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Abstract: Displacement measurement is a crucial application, with laser-based methods
offering high precision and being well established in commercial settings. However, these
methods often come with the drawbacks of significant size and exorbitant costs. We
introduce a novel displacement measurement method that utilizes the missing-order Talbot
effect. This approach circumvents the need to measure contrast in the Talbot diffraction field,
opting instead to leverage the displacement within the missing-order Talbot diffraction
pattern. Our method only requires parallel light, an amplitude grating, and a detector to
achieve displacement measurement. The measurement dynamic range can be adjusted
by altering the grating period and the wavelength of the incident light. Through careful
simulation and experimental validation, our method exhibits a correlation coefficient R
surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 µm.

Keywords: Talbot effect; displacement measurement; grating; missing-order Talbot effect;
FFT

1. Introduction
Displacement measurement is a critical application in various fields, and while laser-

based methods have led the field with their precision, they come with significant drawbacks,
such as their large size and high costs. Laser-based displacement detection devices are
primarily divided into two main categories: time-of-flight (ToF) laser ranging and laser
interferometry. ToF laser ranging calculates distance by timing the flight of a light pulse
from emission to reflection, providing the benefits of rapid measurement, making it par-
ticularly suitable for long-distance metrology. However, in short-range measurements,
ToF methods require extremely high temporal resolution, which can lead to significant
errors, limiting their precision to the sub-millimeter level [1]. On the other hand, laser
interferometry achieves sub-wavelength precision through the interference of light waves,
but this precision comes at the cost of requiring sophisticated equipment, which leads to
higher expenses [2].

The Talbot effect, renowned for its unique diffraction pattern and characterized by
miniaturization and low cost, has been extensively applied in various fields including
angular sensing [3,4], wavefront sensing [5], and photolithography [6,7]. This phenomenon
occurs with the illumination of periodic objects by a plane wave, prompting the periodic
generation of self-images along the direction of the incident light [8]. Characterized by fluc-
tuations in the contrast of these self-images within the Talbot diffraction field in relation to
distance, the effect produces distinct high-contrast fringes at particular intervals, identified
as Talbot distances (Zt). These distances are determined by both the wavelength (λ) and
the grating period (d), and are described by the equation Zt = 2n d2

λ [9].
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The unique characteristics of the Talbot diffraction patterns have sparked considerable
interest in academia for their potential in displacement measurement. P. Chavel pioneered
the application of the Talbot effect for displacement measurement, employing variations
in received self-imaging intensity to scan and detect object contours [10]. Building on this
foundation, G. Spagnolo advanced the field of displacement measurement by employing
a 200 µm period grating, achieving a linearity better than 1% through frequency-domain
processing [11]. Furthermore, Francisco expanded the technique’s application to measure
the roughness of stepped surfaces with a single grating [12]. Research then focused on
dual-grating systems, which convert diffraction patterns into intensity information us-
ing two sets of gratings. Luo employed a dual-grating arrangement to determine lens
focal lengths [13], while Xin leveraged small-period gratings for precise displacement
tracking [14]; these findings underscore the Talbot effect’s aptitude for high-precision
displacement quantification. P. Rodriguez-Montero replicated the dual grating using the
photo-emf effect, achieving a resolution close to 10 µm over a 1.5 mm dynamic range [9].
In addition to the grating period, wavelength also plays a significant role in influencing
the Talbot diffraction field. Vela-Esparza utilized a dual-wavelength Talbot diffraction
field to measure displacement [15], while Satish Kumar Dubey improved the precision and
expanded the dynamic range through multi-wavelength scanning of stepped surfaces [16].
Furthermore, E. Tepichin-Rodriguez extended the technique to include the measurement of
stepped surfaces using spherical waves [17]. Although these studies have successfully mea-
sured displacement by relying on the periodic changes within the Talbot diffraction field,
they have overlooked the potential value of the ‘missing’ regions beyond the Talbot zones.

When a finite-sized plane light source illuminates a grating, the regions beyond the
Talbot self-imaging areas are characterized by the formation of stripe-like images due to
the absence of specific diffraction orders, marking a distinct difference from the patterns ob-
served within the Talbot region. E. A. Hiedemann observed these stripe-like images outside
the Talbot region [18], and Silva, D. E. termed this phenomenon the “walk-off effect” [19].
John offered an explanation of this effect in the frequency domain, yet the explanation was
not entirely intuitive [20]. Rao provided an innovative visual interpretation of the Talbot
diffraction field from the perspective of wave optics, but this interpretation did not cover
the regions where diffraction orders are missing [21]. There have been scant applications
related to this phenomenon. To our knowledge, Ezaki is the pioneer in harnessing the
missing-order phenomenon in photolithography for the creation of high-aspect-ratio struc-
tures [7]. In this paper, we refer to this phenomenon as the “missing-order Talbot effect”
and demonstrate its application in achieving high-precision displacement measurements.

We present a novel approach that harnesses the missing-order Talbot effect for the
first time in displacement measurement. This method offers significant advantages over
traditional Talbot diffraction regions by providing a larger dynamic range and superior
linearity. Our proposed algorithm has been rigorously validated through both simulation
and experimental testing, demonstrating a correlation coefficient as high as 0.999 within a
30 mm dynamic range, with the highest precision exceeding 3 µm. The precision of our
method can also be further enhanced by reducing the grating period. Leveraging its com-
pact size and cost-effectiveness, this method holds great potential for future applications in
optical alignment, robotic arm sensing, and industrial inspection, among other fields.

2. Theory
2.1. The Principle of the Talbot Effect and Missing-Order Talbot Effect

The illustration of the Talbot effect, as shown in Figure 1a, depicts a plane wave that,
after passing through a grating, diffracts into multiple orders of light. Using the 0th and
±1st orders as examples, the areas encompassed by these orders are known as the Talbot
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regions. These regions are characterized by the periodic generation of the grating’s self-
images, which are indicated by the red markings in the figure. As the wave propagates,
the orange regions selectively capture only the 0th and +1st, or 0th and −1st diffraction
orders, leading to the formation of stripe-like images. These specific areas, where certain
diffraction orders are absent, are termed missing-order Talbot regions. This phenomenon
exists across different grating periods. Figure 1b presents the diffraction field of a grating
with a 4 µm period when illuminated by 632 nm monochromatic light, as calculated using
the FDTD method. The Talbot distance for this configuration is approximately 50 µm.
Figure 1c depicts the diffraction field of a grating with a 100 µm period under identical
monochromatic illumination, with the calculations performed using the angular spectrum
method [22]. The Talbot distance in this case is approximately 32 mm. It is evident that the
propagation patterns of the diffraction fields for both grating periods are fundamentally
similar. The red regions, which are the Talbot regions, are responsible for the periodic
production of self-images, while the orange regions, identified as the missing-order Talbot
regions, are where stripe-like images are generated due to the absence of certain diffraction
orders. Thus, the missing-order regions serve as an excellent means for displacement
detection due to their substantial positional changes with respect to variations in z.

Figure 1. Schematic and simulation of the Talbot effect. (a) Illustrates the formation of Talbot zones
(red) where the 0th and ±1st diffraction orders overlap, creating periodic self-imaging, and missing-
order Talbot zones (orange) that produce stripe-like images due to the absence of certain diffraction
orders. (b) Shows the diffraction field for a 4 µm grating period under 632 nm illumination, with a
Talbot distance of 50 µm, as calculated by FDTD. (c) Displays the diffraction field for a 100 µm grating
period under the same illumination, with a Talbot distance of 32 mm, calculated using the angular
spectrum method.

Considering only the 0th- and ±1st-order diffraction waves, the diffraction propagation
is shown in Figure 2. The black lines represent the 0th-order diffraction wave, the blue
lines represent the +1st-order diffraction wave, and the red lines represent the −1st-order
diffraction wave. The wavelength is λ, and the three waves interfere to form the Talbot
positive image at the Talbot distance Zt and the Talbot negative image at Zt

2 . Figure 3
provides a detailed view of Figure 2, focusing on the explanation of the 0th- and −1st-order
diffraction waves, where the angle of the −1st-order diffraction is denoted as θ.
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Figure 2. The diagram of diffraction propagation.

Figure 3. Localized amplification diagram of diffraction propagation.

According to the geometric relationship, the projection of the −1st-order diffracted
wave on the x-axis is given by

∆xm = λ cos θ (1)

where it can be derived from the grating equation that

sin θ =
λ

d
(2)

where θ is the diffraction angle, λ is the wavelength of the light, and d is the grating period.
Substituting the equation above, we have

∆xm = λ

√
1− λ2

d2 (3)

The phase difference between the −1st-order diffracted wave and the 0th-order
diffracted wave is

∆ϕ = λ− ∆xm = λ

(
1−

√
1− λ2

d2

)
(4)

The phase difference between the +1st-order diffracted wave and the 0th-order
diffracted wave is the same as the equation above.
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When the three groups of diffracted waves interfere, under certain conditions, where
the propagation distance satisfies nλ, as the least common multiple of ∆ϕ, they have the
same phase and superimpose to form bright fringes [23]. At this distance, Zt, it satisfies

Zt =
λ2

∆ϕ
=

λ

1−
√

1− λ2

d2

≈ 2d2

λ
(5)

This distance is known as the Talbot distance, where the grating exhibits positive
images at a distance of nZt and negative images at a distance of (n− 1

2 )Zt.
In the region of missing-order Talbot, when only the 0th-order and +1st-order (−1st-

order) diffracted waves interfere, as shown in Figure 4, the black line represents the
0th-order diffracted wave and the blue line represents the +1st-order diffracted wave, both
with a wavelength of λ. The +1st-order diffraction angle is denoted as θ, and the red
dashed line represents the stripe-like pattern formed by their interference. The angle of
the stripe pattern, denoted as θmt, can be derived from the triangle congruence theorem,
and it is given by θmt =

θ
2 . Along the direction of the dashed line, which is the bisector

of the propagation angles of the two diffracted waves, there will be phase overlap within
the wavelength scale, resulting in the generation of the stripe-like pattern, known as the
missing-order Talbot effect.

Figure 4. The red dashed lines depict the stripe-like patterns that arise from the interference between
the 0th and +1st orders, characterizing the missing-order Talbot images.

2.2. Principles of Displacement Detection and Displacement Extraction Algorithm

The displacement in distance Z results in a lateral offset of the missing-order Talbot
image x0, also shown in Figure 4. Based on the trigonometric relationships, we can derive
the following equation:

x0 = Z tan
(

θ

2

)
(6)

Based on the grating equation, it is known that

sin(θ) =
λ

d
(7)

According to the properties of frequency-domain transformations, a spatial shift is
equivalent to a change in the phase of the frequency domain, and the shift x can be extracted
from the phase in the frequency domain. Let the spatial domain image be f (x), and after a
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shift of x0, it is represented as f (x + x0). The corresponding relationship after undergoing
a fast Fourier transform FFT is as follows:

f (x) F←→ F(ω) (8)

f (x + x0)
F←→ F(ω) · ejωx0 (9)

where ω = 2πn
N , N is the width of the image in pixels, and n is the pixel position. Let the

phase slope be represented as kϕ, and by substituting, we can find that

kϕ = angle(ejωx0) =
2πx0

N
(10)

Substituting into the above equation gives us

x0 =
kϕN
2π

(11)

Combining the above equation, we can derive that

Z =
kϕN
2π

tan−1[
arcsin( λ

d )

2
] (12)

Our algorithm, as described in Algorithm 1, integrates summation and frequency
domain-processing operations to enhance the efficiency and noise resistance of the dis-
placement measurement process. The rationale behind the summation step is that the
variation information is predominantly aligned perpendicular to the grating direction.
By concentrating on this specific direction, we can significantly improve the algorithmic
efficiency while also leveraging the inherent noise reduction capabilities of the frequency
domain. The issue of 2π ambiguity in the phase slope is related to the sampling frequency,
and the introduction of frequency-domain filtering can significantly mitigate this effect.

Algorithm 1 Missing-order Talbot Displacement Extraction Algorithm

1: Obtained missing-order regions I0 and I1 from the displacement images.
2: Summing the images I0 and I1 perpendicular to the direction of change yields S0 and

S1, respectively.
3: Applying Fourier transform to S0 and S1 results in FT0 and FT1, respectively.
4: Calculate the frequency domain phase information by computing ϕ = angle(FT0/FT1)

5: Compute the frequency domain phase slopes kϕ = ϕ · FT0

6: Calculate the displacement Z =
kϕ N
2π tan−1[

arcsin( λ
d )

2 ]

3. Simulation and Performance Analysis
We employed the angular spectrum method [22] to simulate three sets of data. Each

set featured a grating with a period of 100 µm and a width of 5 mm, illuminated by a
light source with a wavelength of 632 nm. Gaussian noise was added to each set at a
signal-to-noise ratio (SNR) of 30 dB, which is a level that closely aligns with practical
scenarios, and the camera used for capturing the images was set to a pixel size of 3.45 µm.
This setup ensured that the simulation closely mirrored real-world conditions, allowing for
the assessment of the algorithm’s performance under typical environmental noise levels.
The first set included simulations over distances ranging from 300 mm to 400 mm, with
an image interval of 1 mm. The second set covered a range from 350 mm to 360 mm, with
an interval of 100 µm. The third set focused on a narrow range from 355 mm to 356 mm,
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with an interval of 10 µm. The computational results of these simulations are presented in
Figure 5.

Figure 5. Simulation data of diffraction fields and detection results for a grating with a period of
100 µm under 632 nm plane wave illumination. (a) Shows the diffraction field in the missing-order
region at distances ranging from 300 mm to 400 mm from the grating, with red arrows indicating the
Talbot distances. (b) Displays the detection results and linear fit residual analysis within a dynamic
range of 300 mm to 400 mm. (c) Illustrates the diffraction field in the missing-order region at distances
between 350 mm and 360 mm from the grating. (d) Presents the detection results and linear fit
residual analysis within a dynamic range of 350 mm to 360 mm. (e) Depicts the diffraction field in the
missing-order region at distances from 355 mm to 356 mm. (f) Shows the detection results and linear
fit residual analysis within a dynamic range of 355 mm to 356 mm. The correlation coefficient R and
root mean square error (RMSE) are provided for each dynamic range.

3.1. Accuracy and Dynamic Range Analysis

Figure 5a captures the diffraction fields within the missing-order region for the initial
dataset. By focusing on a 500 µm wide section of the data, we were able to compute the
displacement with high precision. Figure 5b illustrates the computational results, high-
lighting the periodic nature of the displacement measurements. The correlation coefficient
R of 0.9999 indicates a very strong linear relationship between the given displacement
and the measured values. The root mean square error (RMSE) of approximately 89 µm
within a 30 mm dynamic range serves as an indication of the method’s accuracy, particu-
larly given that this range is near the Talbot distance Zt, which is a pivotal parameter in
measurements based on the Talbot effect. The distinct cosine distribution of the residuals
suggests a consistent and predictable pattern, which is valuable for further refinement of
the measurement technique.

Figure 5c,d showcase the results for the second dataset, where the propagation angles
are clearly visible. The high correlation coefficient R of 0.9998 and an RMSE of approxi-
mately 40 µm over a 10 mm dynamic range further validate the method’s reliability. The
fluctuating pattern of the residuals indicates the method’s consistent performance across a
broader range of measurements.

Figure 5e,f present the findings for the third dataset, which exhibit near-linear propa-
gation. The correlation coefficient R of 0.9999 within a 1 mm dynamic range, along with an
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RMSE of merely 1.25 µm, underscores the method’s exceptional precision and potential for
high-precision applications.

We present a comparative analysis between the missing-order Talbot effect and tra-
ditional Talbot zone detection methods, highlighting the superior advantages of our ap-
proach. Figure 6a showcases the diffraction patterns within the traditional Talbot zone,
where periodic self-imaging is observed. The contrast within this zone is periodically
modulated and is quantified using the Modified Transfer Function (MTF), calculated as
MTF = MaxP−MinP

MaxP+MinP , with MaxP indicating the peak intensity and MinP indicating the
trough intensity. Figure 6b illustrates the MTF values as a function of displacement, re-
vealing a periodic fluctuation. This pattern, though theoretically capable of displacement
measurement, is outperformed by the missing-order detection method in terms of linearity
and dynamic range. Our approach, leveraging the missing-order Talbot effect, excels by
offering enhanced linearity and a broader dynamic range, making it a more robust solution
for displacement measurement applications.

These findings collectively demonstrate the robustness of our method in displacement
measurement across different scales, emphasizing its high precision and reliability. The
method’s capacity to sustain high correlation coefficients and minimal root mean square
error (RMSE) across diverse dynamic ranges marks a substantial advancement in the
domain of optical displacement measurement, particularly within the context of Talbot
effect-based metrology. The distinct cosine distribution of residuals across different datasets
also opens avenues for further research to potentially enhance the method’s accuracy.

Figure 6. Talbot zone diffraction and MTF analysis. (a) Talbot zone diffraction exhibiting periodic
self-imaging. (b) MTF representation of periodic intensity fluctuations across displacement.

3.2. Algorithm Efficiency Analysis

In the realm of displacement measurement, temporal resolution is of critical impor-
tance, as higher resolution enables the detection of displacement information at higher
frequencies. This section provides an analysis of the extraction speed and computational
efficiency of our proposed algorithm. Characterized by its requirement for just a single
fast Fourier transform (FFT), our algorithm demonstrates minimal computational com-
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plexity, thereby achieving a high level of computational efficiency. The accompanying
Figure 7 delineates the extraction duration for a dataset comprising 50 frames, with the
per-frame extraction time surpassing the threshold of 0.000015 s. This efficiency facilitates
the extraction of over 67,000 frames per second, thereby enabling the capability to measure
displacements at exceedingly high frequencies. The computational analysis was carried
out with MATLAB R2022a, leveraging its robust set of mathematical and computational
tools, all on a system driven by the Apple M2 chip.

Figure 7. Algorithmic efficiency of displacement extraction algorithm.

4. Experimental Preparation and Analysis
The experimental optical setup, as illustrated in Figure 8, is designed to meticulously

capture the nuances of the missing-order Talbot effect for displacement measurements.
A 632 nm laser diode module (Thorlabs CPS635R, Newton, MA, USA) is utilized within
the setup as a stable light source, offering an output power of 1.2 mW. The light beam
initially undergoes expansion by a beam expander (Thorlabs LA1131-B, Newton, MA,
USA), transforming it into a spherical wavefront. Subsequently, a precision collimating lens
(Thorlabs LA1608-B, Newton, MA, USA) is employed to convert this spherical wavefront
into a plane wavefront, ensuring the consistency of the beam’s diameter at various distances
from the collimating lens, thereby guaranteeing the collimation of the light source.

The collimated beam is directed towards a meticulously crafted grating, characterized
by a period of 100 µm and a width of 5 mm. This grating plays a pivotal role in producing
the diffraction pattern associated with the missing-order Talbot effect. The pattern is then
captured by a high-resolution camera, the Foctek FTBA20MU102, which, with pixels as
small as 3.45 µm, is well suited to the task of capturing detailed imaging capabilities, crucial
for the analysis of the diffraction patterns.

The camera is securely mounted on a six-degree-of-freedom platform (Pi H840), which
is pivotal for the experimental process. This platform, known for its precision, allows the
camera to be positioned with an accuracy of 0.1 µm, a level of control that is paramount for
capturing the minute changes in the diffraction pattern that indicate displacement.

The entire setup is meticulously aligned to ensure that the collimated beam interacts
optimally with the grating, and the camera is positioned to capture the resulting diffraction
field. This precise collimation and alignment are critical to avoid introducing displacement
measurement errors that could arise from beam propagation at oblique angles.
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Figure 8. Physical experimental setup for detecting relative displacement changes between grating
and camera.

This system allowed for the precise collection of two distinct sets of data: the first set
with a displacement interval of 100 µm over a span of 1 mm, capturing 10 frames; and the
second set with a 1 mm interval over a span of 10 mm, also capturing 10 frames.

Figure 9a,b present the computational outcomes of these measurements. In the case
of a 1 mm dynamic range, as shown in Figure 9a, our method achieved an impressive
correlation coefficient R of 0.9999, with a root mean square error (RMSE) of 2.7786 µm.
This slight increase in RMSE compared to simulated results could be due to environmental
factors such as noise and vibrations that can subtly affect the precision of the measurements.

For a broader dynamic range of 10 mm, illustrated in Figure 9b, the method maintained
a high correlation coefficient R of 0.9998, accompanied by a more significant RMSE of
37.07 µm. Despite the increase in RMSE, the results are in harmony with our simulations,
suggesting that our method is reliable and consistent over a wider range of displacements.

These results not only highlight the system’s high precision in displacement measure-
ment but also demonstrate its robustness against potential sources of error. The consistency
of the correlation coefficient R being close to 1 in both dynamic ranges indicates the
method’s potential for accurate and reliable displacement detection, which is critical for
applications in precision optics and related fields.



Sensors 2025, 25, 292 11 of 13

Figure 9. Measurement results of different dynamic ranges. (a) Measurement results of 1 mm dynamic
range. (b) Measurement results of 10 mm dynamic range.

5. Discussion
In the current landscape of commercial distance measurement technology, there are

several well-established devices that dominate the market. These include time-of-flight
(ToF) laser ranging devices, laser trackers, and interferometers based on laser interfer-
ometry. Time-of-flight (ToF) devices are limited by the time resolution of circuits and
struggle to achieve measurements at the micrometer level. Interferometric devices, on
the other hand, can reach sub-micrometer precision. However, these devices often come
with significant drawbacks, such as large size and high cost, which can be prohibitive for
certain applications.

The Talbot effect-based distance detection stands out as a novel approach that has
yet to be commercialized and is primarily utilized in laboratory settings. Traditional
distance measurement methods are often constrained by limited linearity and dynamic
range. Our method, leveraging the missing-order Talbot effect, offers superior linearity and
an extended dynamic range. The compact nature of our approach requires minimal space,
facilitating its integration into various systems for real-time measurement applications.
Furthermore, our method presents a significant cost advantage over existing technologies.
To our knowledge, interferometers are typically priced in the hundreds of thousands of
yuan, whereas our method can be implemented at a cost level of just a few thousand yuan.

From Equations (6) and (7), it can be observed that as the grating period decreases, the
angles of the diffraction orders increase. The precision in detecting the lateral shift of the
self-image is independent of the grating period and is solely dependent on the pixel size of
the detector. Consequently, as the grating period decreases, the precision of displacement
detection is expected to improve. Simultaneously, due to the reduction in Talbot distance,
the dynamic range of detection will also decrease. However, the detection in this paper
is always compared to the initial value. In practical applications, comparison with the
previous frame’s result is feasible. As long as the result falls within the dynamic range of
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the previous frame, a cumulative method of comparison can be employed to extend the
detection capability to a larger dynamic range.

At present, our method achieves micrometer precision, but it holds great potential for
future enhancements. By reducing the grating period, among other strategies, it is feasible
to attain sub-micrometer precision in displacement measurements. This advancement could
revolutionize the field by offering a cost-effective and high-precision displacement detection
method that could be widely adopted across numerous domains. The exploration of the
missing-order Talbot effect for displacement measurement represents a novel application
and our research marks a significant step forward in this endeavor.

6. Conclusions
In conclusion, the method introduced in this paper, which leverages the missing-order

Talbot effect for displacement measurement, stands out for its high-precision detection
capabilities. This innovative approach enables the rapid adjustment of both the dynamic
range and the precision of measurements by merely altering the grating period and the
wavelength of the incident light. The oscillatory pattern observed in the residuals suggests
that there is opportunity for further refinement, which could lead to a substantial enhance-
ment in measurement accuracy. Additionally, by incorporating contrast information from
the Talbot regions, the dynamic range of the method can be substantially broadened, and it
holds the promise of enabling absolute distance measurement.

Looking ahead, the potential applications of this method are vast and span across
various industries. In optical alignment, it could provide a precise and cost-effective
solution for fine-tuning systems. For mechanical arm navigation, the method’s high
precision and dynamic range could be instrumental in guiding robotic arms with accuracy.
In the realm of system status monitoring, it could be employed to detect minute changes in
structural integrity or to monitor the performance of machinery over time.

The future integration of this method into these fields could lead to significant ad-
vancements, offering a versatile tool for high-precision measurements that is both accessible
and adaptable to a wide array of applications. As research and development continue, the
potential for achieving sub-micrometer precision through reductions in grating periods
and the exploration of multi-wavelength techniques could further expand the capabilities
and applicability of this displacement detection method.
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