobbin, certain parts may be occluded by other sections, resulting in one camera 

Figure 3. The monocular camera imaging process, where light rays pass through the cylinder, cross
the image plane at points r1 and r2, and converge at the optical center O2. Point O represents the
center of the cylinder’s circular cross-section.

The imaging process of a binocular camera system is illustrated in Figure 4. In this
system, light rays converge from different angles at the optical centers O1 and O2, forming
corresponding pixel points on the image planes. Due to the cylindrical shape of the yarn
bobbin, certain parts may be occluded by other sections, resulting in one camera being
unable to see feature points visible to the other camera; this phenomenon is referred to
as self-occlusion. In the figure, the self-occlusion area is marked with a red dashed line,
while the region visible to both cameras is indicated by a red solid line. Self-occlusion in
binocular vision can lead to inaccurate feature point matching, thereby undermining the
calculation of depth information and the measurement of the remaining yarn quantity.
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Further, the imaging process for the circular cross-section in the binocular camera is
shown in Figure 5. In the imaging plane of the left camera, points L1 and L2 on the circle
correspond to the outer contour points l1 and l2. The two lines lineO1−l1 and lineO1−l2,
passing through the outer contour points and converging at the camera’s optical center,
are tangent to the circle. In the imaging plane of the right camera, points R1 and R2 on
the circle correspond to the outer contour points r1 and r2. The two lines lineO2−r1 and
lineO2−r2, passing through the outer contour points and converging at the camera’s optical
center, are also tangent to the circle. For a calibrated and corrected binocular system, the
coordinates of the camera optical centers, the coordinates of the outer contour points on
the imaging planes, the focal lengths, and the baseline distance are all known parameters.
Based on these parameters, the equations of the light rays converging at the optical centers
can be obtained. The four light rays could determine a unique circle tangent to them, which
corresponded to the outer contour of the yarn bobbin in 3D space. This allowed for the
further calculation of the diameter of the yarn bobbin.

More specifically, taking the optical center of the right camera O2 as the origin of the
coordinate system, the line connecting the optical centers of the two cameras O1–O2 as the
y-axis, and the direction perpendicular to O1–O2 as the x-axis, we established a plane coor-
dinate system. In this coordinate system, the coordinates of these points were represented as
O1(0, b), O2(0, 0), l1( f , b − xl1 + c1), l2( f , b − xl2 + c2), r1( f , c2 − xr1), and r2( f , c2 − xr2).
Each outer contour point and its corresponding camera optical center represented a straight
line. The equations of the established line were represented as follows:

lineo1−l1 : y−b
−(xl1−c1)

= x
f (1)

lineo1−l2 : y−b
−(xl2−c1)

= x
f (2)

lineo2−r1 : y
−(xr1−c2)

= x
f (3)

lineo2−r2 : y
−(xr2−c2)

= x
f (4)

where c1 and c2 are the horizontal coordinates of the camera optical centers on the pixel
plane; xl1, xl2, xr1, and xr2 are the horizontal pixel coordinates of the outer contour points;
f is the camera focal length; and b is the baseline of the binocular camera.
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Given that the four lines are tangents to the circle, we had four independent constraints.
By calculating the distance from each line to the assumed circle center and ensuring that
these distances equal the radius of the circle, we were essentially looking for a point (the
circle center) for which the distances to each of the four lines are the same. Since each line
provided information about the position of the circle center, four such conditions were
sufficient to determine a unique circle center and its corresponding radius. Therefore, by
solving these four distance equations, we found a unique circle center coordinate and a
radius that satisfied all the conditions, thus establishing a unique circle. We assumed an
arbitrary circle center position (h, k) and radius r0. For each line, we used the point-to-line
distance formula to calculate the distance from the circle center to the tangent line; this
distance had to equal the radius:

r0 = |mh−k+c|√
1+m2 (5)

where m is the slope of the line and c is the intercept of the line. By setting up an error
function as the difference between the square of the distance from the circle center to
the four lines and the square of the radius, we used an iterative optimization method to
minimize the error function, thereby determining the circle center and radius:

E(h, k, r) =
4
∑

i=1

(
(m ih − k + ci)

2

1 + m2
i

− r2

)
(6)

However, a major drawback of numerical methods is their sensitivity to initial values
and tendency to become trapped in local optima. Thus, if the initial estimates are not
appropriate, the results may deviate significantly from the true circle center position.
Additionally, since the iterative process involves a large amount of computation, this
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method can be time-consuming in practical applications. We introduced a geometric
method to address these issues.

The geometric method involved using the angle bisectors of two intersecting lines
within the same imaging plane that intersected at the optical center to determine the
circle center position. This method directly determined the circle center using geometric
relationships, avoiding complex iterative calculations. First, in the left camera’s imaging
plane, we identified two intersecting lineO1−l1 and lineO1−l2 that intersected at the optical
center. Similarly, in the right camera’s imaging plane, we identified two intersecting lines
lineO1−r1 and lineO1−r2 that intersected at the optical center. Since these four lines were
all tangent to the circle, the intersection of their angle bisectors passed through the circle
center. Solving for the intersection coordinates of the angle bisectors gave us the circle
center coordinates. Calculating the distance from the circle center to any of the tangent
lines yielded the radius of the circle.

Since this method used the coordinates of the camera optical centers and the coor-
dinates of the outer contour points on the image to establish equations, its accuracy was
limited by two factors: the camera calibration parameters and the precision of the contour
coordinate extraction. After calibration and correction, the error introduced by the camera
calibration parameters was fixed. This error mainly stemmed from systematic errors during
the calibration process, such as inaccuracies in the placement of the calibration board and
minor deviations in the camera’s internal parameters. These fixed errors needed to be
carefully calibrated to minimize their impact. Secondly, the precision of contour coordinate
extraction was the primary factor causing variations in the measurement results. The
precision of contour coordinate extraction was closely related to the distance between
the camera and the object. When the camera was closer to the object, the details in the
image were more pronounced, and the precision of contour point extraction was higher.
Conversely, when the camera was further from the object, the image resolution decreased,
making it more difficult to extract contour points, and the precision also decreased. In this
context, we used the following formula:

ê = Z∗pixel
f (7)

where Z is the distance from the object to the camera, pixel is the pixel size in the image,
and f is the camera focal length. This formula indicates that as Z increases, the error ê
also increases.

3.2. Contour Localization

In this method, precise contour localization was particularly important because it
directly affects the accuracy of geometric feature extraction and dimensional measurements.
By accurately locating the contour of each yarn bobbin, we could ensure that the outer
contour points of the yarn bobbins were correctly matched during binocular imaging,
thereby avoiding errors caused by self-occlusion and repeated textures. In an image
containing multiple yarn bobbins, each located in different regions, it was necessary to
segment the image into multiple sub-regions, with each sub-region corresponding to an
individual yarn bobbin. The ranges of these sub-regions were known.

After obtaining the sub-region range for each yarn bobbin, the contour of the yarn
bobbin within the sub-region had to be localized. In the 2D image projection, the yarn
bobbin appears as a characteristic curved polygon shape (Figure 6a), with smooth curves at
the top and bottom boundaries and no obvious corners; the side boundaries are straight
lines with no significant curvature. This unique geometric structure results in four distinct
peaks in the sequence of distances from the centroid of the contour to the edges (Figure 6b).
The peaks at the top and bottom boundaries are relatively gentle and broadly distributed,
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reflecting the boundaries’ smooth curve characteristics; the peaks at the side boundaries are
more concentrated and sharper, indicating that they are straight segments. By analyzing
the distribution patterns of these peaks, the geometric features of the yarn bobbin could be
effectively extracted, providing an important reference point for subsequent measurements
and localization.
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Figure 6. The process of locating the contour of the yarn bobbin using centroid distance: (a) the
centroid distance sequence template of the yarn bobbin contour; (b) the centroid distance sequence
of the yarn bobbin contour; (c) a schematic of the matching process, where the first row shows the
extracted contours, the second row shows the corresponding centroid distance sequences, and the
third row shows the results of the cross-correlation function between the extracted centroid distance
sequences and the centroid distance sequence template.

To achieve the precise localization of the yarn bobbin in the image, we first created a
centroid distance sequence template (as shown in Figure 6b), which reflected the typical
characteristics of the yarn bobbin contour, namely the four distinct peak distributions. By
performing correlation analysis between the centroid distance sequences of the contours
in the image to be detected and the template sequence (as shown in Figure 6c), we could
evaluate the similarity and matching degree of each contour to the template contour. By
calculating the cross-correlation coefficient, we could identify the most matching contour.
The contour groups that produced the highest correlation peaks with the template sequence
were identified as successfully localized instances. Through these steps, the contour
localization of the yarn bobbin could be effectively completed, providing reliable data for
subsequent dimensional measurements. This not only helped to improve the accuracy of
the measurements but also ensured stable performance under different lighting conditions
and background complexities.
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4. Experiment
First, we performed binocular calibration and epipolar rectification to ensure the

accuracy of subsequent measurements. Through single-camera calibration, we obtained
the intrinsic and extrinsic parameters of the camera, including the focal length, principal
point coordinates, and distortion coefficients, establishing the transformation relationship
from the real-world coordinate system to the image pixel coordinates. Using the distortion
model, we corrected the distortion phenomena in the images, improving image quality.
Binocular calibration further determined the relative positional relationship between the
two cameras, addressing issues caused by installation errors. To simplify the pixel matching
task, we adopted epipolar rectification technology, transforming the matching problem
into a one-dimensional search, significantly reducing computational complexity. Next,
we proposed a method based on contour centroid distance to precisely locate the contour
of the yarn bobbin. This method involved extracting the distance sequence between the
contour and the centroid and matching it with a predefined template to identify the contour
information of the yarn bobbin. Finally, we used the angle bisector method to solve for the
circle center coordinates. By determining the four tangent lines from the camera optical
centers to the contour points and finding the angle bisectors of each pair of tangent lines,
we solved the system of equations of these two angle bisectors to find their intersection
point, the center coordinate of the outer contour circle of the yarn bobbin in 3D space.

This experimental setup used a binocular camera model HBVCAM-4M2214HD-2 mod-
ule (the camera was provided by Shenzhen Huibo Vision Technology Co., Ltd., Shenzhen,
Guangdong Province, China), which indicates that the camera name is HBVCAM, with a
maximum resolution of 4 million pixels and an individual pixel size of 2 µm. It is a binocu-
lar camera module that supports high-definition shooting. The camera’s baseline is fixed at
60 mm, and the focal length is 3 mm. In the experiment, the camera’s capture resolution
was set to 3840 × 1080, with a frame rate of 30 FPS. The experiment was conducted in both
a controlled laboratory environment and a real production workshop. To simulate actual
production conditions, natural lighting environments were chosen; both the workshop and
the laboratory used standard fluorescent lighting to avoid any influence from special light
sources. Additionally, we ensured that the yarn bobbins were in tight contact with the
holder to minimize potential errors in experimental results caused by bobbin tilting. The
specific steps followed are defined in the subsections below.

4.1. Binocular Calibration and Epipolar Rectification

To establish the binocular imaging model for the yarn bobbin, we need to understand
the relative positional relationship between the two cameras and the relative positional
relationship between the cameras and the yarn bobbin. Therefore, binocular calibration [22]
is required for the cameras. The binocular calibration used process is as follows:

We perform single-camera calibration for both cameras to obtain parameters such as
focal length, principal point coordinates, and distortion coefficients, thereby establishing
the transformation relationship from real-world coordinates to image pixel coordinates.
Points in the real world are transformed from the world coordinate system Ow to the
camera coordinate system Oc. The camera coordinate system Oc uses the camera’s optical
center as the origin and the camera’s optical axis as the z-axis. This transformation is a rigid
transformation, obtained through rotation R and translation T.

1
Zc

u
v
1

 =

1/dx 0 u0

0 1/dy v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 0 1

[R T
0 1

]
xw

yw

zw

1

 (8)
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In Equation (8), xw, yw, zw are the coordinates of a point in the world coordinate
system Ow, R is a 3 × 3 rotation matrix, and T is a 3 × 1 translation matrix. Then, after
perspective transformation from the camera coordinate system Oc to the image coordinate
system Ouv, f is the focal length, x and y are the coordinates in the image coordinate system
Ouv, and Zc is the scale factor. Finally, since the actual image sensor is a grid of pixels,
the continuous image coordinates in the image coordinate system Ouv are converted into
discrete pixel coordinates u, v in the pixel coordinate system Ou0v0 . dx and dy represent
the physical dimensions of each pixel in the pixel coordinate system along the x-axis and
y-axis, respectively. u0 and v0 are the coordinates of the camera optical center in the pixel
coordinate system Ou0v0 .

Using only a linear model is insufficient to overcome the negative effects caused by
inherent lens defects, so a distortion model is introduced to correct the distortion of the
microscope. The complete distortion model used in this paper is as follows:{

x′ = x
(
1 + k1r2 + k2r4)+ p1

(
r2 + 2x2)+ 2p2xy

y′ = y
(
1 + k1r2 + k2r4)+ p2

(
r2 + 2y2)+ 2p1xy

(9)

where (x′, y′) are the normalized pixel coordinates after distortion, (x, y) are the ideal
undistorted normalized pixel coordinates, r is the distance from the pixel point to the image
center, and r2 = x2 + y2. (k1, k2) are the radial distortion coefficients, whereas (p1, p2) are
the tangential distortion coefficients.

Equations (8) and (9) establish the imaging model that maps 3D points in the real
world to pixel positions on a 2D image, using Zhang Zhengyou’s calibration method, based
on a chessboard pattern, to obtain camera parameters.

Pixel matching is a crucial step in binocular vision, and it involves finding correspond-
ing pixel points in two images. The projection positions of the same world point in the left
and right images differ due to the viewing angle differences. By measuring the disparity,
the depth information of points in the scene can be inferred according to the principle of
triangulation. To reduce the computational load, additional constraints must be introduced.
After calibrating to obtain the intrinsic and extrinsic parameters of both cameras, the two
cameras’ relative positions in a binocular system, due to installation and manufacturing
errors, are not in the same plane but have a certain angle. Their imaging satisfies the
epipolar geometry constraint shown in Figure 7a [23].

Sensors 2025, 25, x FOR PEER REVIEW 13 of 24 
 

 

manufacturing errors, are not in the same plane but have a certain angle. Their imaging 
satisfies the epipolar geometry constraint shown in Figure 7a [23]. 

 

Figure 7. A schematic of epipolar geometry, where 𝑃 is a point in the world coordinate system, 𝑝ଵ 
and 𝑝ଶ are the image points on the image planes 𝐿 and 𝑅, and the epipoles 𝑒ଵ and 𝑒ଶ are the in-
tersections of the baseline 𝑂ଵ𝑂ଶ with the image planes 𝐿 and 𝑅. At this point, the plane formed by 𝑂ଵ𝑂ଶ𝑃 is called the epipolar plane: (a) the original epipolar geometry diagram; (b) the epipolar ge-
ometry diagram after epipolar rectification. 

Based on the principles of epipolar geometry, the pixel point 𝑝ଵ in the left view can 
be mapped to the epipolar 𝑙ଶ in the right view, significantly narrowing the search range 
for its corresponding homonymous point 𝑝ଶ. However, calculating the epipolar for each 
pixel individually still requires significant computation. In fact, the associated epipolars 𝑙ଵ and 𝑙ଶ lie in the same epipolar plane and share an epipolar constraint. As the epipolar 
plane rotates, all image pixels can be represented by some epipolar. By reordering the 
pixels on the epipolar, pixels on the same epipolar are aligned in the same row, allowing 
the pixel point 𝑝ଵ in the left view to be directly associated with its homonymous candi-
date pixels in the right view using the row number. These candidate pixels differ only in 
terms of their column coordinates. This process, known as epipolar rectification (as shown 
in the process from Figure 7a,b), essentially transforms the binocular vision system into 
an ideal configuration where the imaging planes of the two cameras are coplanar and ver-
tically aligned, simplifying pixel matching. 

4.2. Yarn Bobbin Contour Coordinate Extraction 

After camera calibration and epipolar rectification, the next step is to extract the cy-
lindrical yarn bobbin coordinates in the captured images. This process requires locating 
the yarn bobbin coordinates in the epipolar-rectified images. We propose a method that 
combines structured forest edge detection with the centroid distance method to achieve 
the precise localization of the yarn bobbins in the images. This method is based on the 
correlation analysis between the contour centroid distance sequence and a predefined 
template sequence. The steps are as follows: 

• Perform edge contour detection on the image based on structured forests [24–26], as 
shown in Figure 8b. 

• Filter out low-threshold contours and extract the centroids of the remaining contours; 
the filtering result is shown in Figure 8c, and the extracted centroids are shown in 
Figure 8d. 

• Conduct correlation analysis between the distance sequence from the contour to the 
centroid and the template sequence (Figure 8e). First extract the centroid distance 
(distance from the centroid to the contour) sequence of a reference yarn bobbin con-
tour as the template (Figure 8e). 
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diagram after epipolar rectification.
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Based on the principles of epipolar geometry, the pixel point p1 in the left view can be
mapped to the epipolar l2 in the right view, significantly narrowing the search range for its
corresponding homonymous point p2. However, calculating the epipolar for each pixel
individually still requires significant computation. In fact, the associated epipolars l1 and
l2 lie in the same epipolar plane and share an epipolar constraint. As the epipolar plane
rotates, all image pixels can be represented by some epipolar. By reordering the pixels on
the epipolar, pixels on the same epipolar are aligned in the same row, allowing the pixel
point p1 in the left view to be directly associated with its homonymous candidate pixels
in the right view using the row number. These candidate pixels differ only in terms of
their column coordinates. This process, known as epipolar rectification (as shown in the
process from Figure 7a,b), essentially transforms the binocular vision system into an ideal
configuration where the imaging planes of the two cameras are coplanar and vertically
aligned, simplifying pixel matching.

4.2. Yarn Bobbin Contour Coordinate Extraction

After camera calibration and epipolar rectification, the next step is to extract the
cylindrical yarn bobbin coordinates in the captured images. This process requires locating
the yarn bobbin coordinates in the epipolar-rectified images. We propose a method that
combines structured forest edge detection with the centroid distance method to achieve
the precise localization of the yarn bobbins in the images. This method is based on the
correlation analysis between the contour centroid distance sequence and a predefined
template sequence. The steps are as follows:

• Perform edge contour detection on the image based on structured forests [24–26], as
shown in Figure 8b.

• Filter out low-threshold contours and extract the centroids of the remaining contours;
the filtering result is shown in Figure 8c, and the extracted centroids are shown in
Figure 8d.

• Conduct correlation analysis between the distance sequence from the contour to the
centroid and the template sequence (Figure 8e). First extract the centroid distance
(distance from the centroid to the contour) sequence of a reference yarn bobbin contour
as the template (Figure 8e).

• Perform correlation analysis between this template sequence and the centroid dis-
tance sequences of all possible yarn bobbin contours in the image to be detected. By
calculating the cross-correlation coefficients, evaluate the similarity and matching
degree of each contour to the template contour. The results of this process are shown
in Figure 8c–f, where each figure represents the correlation analysis results for dif-
ferent contours with the template sequence. The contour groups that produce the
highest correlation peaks with the template sequence are identified as successfully
localized instances.

• Select the contour with the maximum correlation coefficient as the final result; the
localization result is shown in Figure 8f.
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4.3. Results

Using the parameters of the binocular camera system obtained through calibration (in-
cluding the coordinates of the camera optical centers, the focal length, the baseline distance,
and the coordinates of the contour points on the imaging plane), we first determined the
four tangent lines from the camera optical centers to the contour points. Then, we found
the angle bisectors of each pair of tangent lines (two tangent lines from the left camera
and two tangent lines from the right camera) and solved the system of equations of these
two angle bisectors to find their intersection point. This intersection point is the center
coordinate of the outer contour circle of the yarn bobbin in 3D space. The radius value of
the yarn bobbin can be calculated as the distance from the center to any of the tangent lines.

To verify the measurement accuracy of this method at different distances and positions,
the experiment detailed below was designed.

4.3.1. Measurement Results at Different Distances

The primary objective of this experiment is to evaluate the measurement accuracy
of the camera for the yarn bobbin samples at different distances by gradually adjusting
the distance between the camera and the yarn bobbin. This is carried out so that the yarn
bobbin occupies a progressively smaller portion of the image, decreasing from the largest
possible frame down to smaller sizes. The goal is to determine an optimal working distance
range that ensures the accuracy and reliability of the measurement results.
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In the experiment, we selected yarn bobbin samples with the maximum and minimum
margins and fixed them in position. The camera was mounted on a tripod. We gradually
adjusted the distance between the camera and the yarn bobbin, recording the measurement
results at different distances (Figure 9). The measurement results are shown in Figure 10a,b,
where the x-axis represents the distance between the camera and the yarn bobbin and the
y-axis represents the measured radius of the yarn bobbin. The solid blue line indicates
the actual measured radius of the yarn bobbin, while the dashed red line represents the
standard value.
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Figure 9. Measurement results at different distances: (a) a schematic of measurements at different
distances for the yarn bobbin, numbers 1–12 represent the sequential positions on the camera mount,
and the arrow indicates the direction of camera movement; (b) the measured yarn bobbin samplesfrom
left to right: yarn bobbin1; yarn bobbin2.

For the sample with the maximum margin (Figure 10a), at closer distances (540 mm to
700 mm), the measurement results are basically consistent with the standard value, with
minimal error, which is approximately 0%. As the measurement distance increases, the
measurement results start to deviate from the standard value, and the error gradually
increases. In particular, when the distance exceeds 700 mm, the measurement results
significantly increase, indicating a larger deviation, which aligns with the error model
described in Equation (7). Multiple measurements within the working range of 540 mm
to 700 mm showed that the measurement values were very close to the standard radius,
demonstrating high repeatability and stability.

For the measurement results of the sample with the minimum margin (Figure 10b),
the performance is similar to that in Figure 10a, with the optimal working range extending
from 505 mm to 671 mm. Within this range, the measurement results are largely consistent
with the standard value, with the error remaining at a low level. However, as the size of
the yarn bobbin decreases, the optimal working range narrows, indicating that the size of
the yarn bobbin significantly affects measurement accuracy. Combining the results from
Figure 10a,b, considering that the optimal working range for smaller yarn bobbins is also
narrower, the recommended optimal working range in this experimental environment is
the intersection of the working ranges for the maximum and minimum margin samples,
approximately 540 mm to 671 mm. To ensure the measurement results’ accuracy and
reliability, it is recommended to perform measurements within the distance range of
540 mm to 671 mm. Within this range, the measurement results are highly consistent
with the standard value, with the error maintained at a low level, effectively avoiding
measurement deviations caused by increased distance. This can lead to more precise
measurement data in practical applications.
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Figure 10. Measurement results at different distances: (a) the measurement results of yarn bobbin1 at
different distances; (b) the measurement results of yarn bobbin2 at different distances.

4.3.2. Measurement Results at Different Positions

The main objective of this experiment is to evaluate the camera’s measurement accu-
racy using yarn bobbin samples at different positions and gradually adjusting the relative
position between the camera and the yarn bobbin within the recommended working dis-
tance range. Specifically, the yarn bobbin was moved from a position near the right edge
of the image to the left edge. This was carried out to assess the camera’s measurement
precision at the same distance but at different positions, aiming to determine the optimal
working position range and further improve the accuracy of measurement results.
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In the experiment, we analyzed the measurement results of the yarn bobbin samples
at different camera positions, as shown in Figure 11c. The results indicate that the most
accurate measurements are obtained when the yarn bobbin is located at the center of the
image. Horizontal displacement from this central position increases the measurement error.
Furthermore, we observe that if the distance between the yarn bobbin’s contour and the
image edge is less than 20 pixels, the accuracy of the measurements significantly decreases,
increasing the error. This is due to the barrel distortion present during the distortion
correction process, which is more pronounced at the edges of the image, causing stretching
in the corrected edge regions and blurring at the yarn bobbin edges and thereby reducing
the precision of contour extraction. This observation is consistent with our previously
mentioned distortion model (Equation (9)). To achieve precise measurement results, it
is recommended to place the yarn bobbin at the center of the image and ensure that its
contour maintains a distance of at least 20 pixels from the image edges. Through this
experiment, we determined the optimal capture range within the images taken by the used
camera, minimizing distortion’s impact on measurement accuracy.
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Figure 11. Measurement results at different angles: (a) a schematic of measurements at differ-
ent camera positions, numbers 1–14 represent the sequential positions on the camera mount, and
the arrow indicates the direction of camera movement; (b) measured yarn bobbin samples—from
left to right: yarn bobbin1, yarn bobbin2, and yarn bobbin3; (c) measurement sizes at different
camera positions.
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4.3.3. Measurement Results from Different Methods

In both the laboratory and the production workshop, the dimensional measurement
of yarn bobbin samples was conducted using three different methods: the monocular
vision method, the binocular vision method, and the proposed method. The monocular
vision method used in the experiment relies on a pre-calibrated relationship between pixels
and actual length, determining the size of the yarn bobbin based on the pixel dimensions
occupied by its width. The binocular vision method calculates depth information by
computing the disparity between images obtained from two different viewpoints using the
SGBM algorithm described in [27], thereby calculating the depth difference between the
yarn bobbin and the core to determine the bobbin’s size. The samples measured are shown
in Figure 12. The measurement results are presented in Table 1 and Figure 13.
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Figure 12. Yarn bobbin sample, the numbers in the figure represent the samples numbered in
ascending order based on the size of the yarn bobbin: (a) a sample captured in the laboratory; (b) a
sample captured in the production workshop.

In the data in Table 1, we can clearly observe that our proposed measurement method
has significant advantages with regard to error control. Across all samples, our method
not only maintains a low average error but also exhibits superior stability and consistency
compared to the other two methods. Specifically, the average error of our method is ap-
proximately 0.68 mm in the laboratory environment and further decreases to 0.65 mm in
the production workshop environment. This result fully demonstrates the robustness and
reliability of our method across different environments. In contrast, while the monocular
vision method ranks second in terms of error control, its performance is constrained by the
need to accurately know the distance between the camera and the yarn bobbin beforehand.
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In practical applications, this necessitates additional measurement steps to determine this
distance, undoubtedly increasing operational complexity and inconvenience. Moreover,
due to the lack of depth information, the monocular vision method has inherently limited
accuracy and cannot match our method’s precision. The binocular vision method, although
theoretically capable of providing depth information, exhibits significant fluctuations in
error in this study. This is mainly due to self-occlusion and texture matching caused by the
cylindrical geometry and surface characteristics of the yarn bobbins. In the binocular vision
method, these issues lead to matching failures, including extreme cases where the results
are zero, which is unacceptable in practical applications. Additionally, mismatched points
introduce substantial errors, severely impacting the measurement results’ accuracy. Con-
versely, our method addresses these critical issues in binocular vision through optimized
imaging models and algorithms. Instead of relying on complex pixel-by-pixel matching
processes, our method acquires spatial information by extracting and matching contours.
This approach not only enhances computational efficiency but also significantly improves
measurement accuracy. Test results in both laboratory and workshop environments show
that our method provides measurements closer to the true values (Figure 13).

Table 1. The table compares the yarn bobbin radius measurement results obtained using dif-
ferent methods in both laboratory and production workshop environments, with units given in
millimeters (mm).

Environment Yarn Bobbin
Number

Monocular Binocular Ours Real
RadiusValue Error Value Error Value Error

laboratory

1 39.20 0.68 29.59 8.93 39.07 0.55 38.52
2 40.40 0.34 66.29 26.22 40.17 0.11 40.07
3 48.01 0.03 67.03 18.99 48.39 0.35 48.04
4 51.57 1.27 0.00 52.84 52.91 0.07 52.84

. . . . . .
23 72.04 4.19 72.43 3.80 76.19 0.04 76.23
24 74.98 5.99 0.00 80.96 80.73 0.23 80.96
25 87.28 12.61 81.48 18.41 98.04 1.85 99.89

Average error 3.41 41.13 0.68

workshop

1 38.57 1.67 0.00 36.90 36.64 0.26 36.90
2 36.62 1.47 36.65 1.49 36.28 1.12 35.16
3 38.71 1.01 36.87 0.84 37.51 0.20 37.71
4 39.88 1.49 40.83 2.44 38.42 0.02 38.39

. . . . . .
35 104.74 2.60 9.46 92.69 103.35 1.20 102.15
36 102.86 2.47 12.38 92.96 106.09 0.76 105.34
37 105.99 5.56 22.48 89.07 112.80 1.26 111.55

Average error 3.35 34.42 0.65

In Figure 13, we can observe the following: in both the laboratory and production
workshop, the monocular vision measurement method (represented by orange diamonds)
consistently underestimates the true diameters of the yarn bobbins, a trend particularly
evident in samples with larger diameters. This observation aligns with the imaging model
discussed in Figure 3.
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Figure 13. Measurement results. The points in the binocular vision method that did not match
successfully resulted in excessively large errors, which are not displayed in the error bar chart in
the figure: (a) a comparison of measurement errors in yarn bobbin radius using different methods
in a laboratory environment; (b) a comparison of measurement errors in yarn bobbin radius using
different methods in a production workshop environment.

The binocular vision measurement method (represented by light yellow triangles)
exhibits significant fluctuations in error, sometimes resulting in matching failures and
zero disparity, as indicated by the omission of some error bars for this method due to
excessively large errors. The accuracy of the binocular method, which relies on image
matching and depth estimation, is influenced by multiple factors, including image quality
and lighting conditions. Errors in depth estimation primarily stem from inaccuracies in
matched points and simplifying assumptions made during depth calculation. Mismatches
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and zero-disparity issues mainly arise from image matching algorithms’ instability when
handling the complexity of the yarn bobbin surface.

In contrast, the measurements obtained using our proposed method (represented by
blue circles) are highly consistent with the true values (red solid line). In the laboratory
environment, the average error of our method is approximately 0.68 mm, while in the
production workshop environment, it further decreases to 0.65 mm. By optimizing the
imaging model, our method effectively addresses self-occlusion and texture matching
issues, providing accurate measurement results across different yarn bobbin sizes. The
primary sources of error are mainly due to the precision of contour extraction. Factors such
as contour spurs and concave edges can introduce errors of 1–2 pixels in size. According
to Equation (7), this translates to an error range of 0–0.89 mm within the recommended
measurement range. Additional sources of error include noise, minor inaccuracies in
camera calibration, and computational errors during image processing. However, the
average error within the recommended range remains below 1 mm, meeting the precision
requirements of enterprises and providing a viable inspection solution.

5. Discussion
In the specific scenario of residual yarn detection, traditional binocular vision match-

ing algorithms such as AD-CENSUS and SGBM have significant limitations [27]. These
algorithms exhibit notable declines in the accuracy and efficiency of feature point matching,
especially under poor lighting conditions, when processing objects such as yarn bobbins,
which have highly homogeneous surfaces and cylindrical geometric structures. These
challenges directly impact the precision of the acquisition of depth information, thereby
affecting the reliability of residual detection. To overcome these limitations, this study
proposes an improved binocular algorithm specifically optimized for yarn bobbins’ char-
acteristics. Our method does not rely on texture features on the surface of the yarn but
focuses on the prominent feature of the bobbin’s contour. By processing epipolar-corrected
images to extract and match contours, our method ignores all pixels outside the contour in
the image, concentrating on obtaining spatial information from contour pixels. Combined
with our imaging model for yarn bobbins, this approach achieves high-precision measure-
ments even under uneven lighting or when surface textures are not distinct. Experimental
results show that our method has an average error of less than 1 mm, meeting indus-
trial application requirements and demonstrating its feasibility and effectiveness in actual
production environments.

The proposed algorithm significantly reduces computational complexity by focusing
on contour extraction and establishing an imaging model based on contour coordinates,
enabling the rapid provision of measurement results in production environments without
long computational delays. Our method has a time complexity of O(m ∗ n), notably lower
than those of traditional binocular vision methods. For example, using the SGBM algorithm
for disparity calculations leads to a time complexity of O

(
m2 ∗ n2 ∗ d

)
or higher (for an m ∗ n

grayscale image, the disparity search range is d), depending on the specific implementation
and optimization level of the algorithm. The disparity optimization process, including
disparity map smoothing and disparity calculations, also adds additional computational
overhead. In contrast, our method exhibits a clear advantage in time efficiency, particularly
important for real-time production environments.

Our algorithm is specifically designed for measuring the dimensions of objects with
rotary body shapes such as yarn bobbins, but its versatility mainly lies in its adaptability to
rotary body shapes. Cylindrical, conical, and other rotary body shapes are very common
in industrial products. By analyzing objects’ contour features rather than relying on
surface textures or complex image processing techniques, our algorithm can be widely



Sensors 2025, 25, 339 22 of 23

applied to measuring the dimensions of various rotary body-shaped items, including
yarn bobbins, pipes, bearings, tires, and other industrial products. Looking forward,
there is enormous potential to expand our algorithm’s applicability by incorporating
more geometric characteristics. For example, integrating shape recognition technology
into the algorithm could enable it to automatically identify and adapt to different shapes.
Additionally, introducing machine learning techniques could allow the algorithm to learn
and adapt to the specific geometric properties of various solids, thereby improving its
measurement accuracy and robustness. Through these optimizations and expansions,
our algorithm holds promise for broader applications, bringing innovation and value to
other industries.
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