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Abstract: Distributed fiber optic sensors (DFOSs) have become increasingly popular for
intrusion detection, particularly in outdoor and restricted zones. Enhancing DFOS per-
formance through advanced signal processing and deep learning techniques is crucial.
While effective, conventional neural networks often involve high complexity and signifi-
cant computational demands. Additionally, the backscattering method requires the signal
to travel twice the normal distance, which can be inefficient. We propose an innovative
interferometric sensing approach utilizing a Mach–Zehnder interferometer (MZI) combined
with a time forest neural network (TFNN) for intrusion detection based on signal patterns.
This method leverages advanced sensor characterization techniques and deep learning
to improve accuracy and efficiency. Compared to the conventional one-dimensional con-
volutional neural network (1D-CNN), our proposed approach achieves an 8.43% higher
accuracy, demonstrating the significant potential for real-time signal processing applica-
tions in smart environments.

Keywords: pattern recognition; deep learning; smart environment

1. Introduction
Perimeter fences are widely utilized to secure and protect military bases, government

installations, petrochemical plants, refineries, and other high-value assets and critical infras-
tructure from unauthorized access [1–3]. Given the extensive lengths of these perimeters,
conventional security patrols are often insufficient for adequate coverage. Consequently,
implementing a multi-intrusion detection system has become increasingly essential to
ensure comprehensive security.

Recent review articles have highlighted the advancements and applications of DFOSs
in various fields. For instance, a comprehensive bibliometric analysis by Zhu et al. [4] pro-
vides an in-depth overview of signal processing and pattern recognition techniques based
on distributed optical fiber sensing. Another study by Liu et al. [5] discusses innovative
methods for assessing measurement deviations, which are critical for ensuring the accuracy
and reliability of DFOSs in practical applications. These reviews underscore the importance
of continuous research and development to address emerging challenges and improve
system performance.

High-performance distributed fiber-optic sensors have garnered significant interest
in outdoor intrusion detection systems [6–11]. These systems can effectively identify and
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classify intrusion events by leveraging machine learning techniques. Machine learning
algorithms enhance the detection capabilities by analyzing patterns and anomalies in the
data collected by the sensors. This approach improves the accuracy of intrusion detection
and enables the system to adapt to new and evolving threats. Therefore, integrating
machine learning is crucial for the successful implementation and reliability of these
advanced intrusion detection systems.

Advanced signal recognition and discrimination techniques can significantly enhance
intrusion detection systems while maintaining high sensitivity. This can be achieved
through various signal processing methods, including simple filtering, adaptive filtering,
and parametric, nonparametric, and artificial intelligence (AI) approaches [12–14]. Signal
classification is central to event recognition and discrimination, involving identifying and
extracting unique features from event signals. These signals may represent single events,
such as intrusions, rain, and wind, or multiple concurrent events, such as an intrusion
during torrential rain. When events occur quickly, it is crucial to employ effective techniques
to distinguish events of interest from irrelevant ones.

Several intrusion detection and classification algorithms have recently been pro-
posed [15–26]. However, extensive comparisons between deep learning and machine
learning for classification have not been explored. Additionally, these studies often com-
pare the probability of detection without evaluating distribution intrusion detection from its
algorithms. Marie et al. [17] discussed a hybrid model integrating modern power spectrum
estimation (MPSE) and improved gradient neural networks (IGNNs) for event recognition
along submarine cables. The model processes vibration signals collected using the technol-
ogy of phase-sensitive optical time-domain reflectometry (φ-OTDR). The authors reported
an average identification accuracy of 97.77% for three categories of data, with specific
accuracies of 100%, 96.21%, and 97.11%. The model effectively identifies and classifies
collision events on submarine cables in real time, demonstrating robust noise elimination
and excellent event recognition capabilities. In addition, researchers [27] used machine
learning for underwater image recognition to analyze the environment.

Mi et al. [19] analyzed a vibration pattern recognition algorithm using a merged
Sagnac interferometer structure and a multi-layer perceptron neural network (MLP-NN).
The pre-processing algorithm retrieves vibration signals, and the MLP-NN classifies these
signals into different intrusion patterns. The proposed model achieved 97.6% classification
accuracy in tests conducted on a 10 km perimeter fence. The model effectively distinguishes
between actual intrusion events and environmental interferences, reducing false alarms
and manual workload. Huang et al. [21–23] presented a frequency division (FD) all-phase
filter bank and a random forest (RF) classifier to detect various types of intrusions. An
endpoint detection algorithm was employed to identify the intrusion events. Features
extracted from the event data included event fluctuation and zero-crossings rate (ZCR).
Their classification algorithm achieved an accuracy of 96.92% for detecting fence-related
actions such as kicking, cutting, waggling, climbing, and knocking on the fence. Liu
et al. [24] proposed an integrated event discrimination scheme for optical fiber perimeter
security systems using empirical mode decomposition (EMD) and kurtosis characteristics
combined with a radial basis function (RBF) neural network. This approach improves the
recognition rate and variety of intrusion events. The proposed method achieved an average
recognition rate of around 85.75% for four common invasive events (climbing the fence,
knocking the cable, cutting the fence, and waggling the fence), outperforming frequency
domain analysis with an average recognition rate of 68.1%.

An innovative intrusion detection system focused on a pattern recognition scheme
for a dual Mach–Zehnder interference (DMZI) distributed fiber perimeter security system
has been reported by several researchers [18,25,26]. Lyu et al. [18] proposed a scheme
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that leverages the gramian angular field (GAF) and convolutional neural network (CNN)
to transform one-dimensional intrusion signals into two-dimensional images, which are
then analyzed for deep feature extraction. The GAF algorithm enhances the robustness
and practicality of the system by being insensitive to power source fluctuations. The
proposed method achieves a high recognition accuracy rate of 97.67% for various intrusion
events, such as wind, light rain, heavy rain, knocking, impacting, and slapping, with a
detection response time of approximately 0.58 s. This approach significantly improves
the speed and accuracy of intrusion detection, making it suitable for real-time emergency
monitoring applications.

Huang et al. [25] proposed a hybrid feature extraction-based intrusion discrimination
scheme for optical fiber perimeter security systems, achieving high classification rates
and efficiency. The scheme incorporates various features into a hybrid feature vector,
including bandwidth segmentation in the frequency domain, statistical kurtosis, and zero-
crossing rate in the time domain. Their experiments showed that the scheme accurately
identified four common intrusions—fence climbing, cable knocking, waggling, and fence
cutting—with an average recognition rate of over 94% and high efficiency.

Ma et al. [26] developed a probabilistic event discrimination algorithm for fiber optic
perimeter security systems, utilizing multiscale permutation entropy and the zero-crossing
rate to enhance efficiency and extract intrusion features. A probabilistic support vector
machine calculates intrusion probabilities by solving a convex quadratic programming
problem. Their experiments show that the algorithm distinguishes six intrusion events
with an average recognition rate of 92.68%. This approach provides more detailed intrusion
information than traditional methods, reducing decision-making costs and losses from
erroneous decisions.

Several researchers have utilized neural networks, hybrid methods, and statistical
approaches to achieve high accuracy rates exceeding 90% in intrusion detection. While
neural network models are robust, they come with high computational costs due to their
complexity. Studies have shown that processing signal data points without converting
them to images poses significant challenges in achieving high accuracy. Neural networks
like CNN can be fed with one- or two-dimensional datasets, but this approach still faces
limitations. Various sensing methodologies have been employed, including φ-OTDR,
DMZI, and Sagnac interferometers. Each of these methods has its challenges. For instance,
φ-OTDR relies on the backscattering method, which requires the signal to travel nearly
twice the distance from the point of intrusion, leading to potential delays and signal
degradation. The DMZI approach necessitates a dual setup, increasing the complexity
and cost of the system. Sagnac interferometers, although effective, can experience higher
attenuation due to the circular fiber configuration.

This paper proposes an innovative deep learning approach for multi-intrusion sensing
using one-dimensional time series data with a simpler setup. We introduce an intrusion
sensor based on a Mach–Zehnder interferometer (MZI) that employs a deep learning pro-
cess called time forest neural network (TFNN). The TFNN algorithm uses an interval-based
approach for efficient computation, selectively learning from long signals and employing
trend detection to enhance the model using gradients. The time series data matrix consists
of data points and time intervals, with each data point assigned to a specific category.
The algorithm operates with a set number of base estimators and estimators for each
base estimator. A key parameter is the minimum interval length considered for feature
extraction. The deep learning component of TFNN utilizes dense neural network layers to
capture complex patterns and enhance prediction accuracy. In addition, an illustration of
the restricted zone for our proposed distributed fiber optic sensor (DFOS) and AI server as
part of our TFNN methods can be seen in Figure 1.
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This paper is structured as follows: Section 2 describes the experimental setup and
model of the TFNN intrusion sensor based on an MZI that employs a machine learning
process. Section 3 presents and analyzes the data obtained from the experiments, demon-
strating the sensor’s high sensitivity and accuracy. Section 4 compares the results with
related studies, highlighting the method’s advantages. Section 5 concludes the research
and discusses future work and the implications of the findings.

2. Materials and Methods
2.1. MZI Optic Fiber Perimeter Intrusion Detection

As depicted in Figure 2, our experimental arrangement utilized a 1530.33 nm dis-
tributed feedback (DFB) laser with linewidth 0.1 nm as the light source. An optical cou-
pler with a 3 dB loss (coupler 1) divided the laser’s output into two separate channels:
one channel for the reference fiber and the other for the sensing fiber, which extended over
one kilometer. This sensing fiber was attached to an iron barrier and exposed to four types
of vibrational disturbances. The light from both fibers was then recombined using a second
optical coupler (coupler 2). The resulting interference patterns from these intrusions were
detected by a balanced photodetector (THORLABS PDB415C), which operates effectively
in the 800–1700 nm range and can handle a maximum voltage of 1.55 V across a 50 Ω load.
External disturbances can cause changes in the phase of transmitted light waves in the MZI
intrusion sensing system:

∆ϕ(t) = β∆L +
∂β

∂n
∆nL +

∂β

∂α
∆αL, (1)

where L represents the length of the optical fiber, β is the transmission constant of light in
the optical fiber, n is the effective refractive index of the optical fiber, and α is the radius
of the optical fiber. In this formula, the first term represents the phase change caused by
the change of length; the second term represents the phase change caused by the change
of refractive index; and the third term represents the phase change caused by the change
of optical fiber radius. The fiber coupler converts the change of light in the phase caused
by the intrusion event into a change in light intensity. Then, it is output as a voltage by a
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photodetector so that it can be detected. The expression of output light intensity is defined
as follows [28]:

I(t) = I{1 + Kcos [∆ϕ(t) + ϕ0]}, (2)

where I represents the intensity of light, K is the influence coefficient of the disturbance
signal on light intensity, and ϕ0 is the initial phase of the light. The output signals from
the photodetector were transmitted to a data acquisition (DAQ) system (NI PXIe-1071)
via an SMA cable, allowing us to capture time and voltage fluctuations corresponding to
the vibrational events. The intrusions analyzed included touching, noise, knocking, and
crawling. During the experiment, we captured signals at a sampling rate of 6 kHz to form
the dataset. For each type of intrusion, we collected 1000 samples, with each intrusion
event taking approximately 10 s to capture. This means that the total time required to create
the dataset for each type of intrusion was around 10,000 s. Given that we analyzed four
types of intrusions (touching, noise, knocking, and crawling), the total time required to
create the dataset was approximately 40,000 s. In addition, our dataset with 1000 samples
per event is sufficient, as demonstrated by Ma et al. [29], who used around 393 samples,
and Xu et al. [30], who reported an average of 1157 samples per event.
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Figure 2. Experimental setup with interferometric sensing.

2.2. Schematic Model Artificial Intelligence

Figure 3 depicts our research schematic to compare the performance of different neural
network models in intrusion signal classification. Once captured by the DAQ system,
the signals undergo pre-processing and categorization. The data is then divided into
distinct training, validation, and testing sets, with proportions of 70%, 20%, and 10%,
respectively. In addition, we used an Intel i9-12900H CPU and an NVIDIA® GeForce
RTX 3080 with 16 GB RAM to train our proposed method and neural network models.
The TFNN model, inspired by Huang et al. [31], an assembly of decision trees adept at
interval-based classification, is our significant contribution to the field. Complementing
TFNN in the pipeline are the recurrent neural network (RNN) and dense neural network
(DNN), the latter being a more complex iteration of NN with more layers and hidden
units for intricate pattern discernment. The one-dimensional convolutional neural network
(1D-CNN) is also employed to prioritize and distinguish critical features tailored for signal
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data. This comprehensive process is meticulously fine-tuned to minimize error intervals,
and the performance is rigorously evaluated using accuracy metrics. The culmination of
this process is represented in a confusion matrix, providing a clear visual interpretation of
the model’s effectiveness in predicting various vibrational events.
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2.3. Strategy of TFNN

In this study, we propose TFNN using an interval-based approach for efficient com-
putation, as the model learns selectively from long signals and uses trend detection to
improve our model using gradient. Let X ∈ Rn×m be a time series data matrix with dimen-
sions n × m, where n is the number of data points and m is the number of time intervals.
Additionally, let y ∈ Rn be a class label vector with dimension n, assigning each data point
to a specific category. The algorithm works with B, the number of base estimators, and E is
the number of estimators of each base estimator. A key parameter, l, denotes the minimum
interval length considered for feature extraction. The process begins by selecting a base
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estimator Cb, and duplicating it to create Cb,e for each interval. The random interval is
expressed by

Ib,e = (sb,e, tb,e), (3)

where sb,e and tb,e are sampled from the uniform distribution, ensuring that the interval
length is at least l. For each interval Ib,e, the algorithm extracts features from the data matrix
X. The average value within the interval is expressed as

µb,e =
1
n

n

∑
i=1

1
tb,e − sb,e

tb,e

∑
j=sb,e

Xi,j. (4)

The variability or spread of the values within the interval is also calculated using
standard deviation, as shown in

σb,e =

√√√√√ 1
n− 1

n

∑
i=1

 1
tb,e − sb,e

tb,e

∑
j=sb,e

(
Xi,j − µb,e

)2

. (5)

The slope of the line connecting the start and end points of the interval, indicating the
trend is calculated by gradient, expressed as

αb,e =
1
n

n

∑
i=1

Xi,tb,e − Xi,sb,e

tb,e − sb,e
. (6)

These features are combined into a feature vector Fb,e = (µb,e, σb,e, αb,e) for each
interval. All feature vectors for E intervals are then concatenated to form Zb. The base
estimator Cb is trained with the feature matrix Zb and the class labels y as expressed in

Cb ← train(Zb). (7)

For a new data point x, features are extracted using the same interval as shown in

Fb,e(x) = (µb,e(x), σb,e(x), αb,e(x)), (8)

where each estimator Cb,e makes a prediction pb,e (x) based on the extracted features.
All predictions are combined into a prediction vector P (x). The final prediction ŷ(x) is
determined by taking the mode of the prediction P (x), which represents the most frequently
predicted class label by the ensemble of estimators. It leverages the strength of ensemble
learning and the informative nature of interval-based features to classify time series data
effectively. Using multiple estimators contributes to the robustness and accuracy of the
model. The TFNN integrates deep learning by using a simple neural network model for
feature extraction and classification. The neural network is composed of dense layers with
varying units (32, 16, 4) using ReLU and softmax activations, as shown in Algorithm 1.
This deep learning component helps in capturing complex patterns and relationships in
the data, further enhancing the model’s predictive performance.
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Algorithm 1. Time Forest Neural Network

1. Function TimeForestNN(n_estimators, min_interval):
estimators← [RandomForestClassifier()X n_estimators];
nn_model← create nn_model();

2. Function create nn_model():
model← Sequential();
foreach units ∈ [32, 16, 4] do

model.add(Dense(units, activation = units == 4, ’softmax’:’relu’));
end
model.compile(optimizer = ’adam’, loss = ’sparse_categorical’);
return KerasClassifier(build_fn = lambda: model, epochs = 10);

3. Function fit(X,y):
foreach rf ∈ estimators do

intervals← generate intervals(X.shape [1]);
features← extract_features(X, intervals)
rf.fit(features, y)

end
nn_features← extract_features(X, intervals [0])
nn_model.fit(nn_features, y)

4. Function predict(X):
rf_predictions← zeros((X.shape [0], len(estimators)))
foreach rf ∈ estimators do

features← extract_features(X, intervals[i])
rf_predictions[:, i]← rf.predict(features)

end
nn_features← extract_features(X, intervals [0])
combined_predictions← apply_along_axis(lambda x: bincount(x).argmax(),

axis = 1, arr = rf_predictions)
return combined_predictions
5. Function generate_intervals(series_length):

intervals← []
foreach _ do

start← randint(0, series_length −min_interval)
end← randint(start + min_interval, series_length)
intervals.append((start, end))

end
return intervals

6. Function extract_features(X, intervals):
features← []
foreach interval ∈ intervals do

start, end← interval
subset← X[:, start:end]
mean←mean(subset, axis = 1)
std← std(subset, axis = 1)
slope← (subset[:, −1] − subset[:, 0])/(end − start)
features.append(column_stack([mean, std, slope]))

end
return concatenate(features, axis = 1)
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2.4. Neural Network Architecture

Pattern recognition encompasses various approaches, including probabilistic methods,
machine learning, and deep learning, such as neural networks. Recent research highlights
the deep understanding neural networks have in pattern recognition, especially when
compared to machine learning or probabilistic approaches. Our study compares different
neural network architectures, specifically CNN, DNN, and RNN, to comprehensively
evaluate their performance in intrusion detection. CNNs are known for their effectiveness
in processing spatial data and extracting features from signal patterns. DNNs provide a
more generalized approach with multiple layers, which is suitable for capturing complex
patterns in the data. RNNs are particularly effective for sequential data, capturing temporal
dependencies, with long short-term memory (LSTM) being a specific implementation
within this category. Additionally, we make extensive comparisons among neural network
architectures from our proposed model.

Different from our proposed model, conventional neural network architectures have
several layers, activations, several neurons, and transmission methods, whether forward or
backward propagation. First, we trained the CNN model consisting of several layers, start-
ing with a Conv1D layer with 64 filters and a kernel size of 3, followed by a MaxPooling1D
layer, as shown in Figure 4. This is succeeded by another Conv1D layer with 32 filters and a
subsequent MaxPooling1D layer. The output is then flattened and passed through a Dense
layer with 64 units and, finally, a Dense layer with 4 units using the SoftMax activation
function. The model has 3,244,644 parameters, all of which are trainable.
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The second neural network architecture is the DNN model, which comprises several
fully connected layers, as illustrated in Figure 5. It begins with a Dense layer contain-
ing 64 neurons, followed by another Dense layer with 32 neurons. A Dense layer with
16 neurons succeeds it and, finally, there is a Dense layer with 4 neurons using the SoftMax
activation function. The model processes input data with a shape defined by the input
signal from DAQ and employs the ReLU activation function for the hidden layers. The total
number of parameters in the model is 407,988, all trainable. This architecture is designed to
handle signal data effectively, making it suitable for classification tasks.
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Figure 6 shows that the last neural network model is the RNN model, which features
an LSTM layer with 64 units, followed by a Dense layer with 32 units. Another Dense layer
with 64 units adds this, and, finally, there is a Dense layer with 4 units using the SoftMax
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activation function. The model is designed to process input data with the shape of a time
series data signal, making it suitable for sequential data. The total number of parameters
in the model is 21,348, all trainable. This architecture leverages the LSTM layer to capture
temporal dependencies in the data, followed by fully connected layers for classification.
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In our study, we prioritized the design of neural network models that are both effec-
tive and computationally efficient, considering the constraints of our target deployment
platforms, such as the Jetson Nano and Raspberry Pi 5. These platforms have limited
computational resources, necessitating models with fewer layers and a maximum of
64 neurons per layer. The parameters selected for the TFNN, CNN, DNN, and RNN
models were carefully chosen to balance model complexity and computational efficiency
for compact devices.

2.5. Evaluation Metric

To assess the effectiveness of our strategy, we employed four performance metrics.
The first metric is the accuracy score, which measures the ability of the TFNN to generalize
and accurately predict each time series signal test. The formula for calculating the accuracy
score is as follows:

A =
P + N

P + N + Fp + FN
, (9)

where P represents the number of true positive samples correctly identified by the clas-
sifier, and N denotes the number of true negative samples correctly identified. These are
the correct classifications. FP refers to the number of false positive samples, where the
classifier incorrectly labels negative samples as positive. FN indicates the number of false
negative samples, where the classifier incorrectly labels positive samples as negative. These
are the incorrect classifications. The precision and F1 scores are additional performance
metrics derived from these terms, providing insights into the classifier’s effectiveness in
predicting labels.

The second metric is t-distributed stochastic neighbor embedding (t-SNE), a pow-
erful technique for dimensionality reduction and data visualization beneficial for high-
dimensional datasets [32]. Mathematically, t-SNE models the pairwise similarities between
data points in the high-dimensional space using a probability distribution. It starts by
calculating the probability that a data point will be a neighbor to another data point based
on its distance, typically using a Gaussian distribution. In the lower-dimensional space,
t-SNE aims to preserve these pairwise similarities by modeling them with a t-distribution,
which helps maintain the data’s local structure. The algorithm then minimizes the Kullback–
Leibler divergence between the two distributions using gradient descent, ensuring that
points close in the high-dimensional space (p) remain close in the lower-dimensional space
(q), and those far apart stay distant [33]. We used the Kullback–Leibler algorithm and
simplified mathematical express as shown in

C = ∑
i ̸=j

pijlog

(
pij

qij

)
. (10)
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This process results in a low-dimensional representation that captures the essential
patterns and relationships within the data, making it easier to visualize and interpret
complex datasets. By offering qualitative insights through visualization, t-SNE helps to
reveal clusters, trends, and anomalies that might not be apparent in the original high-
dimensional space. In addition, t-SNE can offer qualitative insights by visualizing the data
and the model’s predictions.

3. Results
3.1. Intrusion Signal Results

Figure 7 presents four distinct sample signals obtained by a DAQ system, each cor-
responding to different physical interactions or disturbances. Figure 7a illustrates a sig-
nal labeled “crawling”, showing moderate fluctuations with regular peaks and troughs.
Figure 7b displays the “knocking” signal, characterized by similar yet slightly varied peak
and trough positions compared to Figure 7a. The “touching” signal in Figure 7c has more
pronounced fluctuations, including a significant rise around the 4000-sampling point mark.
Finally, Figure 7d shows the “noise” signal, marked by regular voltage changes, indicat-
ing no intrusion. These signals are crucial for analyzing and monitoring various events,
showcasing the effectiveness of MZI.

Every intrusion has a characteristic value signal with each meaning, standard devi-
ation, and other statistical analysis. Figure 8 shows a violin plot that compares voltage
distributions for four intrusion types—crawling, knocking, noise, and touching—to under-
stand our dataset. The “crawling” and “knocking” show similar patterns, with most data
points clustering around a central voltage level, showing a common occurrence. The “noise”
stands out with a consistent, narrow range, suggesting uniformity in its voltage levels. The
“touching” is unique, with a bimodal distribution, revealing two predominant states or
behaviors within this category. This visualization is key for finding the distinct electrical
signatures associated with each intrusion type, essential for their accurate classification in
deep learning applications.

Sensors 2025, 25, x FOR PEER REVIEW 11 of 18 
 

 

complex datasets. By offering qualitative insights through visualization, t-SNE helps to 
reveal clusters, trends, and anomalies that might not be apparent in the original high-
dimensional space. In addition, t-SNE can offer qualitative insights by visualizing the data 
and the model’s predictions. 

3. Results 
3.1. Intrusion Signal Results 

Figure 7 presents four distinct sample signals obtained by a DAQ system, each 
corresponding to different physical interactions or disturbances. Figure 7a illustrates a 
signal labeled “crawling,” showing moderate fluctuations with regular peaks and 
troughs. Figure 7b displays the “knocking” signal, characterized by similar yet slightly 
varied peak and trough positions compared to Figure 7a. The “touching” signal in Figure 
7c has more pronounced fluctuations, including a significant rise around the 4000-
sampling point mark. Finally, Figure 7d shows the “noise” signal, marked by regular 
voltage changes, indicating no intrusion. These signals are crucial for analyzing and 
monitoring various events, showcasing the effectiveness of MZI. 

Every intrusion has a characteristic value signal with each meaning, standard 
deviation, and other statistical analysis. Figure 8 shows a violin plot that compares voltage 
distributions for four intrusion types—crawling, knocking, noise, and touching—to 
understand our dataset. The ”crawling” and ”knocking” show similar patterns, with most 
data points clustering around a central voltage level, showing a common occurrence. The 
”noise” stands out with a consistent, narrow range, suggesting uniformity in its voltage 
levels. The ”touching” is unique, with a bimodal distribution, revealing two predominant 
states or behaviors within this category. This visualization is key for finding the distinct 
electrical signatures associated with each intrusion type, essential for their accurate 
classification in deep learning applications. 

 

Figure 7. Sample signals obtained by the DAQ system: demonstrating various physical interactions 
for (a) crawling, (b) knocking, (c) touching, and (d) noise. 

Figure 7. Sample signals obtained by the DAQ system: demonstrating various physical interactions
for (a) crawling, (b) knocking, (c) touching, and (d) noise.



Sensors 2025, 25, 47 12 of 17Sensors 2025, 25, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Visual comparison of voltage distributions across four different types of vibrations using 
violin plots. 

3.2. Training Result 

We used 2800 samples across the four intrusions for the training set, shuffling the 
samples to ensure that the model could learn from a random training data pattern. We 
allocated 800 samples for validation during training to ensure that the model performed 
well before testing. Finally, we used 400 samples, separate from the training set, to test 
our model’s performance. Our study aimed to evaluate the performance of various neural 
network models for intrusion signal classification. The TFNN model employs the number 
of estimators as its key independent variable, while CNN, DNN, and RNN models use 
the number of epochs. This distinction is rooted in the fundamental differences between 
these models and their training processes. 
1. TFNN Model: The TFNN utilizes an ensemble method where the number of 

estimators, or decision trees, is crucial for its performance, as shown in Huang et al. 
[31]. Each estimator contributes to the model’s overall prediction capability, thus 
increasing the number of estimators and improving accuracy and computational 
effort. 

2. CNN, DNN, and RNN Models: These models are trained through iterative processes 
where the number of epochs determines how often the entire training dataset is 
passed through the model. Each epoch allows the model to learn and adjust its 
weights, leading to better performance. Therefore, using epochs as the independent 
variable is appropriate to measure these models’ training progress and performance. 
The relationship between the number of estimators, training accuracy, and time for 

the TFNN model is shown in Figure 9a. As the number of estimators increases, accuracy 
and training time generally rise. Starting with an accuracy of 82.72% and a training time 
of 0.0541 s for 1 estimator, the model’s performance improves, reaching 99.99% accuracy 
at 9 estimators with a training time of 1.2491 s, representing the optimal balance between 
high accuracy and reasonable training time. The trend continues, reaching 99.99% 
accuracy at 19 estimators with a training time of 3.9955 s. Figure 9b illustrates the CNN 
training process over 100 epochs, showing accuracy quickly rising to near 100% and 
cumulative training time increasing linearly, totaling approximately 58.09 s. Figure 9c 
depicts the DNN training process over 100 epochs, with accuracy steadily increasing and 
plateauing near 99.99% and cumulative training time rising gradually to approximately 
47.75 s. Figure 9d shows the RNN training process over 100 epochs, with fluctuating 
accuracy. Still, the cumulative training time generally increases to approximately 1909.21 
s, reflecting the computational effort required for neural network architecture. 
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violin plots.

3.2. Training Result

We used 2800 samples across the four intrusions for the training set, shuffling the
samples to ensure that the model could learn from a random training data pattern. We
allocated 800 samples for validation during training to ensure that the model performed
well before testing. Finally, we used 400 samples, separate from the training set, to test
our model’s performance. Our study aimed to evaluate the performance of various neural
network models for intrusion signal classification. The TFNN model employs the number
of estimators as its key independent variable, while CNN, DNN, and RNN models use the
number of epochs. This distinction is rooted in the fundamental differences between these
models and their training processes.

1. TFNN Model: The TFNN utilizes an ensemble method where the number of estima-
tors, or decision trees, is crucial for its performance, as shown in Huang et al. [31].
Each estimator contributes to the model’s overall prediction capability, thus increasing
the number of estimators and improving accuracy and computational effort.

2. CNN, DNN, and RNN Models: These models are trained through iterative processes
where the number of epochs determines how often the entire training dataset is passed
through the model. Each epoch allows the model to learn and adjust its weights,
leading to better performance. Therefore, using epochs as the independent variable is
appropriate to measure these models’ training progress and performance.

The relationship between the number of estimators, training accuracy, and time for
the TFNN model is shown in Figure 9a. As the number of estimators increases, accuracy
and training time generally rise. Starting with an accuracy of 82.72% and a training time of
0.0541 s for 1 estimator, the model’s performance improves, reaching 99.99% accuracy at
9 estimators with a training time of 1.2491 s, representing the optimal balance between high
accuracy and reasonable training time. The trend continues, reaching 99.99% accuracy at
19 estimators with a training time of 3.9955 s. Figure 9b illustrates the CNN training process
over 100 epochs, showing accuracy quickly rising to near 100% and cumulative training
time increasing linearly, totaling approximately 58.09 s. Figure 9c depicts the DNN training
process over 100 epochs, with accuracy steadily increasing and plateauing near 99.99% and
cumulative training time rising gradually to approximately 47.75 s. Figure 9d shows the
RNN training process over 100 epochs, with fluctuating accuracy. Still, the cumulative
training time generally increases to approximately 1909.21 s, reflecting the computational
effort required for neural network architecture.
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4. Discussion
We evaluate our proposed method alongside other models by employing a confusion

matrix, as depicted in Figure 10. The confusion matrix for the TFNN method demonstrates
almost perfect classification performance across all four classes: noise, knocking, crawling,
and touching, each achieving 99.99% accuracy, as shown in Figure 10a. The CNN model
shows strong performance, with high accuracy for most classes: 95.45% for crawling, 76.18%
for knocking, 99.99% for noise, and 94.43% for touching, as illustrated in Figure 10b. However,
there are some misclassifications, such as 4.34% of crawling instances predicted as knocking
and 19.00% of knocking instances predicted as crawling. Figure 10c presents the DNN
model’s varying performance, achieving 43.37% accuracy for crawling, 57.12% for knocking,
99.99% for noise, and 77.77% for touching, with notable misclassifications between crawling,
knocking, and touching. Figure 10d shows the RNN model’s mixed performance, with 73.90%
accuracy for crawling, 23.80% for knocking, 99.99% for noise, and 50.00% for touching, and
significant misclassifications, particularly between crawling, knocking, and touching.
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Figure 10. Evaluation of intrusion signal classification using a confusion matrix representation for
(a) proposed method, (b) CNN, (c) DNN, and (d) RNN.

Table 1 compares the performance of four models: our method, CNN, DNN, and RNN,
across four classes: crawling, knocking, noise, and touching. Our method performs with
99.99% accuracy, precision, recall, and F1 score for all classes. The CNN model shows strong
performance, with an overall accuracy of 91.51%, achieving high precision, recall, and F1
scores, particularly for the noise class. The DNN model has a lower overall accuracy of
69.56%, with varying performance across classes, particularly crawling and knocking. The
RNN model has the lowest overall accuracy of 61.92%, with significant misclassifications,
especially for crawling and knocking, but performs well for the noise class.

Table 1. Comparison of precision, recall, F1 score, and accuracy.

Model Label Precision Recall F1 Score

Crawling 99.99% 99.99% 99.99%
Our method Knocking 99.99% 99.99% 99.99%

Accuracy: Noise 99.99% 99.99% 99.99%
99.99% Touching 99.99% 99.99% 99.99%

Crawling 84.62% 95.45% 89.80%
CNN Knocking 88.89% 76.18% 82.05%

Accuracy: Noise 99.99% 99.99% 99.99%
91.51% Touching 94.44% 94.43% 94.44%

Crawling 66.67% 43.37% 52.63%
DNN Knocking 57.14% 57.12% 57.14%

Accuracy: Noise 82.61% 99.99% 90.48%
69.56% Touching 63.64% 77.77% 70.00%

Crawling 47.22% 73.90% 57.63%
RNN Knocking 71.43% 23.80% 35.71%

Accuracy: Noise 76.00% 99.99% 86.36%
61.92% Touching 69.23% 50.00% 58.06%

Figure 11 illustrates the evolution of our deep learning model’s understanding and
differentiation of intrusion signals. Initially, the t-SNE plot presents the unprocessed
data in a two-dimensional principal part space. Here, the clusters representing different
intrusion categories are somewhat indistinct, with considerable overlap, reflecting the
data’s raw and unrefined state, as shown in Figure 11a. After applying TFNN, the t-
SNE plot transforms, highlighting more pronounced clusters as described in Figure 11b.
It indicates the success of the algorithm in pattern recognition and enhancement. The
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reduced overlap between categories underscores the model’s refined ability to distinguish
between events clearly. An increase in cluster density points to the model’s heightened
classification precision, bringing similar data points closer. Ultimately, this comparative
visualization of the t-SNE plots—before and after deep learning—serves as a testament to
the model’s capacity to segregate and interpret complex data, with tighter, well-separated
clusters post-training, suggesting robust learning of the nuances among different intrusions
like “touching”, “noise”, “knocking”, and “crawling”. The TFNN used in our study
is an interval-based classification method inspired by Kang et al. [32], which utilizes
dense neural network layers to enhance prediction accuracy. This approach is particularly
effective for handling temporal data, focusing on specific intervals to capture the underlying
patterns associated with intrusion detection. After approximately six months, we conducted
additional experiments at the laboratory by introducing new test datasets to the existing
setup and applying our deep learning model without further training. The results indicate
that the model remains highly accurate, suggesting its stability.
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We compared our method to previous research with similar aims but different ap-
proaches concentrating on pattern recognition. Mu et al. [26] report that using the prob-
abilistic method can achieve 92.68% accuracy using DMZI. Huang et al. [25] obtained
an average of 94% accuracy using hybrid feature extraction with DMZI. Lyu et al. [18]
demonstrated almost the same performance but using a simple setup with a DMZI and
converting time series signals to 2D using the GAF algorithm, achieving 97.67% accuracy
with a 2D-CNN. Utilizing a single MZI, our method is more efficient and faster than neural
network architectures, achieving 99.99% accuracy. This indicates that our enhanced deep
learning approach can effectively solve intrusion detection problems as an alternative to
traditional neural networks. Given the focus on event pattern recognition, our future work
will involve applying longer sensing fibers and improving event localization. Additionally,
we are inspired by the experiment methodologies in [18,25,26] and aim to incorporate
similar techniques in our model.

While our current manuscript focuses on the advantages of the TFNN algorithm and
its comparison with traditional CNN, DNN, and RNN models, future research involves
conducting off-site experiments to test the robustness and effectiveness of our intrusion
detection system in various external environments. To thoroughly evaluate the system’s
resilience, these experiments will include exposure to different noise conditions, such as
varying wind speeds and other environmental interferences. Additionally, due to the low
complexity and the use of Python programming, future research will implement the system
on compact devices such as the Raspberry Pi 5 or Jetson Nano. These experiments will en-
able us to assess the performance of our model under diverse conditions, thereby providing
a comprehensive understanding of its practical applications and potential for real-world
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deployment. Furthermore, we recognize that Sagnac interferometers offer advantages in
robustness for real-world scenarios, particularly in maintaining performance despite cable
breaks or other physical disruptions. We will consider incorporating Sagnac interferometers
in future experiments to enhance the system’s reliability in practical applications.

5. Conclusions
In summary, we conducted extensive experiments using a variety of datasets that

included four distinct types of intrusions: crawling, knocking, touching, and noise. Our
proposed model showed exceptional performance, achieving 99.99% accuracy across these
datasets. Even when visualized using t-SNE, the model maintained clear distinctions
between the intrusion types, with only a minor scatter observed between “knocking” and
“crawling”. Furthermore, our approach achieved superior performance compared to a
conventional neural network model, requiring significantly less computational power and
making it more efficient and practical for real-world applications. Our future research will
aim to expand upon this work by exploring more than four intrusion types, potentially
uncovering even greater insights and applications.
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