Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching
<p>Inductive conductivity sensor. (<b>a</b>) Probe structure of inductive conductivity sensor; (<b>b</b>) magnetic field distribution during sensor operation.</p> "> Figure 2
<p>Sensor measurement principle diagram.</p> "> Figure 3
<p>Equivalent circuit model of inductive conductivity sensor.</p> "> Figure 4
<p>Coil with toroidal magnetic core. (<b>a</b>) Structure; (<b>b</b>) magnetic ring cross-section.</p> "> Figure 5
<p>Single tuning static impedance matching circuit. (<b>a</b>) Series single tuning impedance matching; (<b>b</b>) parallel single tuning impedance matching.</p> "> Figure 6
<p>Double tuning static impedance matching circuit.</p> "> Figure 7
<p>Output response of sensors.</p> "> Figure 8
<p>Simulation output waveform of sensor circuit model. (<b>a</b>) <span class="html-italic">R<sub>s</sub></span> = 10 Ω; (<b>b</b>) <span class="html-italic">R<sub>s</sub></span> = 100 Ω; (<b>c</b>) <span class="html-italic">R<sub>s</sub></span> = 500 Ω; (<b>d</b>) <span class="html-italic">R<sub>s</sub></span> = 1000 Ω.</p> "> Figure 8 Cont.
<p>Simulation output waveform of sensor circuit model. (<b>a</b>) <span class="html-italic">R<sub>s</sub></span> = 10 Ω; (<b>b</b>) <span class="html-italic">R<sub>s</sub></span> = 100 Ω; (<b>c</b>) <span class="html-italic">R<sub>s</sub></span> = 500 Ω; (<b>d</b>) <span class="html-italic">R<sub>s</sub></span> = 1000 Ω.</p> "> Figure 9
<p>Frequency response of sensors. (<b>a</b>) Relationship between power factor and frequency; (<b>b</b>) relationship between output <span class="html-italic">U<sub>out</sub></span> and frequency.</p> "> Figure 10
<p>Experimental platform.</p> "> Figure 11
<p>Sensor input current, input voltage, output voltage waveform. (<b>a</b>) <span class="html-italic">R<sub>s</sub></span> = 10 Ω without impedance matching; (<b>b</b>) <span class="html-italic">R<sub>s</sub></span> = 10 Ω without impedance matching; (<b>c</b>) <span class="html-italic">R<sub>s</sub></span> = 100 Ω, matched; (<b>d</b>) <span class="html-italic">R<sub>s</sub></span> = 100 Ω, matched.</p> "> Figure 12
<p>The sensor’s output waveform during measurements in the actual electrolyte solution. (<b>a</b>) Without impedance matching; (<b>b</b>) matched.</p> "> Figure 13
<p>Sensor output response. (<b>a</b>) Linearity and sensitivity with frequency variation; (<b>b</b>) sensor output response curves at different frequencies after impedance matching.</p> ">
Abstract
:1. Introduction
2. Measurement Principle and Equivalent Circuit of Inductive Conductivity Sensor
2.1. Measurement Principle of the Inductive Conductivity Sensor
2.2. Equivalent-Circuit Model of the Inductive Conductivity Sensor
3. Sensitivity Enhancement of Conductivity Sensors Through Impedance Matching
3.1. Static Impedance Matching
3.2. Simulation Analysis
3.3. Performance Evaluation of Sensor Output
4. Experimentation Verification
4.1. Experimental Platform Construction
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thirstrup, C.; Deleebeeck, L. Review on electrolytic conductivity sensors. IEEE Trans. Instrum. Meas. 2021, 70, 1008222. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Huang, J.; Ji, H.; Wang, B.; Huang, Z. New contactless conductivity detection (CCD) sensor for fluid conductivity measurement. IEEE Sens. J. 2020, 20, 11256–11264. [Google Scholar] [CrossRef]
- Kantamani, T.; George, B. Measurement of Conductivity and Liquid Fill in Partially Filled Pipe Using Capacitive-Coupled Noncontact Probe. IEEE Sens. Lett. 2020, 4, 5000704. [Google Scholar] [CrossRef]
- Dima, G.; Radkovskaya, A.; Stevens, C.J.; Solymar, L.; Shamonina, E. Design of a remote, multi-range conductivity sensor. Sensors 2023, 23, 9711. [Google Scholar] [CrossRef] [PubMed]
- Tarakesh, M.K.; Chudamani, M.C.; Dinesh, M.D.; Priyanka, M.B. Review On High Voltage Direct Current (Hvdc) Transmission System. J. Pharm. Negat. Results 2022, 13, 5066–5077. [Google Scholar]
- Liu, X.; Wang, C.; Liu, N.; Jiao, X. Current-induced corrosion of aluminium heat sinks in water-cooling systems for high-voltage direct-current converters. Corros. Eng. Sci. Technol. 2018, 54, 131–142. [Google Scholar] [CrossRef]
- Fischer, L.; Mura, E.; Qiao, G.; O’neill, P.; von Arx, S.; Li, Q.; Ding, Y. HVDC converter cooling system with a phase change dispersion. Fluids 2021, 6, 117. [Google Scholar] [CrossRef]
- Huang, X.; Pascal, R.W.; Chamberlain, K.; Banks, C.J.; Mowlem, M.; Morgan, H. A miniature, high precision conductivity and temperature sensor system for ocean monitoring. IEEE Sens. J. 2011, 11, 3246–3252. [Google Scholar] [CrossRef]
- Harms, J.; Kern, T.A. Theory and modeling of Eddy current type inductive conductivity sensors. Eng. Proc. 2021, 6, 37. [Google Scholar] [CrossRef]
- Horváth, J.; Kátai, L.; Szabó, I.; Korzenszky, P. An Electrical Conductivity Sensor for the Selective Determination of Soil Salinity. Sensors 2024, 24, 3296. [Google Scholar] [CrossRef]
- Lin, W.-C.; Brondum, K.; Monroe, C.W.; Burns, M.A. Multifunctional water sensors for pH, ORP, and conductivity using only microfabricated platinum electrodes. Sensors 2017, 17, 1655. [Google Scholar] [CrossRef] [PubMed]
- Parra, L.; Sendra, S.; Lloret, J.; Bosch, I. Development of a conductivity sensor for monitoring groundwater resources to optimize water management in smart city environments. Sensors 2015, 15, 20990–21015. [Google Scholar] [CrossRef] [PubMed]
- Sendra, S.; Viciano-Tudela, S.; Ivars-Palomares, A.; Lloret, J. Low-Cost Water Conductivity Sensor Based on a Parallel Plate Capacitor for Precision Agriculture. In International Conference on Advanced Intelligent Systems for Sustainable Development; Springer Nature Switzerland: Cham, Switzerland, 2022. [Google Scholar]
- Wu, S.; Lan, H.; Liang, J.J.; Tian, Y.; Deng, Y.; Li, H.Z.; Liu, N. Investigation of the performance of an inductive seawater conductivity sensor. Sens. Transducers 2015, 186, 43–48. [Google Scholar]
- Ashokan, R.R.; Suresh, G.; Ramesh, R. Toroidal seawater conductivity sensors and instrumentation for anti-submarine warfare. IEEE Sens. J. 2023, 23, 26531–26538. [Google Scholar] [CrossRef]
- Jang, H.; Kang, H.S.; Han, J.-J.; Kim, H.C. Optimization of the Cell Constant for Application of the Transformer Type Inductive Conductivity Sensor (TICS) in Low-Conductive Solution. IEEE Sensors Lett. 2023, 7, 6003204. [Google Scholar] [CrossRef]
- Kandur, Y.; Harms, J.; Kern, T.A. Uncertainty analysis for low-cost transformer-type inductive conductivity sensors. Eng. Proc. 2021, 6, 52. [Google Scholar] [CrossRef]
- Striggow, K.; Dankert, R. The exact theory of inductive conductivity sensors for oceanographic application. IEEE J. Ocean. Eng. 1985, 10, 175–179. [Google Scholar] [CrossRef]
- Hui, S.K.; Jang, H.; Gum, C.K.; Song, C.Y.; Yong, H.K. A new design of inductive conductivity sensor for measuring electrolyte concentration in industrial field. Sens. Actuators A Phys. 2020, 301, 111761. [Google Scholar]
- Xie, B.; Li, Q.; Zhang, Y.; Yuan, C. High-Frequency Electromagnetic Behavior, Impedance Modeling, and Enhancement of Low-Permeability Powder Cores. IEEE Trans. Power Electron. 2024, 40, 3336–3356. [Google Scholar] [CrossRef]
- Li, Q.; Xie, B.; Zhang, Y.; Ma, J.; Yuan, C. A General Analytical Model of Single-Layer Common-Mode Chokes. IEEE Trans. Power Electron. 2024, 39, 6591–6596. [Google Scholar] [CrossRef]
- Rathod, V.T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors 2020, 20, 4051. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, T.; Xu, W. On impedance matching and maximum power transfer. Electr. Power Syst. Res. 2010, 80, 1082–1088. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Wei, C.-H. A novel miniature dual-band impedance matching network for frequency-dependent complex impedances. IEEE Trans. Microw. Theory Tech. 2020, 68, 4314–4326. [Google Scholar] [CrossRef]
- Kim, H.; Priya, S.; Stephanou, H.; Uchino, K. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1851–1859. [Google Scholar] [CrossRef]
- Rathod, V.T. A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electronics 2019, 8, 169. [Google Scholar] [CrossRef]
Turns (N1 = N2 = N) | Core Dimension (r1 × r2 × t) | Magnetic Core Permeability (μr) |
---|---|---|
10 | 16 mm × 25 mm × 10 mm | 80,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yu, R.; Liu, Z.; Gao, Y.; Tang, C.; Li, Q.; Yuan, C. Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching. Sensors 2025, 25, 293. https://doi.org/10.3390/s25020293
Li Y, Yu R, Liu Z, Gao Y, Tang C, Li Q, Yuan C. Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching. Sensors. 2025; 25(2):293. https://doi.org/10.3390/s25020293
Chicago/Turabian StyleLi, Yang, Rongxing Yu, Zhiqiang Liu, Yujie Gao, Chengxu Tang, Qiao Li, and Chao Yuan. 2025. "Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching" Sensors 25, no. 2: 293. https://doi.org/10.3390/s25020293
APA StyleLi, Y., Yu, R., Liu, Z., Gao, Y., Tang, C., Li, Q., & Yuan, C. (2025). Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching. Sensors, 25(2), 293. https://doi.org/10.3390/s25020293