Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review
<p>An RF and video-based hybrid localization technique. (<b>a</b>) A WCE device passing through a GI tract surrounded by an array of sensors. (<b>b</b>) Fusion of different measurement modules. (<b>c</b>) Position estimation.</p> "> Figure 2
<p>Review methodology.</p> "> Figure 3
<p>An overview of different techniques used for WCE localization.</p> "> Figure 4
<p>System overview of a magnetic field-based localization technique with active coils [<a href="#B36-sensors-25-00253" class="html-bibr">36</a>].</p> "> Figure 5
<p>System overview of a wearable capsule endoscope electromagnetic localization system [<a href="#B61-sensors-25-00253" class="html-bibr">61</a>].</p> "> Figure 6
<p>Overview of an RF and video-based hybrid localization technique [<a href="#B85-sensors-25-00253" class="html-bibr">85</a>].</p> ">
Abstract
:1. Introduction
- The absolute position and orientation errors must not exceed 5 mm and 5°, respectively.
- The computational algorithms should be designed to be highly efficient with minimal processing complexity to achieve optimal real-time localization.
- Given its large-meter span, the GI Track’s relative distance error must be less than 5% to detect trajectory irregularities.
- The system should demonstrate resilience in everyday scenarios where ferromagnetic objects are present.
- The overall power consumption of the capsule’s and on-body/off-body excitation and data transmission circuitry should be low to support long monitoring.
- The system should be simple, lightweight, and easy to manufacture. To enhance integrability, it should use a minimal number of sensors.
2. Magnetic Field-Based Localization Techniques
2.1. Introduction to Magnetic Field-Based Localization of WCE
2.2. Static Magnetic Field-Based Localization
2.3. Dynamic Magnetic Field-Based Localization
2.4. Magnetic Induction-Based Localization
2.5. Summary of the Magnetic Field-Based Localization Techniques
3. RF-Based Localization Methods
3.1. Introduction to RF-Based Localization Techniques
3.2. Advancements in RF-Based Localization Techniques
3.3. Summary of RF-Based Localization Techniques
4. Video-Based Localization Techniques
4.1. Introduction
4.2. Recent Developments in Video-Based Localization Techniques
4.3. Summary of Video-Based Localization Techniques
5. Hybrid and Other Localization Methods
5.1. Introduction to Hybrid Localization Techniques
5.2. Emerging Trends in Hybrid Localization Techniques
5.3. Summary of Hybrid Localization Techniques
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Y.; Zhang, W.; Gu, J.; Xia, L.; Cao, Y.; Zhu, X.; Wen, H.; Ouyang, S.; Liu, R.; Li, J.; et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat. Commun. 2024, 15, 1839. [Google Scholar] [CrossRef]
- Haya, A.; Abir, H.; Nourah, A.-A.; Panos, L.; Dhiya, A.-J. Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images. Sensors 2019, 19, 1265. [Google Scholar] [CrossRef] [PubMed]
- Emara, M.H.; Mariam, Z.; Muhammad, A.-G.; Makhlouf, N.A.; Mohamed, A.; Doaa, A.; Mahros, A.M.; Ahmed, B.; Behl, N.S.; Sadek, M.; et al. Effect of COVID-19 on gastrointestinal endoscopy practice: A systematic review. Ann. Med. 2022, 54, 2874–2883. [Google Scholar] [CrossRef] [PubMed]
- Arefin, M.S.; Redoute, J.M.; Yuce, M.R. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System. IEEE J. Biomed. Health Inform. 2018, 22, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Murliky, L.; Oliveira, G.; de Sousa, F.R.; Brusamarello, V. Tracking and Dynamic Tuning of a Wireless Powered Endoscopic Capsule. Sensors 2022, 22, 6924. [Google Scholar] [CrossRef] [PubMed]
- Koulaouzidis, A.; Baatrup, G. Current status of colon capsule endoscopy in clinical practice. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Vats, A.; Pedersen, M.; Mohammed, A.; Hovde, Ø. Evaluating clinical diversity and plausibility of synthetic capsule endoscopic images. Sci. Rep. 2023, 13, 10857. [Google Scholar] [CrossRef] [PubMed]
- Alsunaydih, F.N.; Ali, M.A.; Yuce, M.R. Wireless Capsule Design and Its Locomotion and Navigation Within the Body. In Handbook of Biochips, 1st ed.; Sawan, M., Ed.; Springer: New York, NY, USA, 2022; pp. 1013–1036. [Google Scholar] [CrossRef]
- Mascarenhas, M.; Martins, M.; Afonso, J.; Ribeiro, T.; Cardoso, P.; Mendes, F.; Andrade, P.; Cardoso, H.; Ferreira, J.; Macedo, G. The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights. Cancers 2023, 15, 5861. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Endoscopes Market Share, Endoscopes Market Share Forecast, 2023–2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/capsule-endoscopes-market (accessed on 2 May 2024).
- World Health Organization. Ageing; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Lin, W.; Ding, S.; Li, Z.; Yang, N. A Three-Step Calibration Method of Sensors’ Pose for Magnetic Localization System. IEEE Trans. Instrum. Meas. 2023, 72, 4011510. [Google Scholar] [CrossRef]
- Mateen, H.; Basar, R.; Ahmed, A.U.; Ahmad, M.Y. Localization of Wireless Capsule Endoscope: A Systematic Review. IEEE Sens. J. 2017, 17, 1197–1206. [Google Scholar] [CrossRef]
- Zeising, S.; Thalmayer, A.S.; Lübke, M.; Fischer, G.; Kirchner, J. Localization of Passively Guided Capsule Endoscopes—A Review. Robot. Autom. IEEE Int. Conf. 2022, 22, 20138–20155. [Google Scholar] [CrossRef]
- Bianchi, F.; Masaracchia, A.; Shojaei Barjuei, E.; Menciassi, A.; Arezzo, A.; Koulaouzidis, A.; Stoyanov, D.; Dario, P.; Ciuti, G. Localization strategies for robotic endoscopic capsules: A review. Expert Rev. Med. Devices 2019, 16, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Schenck, J.F. Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 2005, 87, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Abed-Meraim, K. A survey of magnetic-field-based indoor localization. Electronics 2022, 6, 864. [Google Scholar] [CrossRef]
- Parfenov, V.A.; Khesuani, Y.D.; Petrov, S.V.; Karalkin, P.A.; Koudan, E.V.; Nezhurina, E.K.; Pereira, F.D.; Krokhmal, A.A.; Gryadunova, A.A.; Bulanova, E.A.; et al. Magnetic levitational bioassembly of 3D tissue construct in space. Sci. Adv. 2020, 6, 4174. [Google Scholar] [CrossRef]
- Son, D.; Yim, S.; Sitti, M. A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors. IEEE/ASME Trans. Mechatron. 2015, 21, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.D. Classical Electrodynamics, 1st ed.; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Ali, M.A.; Alsunaydih, F.N.; Rathnayaka, A.; Yuce, M.R. Implementing an Autonomous Navigation System for Active Wireless Capsule Endoscopy. IEEE Sens. J. 2024, 24, 19190–19201. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.-S.; Hoang, M.C.; Jeong, S.; Kim, J.-S.; Lee, C.; Kang, B.; Lee, J.; Son, Y.-D.; Bang, S.; et al. Redundant electromagnetic control of an endoscopic magnetic capsule driven by multiple electromagnets configuration. IEEE Trans. Ind. Electron. 2021, 69, 11370–11382. [Google Scholar] [CrossRef]
- Alsunaydih, F.N.; Yuce, M.R. Next-generation ingestible devices: Sensing, locomotion and navigation. Physiol. Meas. 2021, 1, 04TR01. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Sui, J.; Wang, C. Magnetically actuated capsule robots: A review. IEEE Access 2022, 10, 88398–88420. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Y.; Chen, R.; Dong, W.; Li, Y.; Yu, R.; Dong, M.; Liu, Z.; Zhuang, Y.; Kuang, J. A multimagnetometer array and inner IMU-based capsule endoscope positioning system. IEEE Internet Things J. 2022, 9, 21194–21203. [Google Scholar] [CrossRef]
- Lewis, L.H.; Jiménez-Villacorta, F. Perspectives on permanent magnetic materials for energy conversion and power generation. Metall. Mater. Trans. A 2013, 44, 2–20. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Liu, X.; Jie, Y.; Song, C.; Hu, C. Calibrated analytical model for magnetic localization of wireless capsule endoscope based on onboard sensing. Robotica 2023, 41, 1500–1514. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Li, Z. 6-D spatial localization of wireless magnetically actuated capsule endoscopes based on the fusion of hall sensor array and IMU. IEEE Sens. J. 2022, 22, 13424–13433. [Google Scholar] [CrossRef]
- Martinez, M.; Baca, J.; Martinez, J.; Myers, M. Wearable Tracking Modules Based on Magnetic Fields. In Advances in Automation and Robotics Research: Proceedings of the 2nd Latin American Congress on Automation and Robotics; Springer: Cham, Switzerland, 2020; pp. 214–223. [Google Scholar]
- Suveren, M.; Kanaan, M. 5d magnetic localization for wireless capsule endoscopy using the levenberg-marquardt method and artificial bee colony algorithm. In Proceedings of the 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey, 8 September 2019; pp. 1–6. [Google Scholar]
- Zhang, Q.; Li, Y.; Xu, H.; Li, X.; Zhang, X. Magnetic localization method of capsule endoscope based on hybrid model. IEEE Trans. Instrum. Meas. 2023, 72, 1–10. [Google Scholar] [CrossRef]
- Shao, G.; Tang, Y.; Tang, L.; Dai, Q.; Guo, Y.-X. A novel passive magnetic localization wearable system for wireless capsule endoscopy. IEEE Sens. J. 2019, 19, 3462–3472. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, Y.X. Wearable permanent magnet tracking system for wireless capsule endoscope. IEEE Sens. J. 2022, 22, 8113–8122. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Yuan, S.; Wang, J.; Liu, W.; Meng, M.Q.-H. Magnetic tracking of wireless capsule endoscope in mobile setup based on differential signals. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Zeising, S.; Chen, L.; Thalmayer, A.; Lübke, M.; Fischer, G.; Kirchner, J. Tracking the traveled distance of capsule endoscopes along a gastrointestinal-tract model using differential static magnetic localization. Diagnostics 2022, 12, 1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Song, S.; Liu, J.; Meng, M.Q.-H. Multipoint simultaneous tracking of wireless capsule endoscope using magnetic sensor array. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Islam, M.N.; Fleming, A.J. Resonance-enhanced coupling for range extension of electromagnetic tracking systems. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Dai, H.; Song, S.; Zeng, X.; Su, S.; Lin, M.; Meng, M.-Q. 6-D electromagnetic tracking approach using uniaxial transmitting coil and tri-axial magneto-resistive sensor. IEEE Sens. J. 2018, 18, 1178–1186. [Google Scholar] [CrossRef]
- Li, K.; Xu, Y.; Zhao, Z.; Meng, M.Q.-H. Leveraging Three Orthogonal Magnetic Field Sources for Localization of A Magnetic Capsule Endoscope with Unique Solution. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Xishuangbanna, China, 5–9 December 2022; pp. 1929–1933. [Google Scholar]
- Zeising, S.; Schneider, A.; Thalmayer, A.; Fischer, G.; Kirchner, J. A compensation method for relative movement between a sensor array and the abdomen for magnetic localization of capsule endoscopes. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Bianchi, F.; Masaracchia, A.; Damone, A.; Barjuei, E.S.; Oddo, C.M.; Dario, P.; Ciuti, G. Hybrid 6-DoF magnetic localization for robotic capsule endoscopes compatible with high-grade magnetic field navigation. IEEE Access 2021, 10, 4414–4430. [Google Scholar] [CrossRef]
- Furlani, E. Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. In Electromagnetism; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Sharma, S.; Ramadi, K.B.; Poole, N.H.; Srinivasan, S.S.; Ishida, K.; Kuosmanen, J.; Jenkins, J.; Aghlmand, F.; Swift, M.B.; Shapiro, M.G.; et al. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. Nat. Electron. 2023, 6, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.R. Inductance: Loop and Partial; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Khan, S.R.; Mitra, S.; Desmulliez, M.P.Y. Use of a 3-D wireless power transfer technique as a method for capsule localization. IEEE Access 2021, 9, 131685–131695. [Google Scholar] [CrossRef]
- Yao, L.; Khan, S.R.; Dolmans, G.; Romme, J.; Mitra, S. High Accuracy Localization for Miniature Ingestible Devices using Mutual Inductance. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, C.; Dai, H.; Hu, C.; Xia, X. A novel wireless 5-D electromagnetic tracking system based on nine-channel sinusoidal signals. IEEE/ASME Trans. Mechatron. 2020, 26, 246–254. [Google Scholar] [CrossRef]
- Srivastava, M.; O’Donoghue, K.; Sidun, A.; Jaeger, H.A.; Ferro, A.; Crowley, D.; van den Bosch, C.; Kennedy, M.; O’Hare, D.; Cantillon-Murphy, P. 3D Position Tracking using On-chip Magnetic Sensing in Image-guided Navigation Bronchoscopy. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 1123–1139. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Telikicherla, A.; Ding, G.; Aghlmand, F.; Talkhooncheh, A.H.; Shapiro, M.G.; Emami, A. Wireless 3D surgical navigation and tracking system with 100 μm accuracy using magnetic-field gradient-based localization. IEEE Trans. Med. Imaging 2021, 40, 2066–2079. [Google Scholar] [CrossRef]
- Sharma, S.; Melton, H.; Edmonds, L.; Addington, O.; Shapiro, M.; Emami, A. A Monolithic 3D Magnetic Sensor in 65 nm CMOS with <10 μT rms Noise and 14.8 μW Power. In Proceedings of the 2023 IEEE Custom Integrated Circuits Conference (CICC), San Antonio, TX, USA, 23–26 April 2023; pp. 1–2. [Google Scholar]
- Rustom, M.; Sideris, C. Design and implementation of a low power wireless frequency-division multiplexed magnetic 3D localization scheme with sub-mm precision for capsule endoscopy applications. IEEE Solid-State Circuits Lett. 2023, 6, 37–40. [Google Scholar] [CrossRef]
- Nelson, B.D.; Karipott, S.S.; Wang, Y.; Ong, K.G. Wireless technologies for implantable devices. Sensors 2020, 20, 4604. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, D.; Kodama, M. Signal transmission analysis in implantable human body communication for abdominal medical devices. AIP Adv. 2023, 13, 085022. [Google Scholar] [CrossRef]
- Arai, J.; Aoki, T.; Sato, M.; Niikura, R.; Suzuki, N.; Ishibashi, R.; Tsuji, Y.; Yamada, A.; Hirata, Y.; Ushiku, T.; et al. Machine learning–based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy. Gastrointest. Endosc. 2022, 95, 864–872. [Google Scholar] [CrossRef]
- Sayrafian-Pour, K.; Yang, W.-B.; Hagedorn, J.; Terrill, J.; Yazdandoost, K.Y. A statistical path loss model for medical implant communication channels. In Proceedings of the IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 2995–2999. [Google Scholar]
- Hany, U.; Hye, N.M.; Akter, L. Path Loss based Wireless Capsule Endoscope Localization using Machine Learning Regression. IEEE Access. 2023, 11, 124643–124659. [Google Scholar] [CrossRef]
- Yoshitake, A.; Takahashi, M. Position estimation for the capsule endoscope using high-definition numerical human body model and measurement. IEICE Trans. Commun. 2022, 105, 848–855. [Google Scholar] [CrossRef]
- Ito, T.; Anzai, D.; Wang, J.; Takana, H. Localization method for implant devices using electromagnetic scattering based on sparse reconstruction. IEEE Access 2021, 9, 56908–56914. [Google Scholar] [CrossRef]
- Salchak, Y.A.; Espinosa, H.G.; Thiel, D.V. Modeling the surface field from an ingested radio transmitter with an approximate attenuation model for gastroenterology investigations. IEEE Trans. Biomed. Eng. 2019, 67, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Wisanmongkol, J.; Taparugssanagorn, A.; Särestöniemi, M.; Hämäläinen, M.; Iinatti, J. UWB Wireless Capsule Endoscope Localization based on a Hybrid One-Shot Learning and Trilateration Method. IEEE Access. 2024, 12, 29698–29713. [Google Scholar] [CrossRef]
- Xiao, C.; Liang, Z.; Jiang, X. A wearable capsule endoscope electromagnetic localization system based on a novel WCL algorithm. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 915–925. [Google Scholar] [CrossRef]
- Hany, U.; Akter, L. Accuracy of UWB path loss-based localization of wireless capsule endoscopy. J. Healthc. Eng. 2023, 2023, 3156013. [Google Scholar] [CrossRef]
- Oleksy, P.; Januszkiewicz, Ł. Wireless capsule endoscope localization with phase detection algorithm and adaptive body model. Sensors 2022, 22, 2200. [Google Scholar] [CrossRef]
- Oleksy, P.; Januszkiewicz, Ł. Improved Wireless Capsule Endoscope Localization with Phase Detection Algorithm. In Proceedings of the 2021 Signal Processing Symposium (SPSympo), Lodz, Poland, 20–23 September 2021; pp. 206–211. [Google Scholar]
- Oleksy, P.; Januszkiewicz, Ł. Wireless capsule endoscope localization with phase detection algorithm and simplified human body model. Int. J. Electron. Telecommun. 2020, 66, 2200. [Google Scholar] [CrossRef]
- Dey, N.; Ashour, A.S.; Shi, F.; Sherratt, R.S. Wireless capsule gastrointestinal endoscopy: Direction-of-arrival estimation based localization survey. IEEE Rev. Biomed. Eng. 2017, 10, 2–11. [Google Scholar] [CrossRef]
- Eshkevari, A.; Sadough, S.M.S. An improved method for localization of wireless capsule endoscope using direct position determination. IEEE Access 2021, 9, 154563–154577. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, J.; Pahlavan, K.; Tarokh, V. Fundamental limits of TOA/DOA and inertial measurement unit-based wireless capsule endoscopy hybrid localization. Int. J. Wirel. Inf. Netw. 2017, 24, 169–179. [Google Scholar] [CrossRef]
- Umay, I.; Fidan, B.; Barshan, B. Localization and tracking of implantable biomedical sensors. Sensors 2017, 17, 583. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, T.; Watanabe, S.; Sakurai, K.; Kunieda, E.; Watanabe, S.; Taki, M.; Yamanaka, Y. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Int. J. Electron. Telecommun. 2003, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bibbò, L.; Carotenuto, R.; Della Corte, F. An overview of indoor localization system for human activity recognition (HAR) in healthcare. Sensors 2022, 22, 8119. [Google Scholar] [CrossRef] [PubMed]
- Nafchi, A.R.; Goh, S.T.; Zekavat, S.A.R. Circular arrays and inertial measurement unit for DOA/TOA/TDOA-based endoscopy capsule localization: Performance and complexity investigation. IEEE Sens. J. 2014, 14, 3791–3799. [Google Scholar] [CrossRef]
- Hou, J.; Zhu, Y.; Zhang, L.; Fu, Y.; Zhao, F.; Yang, L.; Rong, G. Design and implementation of a high resolution localization system for in-vivo capsule endoscopy. In Proceedings of the 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 12–14 December 2009; pp. 209–214. [Google Scholar]
- Zhang, L.; Zhu, Y.; Mo, T.; Hou, J.; Rong, G. Design and implementation of 3D positioning algorithms based on RF signal radiation patterns for in vivo micro-robot. In Proceedings of the 2010 International Conference on Body Sensor Networkss, Singapore, 7–9 June 2010; pp. 255–260. [Google Scholar]
- Wahab, H.; Mehmood, I.; Ugail, H.; Sangaiah, A.K.; Muhammad, K. Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities. Future Gener. Comput. Syst. 2023, 143, 191–214. [Google Scholar] [CrossRef]
- Trasolini, R.; Byrne, M.F. Artificial intelligence and deep learning for small bowel capsule endoscopy. Dig. Endosc. 2021, 33, 290–297. [Google Scholar] [CrossRef]
- Muruganantham, P.; Balakrishnan, S.M. Attention aware deep learning model for wireless capsule endoscopy lesion classification and localization. J. Med. Biol. Eng. 2022, 42, 157–168. [Google Scholar] [CrossRef]
- Pinheiro, G.; Coelho, P.; Salgado, M.; Oliveira, H.; Cunha, A. Deep homography based localization on videos of endoscopic capsules. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 724–727. [Google Scholar]
- Sornapudi, S.; Meng, F.; Yi, S. Region-based automated localization of colonoscopy and wireless capsule endoscopy polyps. Appl. Sci. 2019, 9, 2404. [Google Scholar] [CrossRef]
- Jain, S.; Seal, A.; Ojha, A.; Yazidi, A.; Bures, J.; Tacheci, I.; Krejcar, O. A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images. Comput. Biol. Med. 2021, 137, 104789. [Google Scholar] [CrossRef] [PubMed]
- Koulaouzidis, A.; Iakovidis, D.K.; Yung, D.E.; Mazomenos, E.; Bianchi, F.; Karagyris, A.; Dimas, G.; Stoyanov, D.; Thorlacius, H.; Toth, E.; et al. Novel experimental and software methods for image reconstruction and localization in capsule endoscopy. Endosc. Int. Open 2018, 6, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Araujo, H.; Figueiredo, I.N.; Pinto, L.; Curto, E.; Perdigoto, L. Registration of consecutive frames from wireless capsule endoscopy for 3D motion estimation. IEEE Access 2021, 9, 119533–119545. [Google Scholar] [CrossRef]
- Herp, J.; Deding, U.; Buijs, M.M.; Kroijer, R.; Baatrup, G.; Nadimi, E.S. Feature point tracking-based localization of colon capsule endoscope. Diagnostics 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Vedaei, S.S.; Wahid, K.A. A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor. Sci. Rep. 2021, 11, 11204. [Google Scholar] [CrossRef]
- Narmatha, P.; Thangavel, V.; Vidhya, D.S. A hybrid RF and vision aware fusion scheme for multi-sensor wireless capsule endoscopic localization. Wirel. Pers. Commun. 2022, 123, 1593–1624. [Google Scholar] [CrossRef]
- Vedaei, S.S.; Wahid, K.A. MagnetOFuse: A Hybrid Tracking Algorithm for Wireless Capsule Endoscopy Within the GI Track. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Lee, K.-R.; Lee, J.; Kim, M.; Lee, Y.; Bae, J.; Yoo, H.-J. A four-camera VGA-resolution capsule endoscope system with 80-Mb/s body channel communication transceiver and sub-centimeter range capsule localization. IEEE J. Solid-State Circuits 2018, 54, 538–549. [Google Scholar] [CrossRef]
Ref (Year) | Technique/ Algorithm | WC, EC | Validation Environment | Error/Accuracy | Notes |
---|---|---|---|---|---|
[27] (2023) | Active Locomotion/ Jacobian-based iterative method | WC: IMU + 3-axis magnetic field sensor, EC: External PM | Experimental evaluation: Different translational and rotational motion | Average Positional Error (PE): 6.29 mm, Average Orientation Error (OE): 2.93° | 6 DoF reported and magnetic moment is optimized for the magnetic dipole model. |
[28] (2022) | Active Locomotion/direct estimation + Kalman filter | WC: IPM + BLE + IMU EC: 5 × 5 Hall sensors | Experimental evaluation: work ranges from 25 to 72 mm | Mean AE: 1.46 mm, Mean OE: 0.41° | 6 DoF reported and, instead of using a PM, a magnetic capsule shell is proposed. |
[29] (2020) | Passive Locomotion/Jacobian matrix | WC: IPM, EC: 4 triple-axis sensors | Experimental evaluation | Mean PE: 2.1 ± 0.8 mm, Mean OE: 6.7 ± 4.3° | Triple-axis sensors were utilized with the Jacobian method to achieve 5 DoF localization. |
[31] (2023) | Active Locomotion/PSO + L-M | WC: IPM EC: Hall effect sensors | Experimental evaluation: static and dynamic | Mean AE: 1.46 mm, Mean OE: 0.41° | Fast tracking and 6 DoF localization are reported by combining the algorithms. |
[32] (2019) | Passive Locomotion/ Variance-based algorithm | WC: IPM EC: 16 Hall effect sensor + IMU | Experimental evaluation: static capsule | Average PE: 9.73 mm, Average OE: 12° | The variance-based algorithm combined with weighted optimization is used to achieve 6 DoF localization. |
[33] (2022) | Passive Locomotion/Fusion algorithm | WC: IPM EC: 36 Hall effect sensor + IMU | Experimental evaluation | Average PE: 1.8 mm, Average OE: 5.11° | The fusion algorithm calculates the quaternion rotation and 6 DoF localization is reported. |
[34] (2021) | Active Locomotion/L-M + differential signals | WC: IPM EC: 16 tri-axis sensors | Experimental evaluation: static and dynamic motion | PE: 7.5 mm, Average OE: 13.8° | A symmetrically arranged cell of four sensors combined with different algorithms are used to achieve 6 DoF localization. |
[35] (2022) | Passive Locomotion/L-M | WC: IPM EC: 12 Hall effect sensors | Experimental evaluation with different magnets | Relative PE: 4.3 ± 3.3 mm, Relative OE: 2 ± 0.6° | Neodymium N52 cylindrical permanent magnets with different diameters are used to achieve 6 DoF localization. |
[36] (2021) | Active Locomotion/Differential method | WC: IPM EC: 8 Hall effect sensors | Experimental evaluation: multi-point simultaneous tracking | Average PE: 4.06 ± 0.29 mm, Relative OE: 5.63 ± 4.24° | The reported calculation time is 80 ms, and the algorithm can compensate for patients’ movements for 5 DoF localization. |
[40] (2022) | Passive Locomotion | WC: IPM EC: 12 sensors, + orthogonal coils | Experimental evaluation: Dynamic magnetic field | Mean PE: 3.8 ± 1.1 mm, Maximum OE: 3° | The system used two orthogonal reference coils alternately switching on and off with a low switching speed for 6 DoF localization. |
[41] (2021) | Active Locomotion/RMSD | WC: IPM + tri-axial sensors EC: 4 electromagnets | Experimental evaluation: Dynamic and static magnetic fields | Position accuracy (PA): 5 mm, Orientation accuracy (OA) 5° | The optimization process utilized a dual-step approach for 6 DoF localization. |
[45] (2021) | Active Locomotion/Linear prediction | WC: RX coils EC: TX coils | Experimental evaluation: Dynamic magnetic field | PE: 12 mm | A dual-purpose use of WPT, not only for powering the capsule, but also for 3 DoF localization within the GI tract, is proposed. |
[46] (2024) | Passive Locomotion/LSE, SD | WC: Orthogonal Coils EC: TPT | Experimental: VNA Measurement | Accuracy < 1 cm | The study utilizes QS-MI for precise localization, and the method is validated through simulation and VNA measurements. |
[47] (2020) | Active Locomotion/L-M + PSO | WC: Induction coil EC: Electromagnets | Experimental evaluation: Dynamic and static magnetic fields | Average PE: 2.3 mm, Average OE 0.2° | An innovative feature of the methodology is the use of nine-channel sinusoidal signals to stimulate the transmitting coils for 6 DoF localization. |
[48] (2024) | Passive Locomotion/L-M | WC: Induction coil + AFE + Modulator EC: 8 TX coils | Experimental evaluation: Dynamic magnetic fields | PA: 0.8 mm, OE 1.1° | On-chip sensing method utilizing CMOS 65 nm technology for a compact and cheap design for 5 DoF localization. |
[51] (2023) | Passive Locomotion/FDMML + Welch’s method + ANNs | WC: Induction coil + wireless TX + battery EC: 6 TX coils | Experimental evaluation: Dynamic magnetic fields | PA: <1mm | The FDMML technique assigns unique offset frequencies to external magnetic beacons, allowing them to operate simultaneously and eliminating the need for sequential activation. |
Ref (Year) | Technique | Algorithm | Validation Environment | Error/Accuracy | Notes |
---|---|---|---|---|---|
[56] (2023) | UWB RSSI | LWLR and k-fold cross validation | Simulation: 8 and 48 RXs | RMSE less than 0.23 mm | The results from different algorithms were optimized at UWB and MICS bands. |
[57] (2022) | RSSI | Trilateration | High-Definition Numerical Human Body Model | Simulation Accuracy: 92% Experimental Accuracy: 89.7%. | The method incorporates RSSI magnitude pattern and antenna angle error correction techniques at 433.92 MHz. |
[58] (2021) | RSSI | SVM and Moore–Penrose | Simulation: 10 RXs | Error: 2 mm | The study uses an electromagnetic scattering model at 17 MHz for localization. |
[60] (2024) | RSSI | Trilateration, SNN | Simulation: Human model | Error: 26.44 mm | The study combines one-shot learning and trilateration methods at 4 GHz. |
[61] (2022) | RSSI | WCL | Experimental: 24 antenna array | Error: 21.9 mm | The WCL algorithm applies exponential weights to RSSI values at 433 MHz. |
[63] (2022) | PDoA | Gauss–Newton, Phase detection algorithm | Simulation: Remcom XFdtd Software, Experimentation: helical antenna | Average Error: 16 mm | The accuracy is reportedly improved by approximately 30% when using a combination of the helical antenna and phase detection algorithm compared to a homogeneous body model at MICS band. |
[65] (2020) | PDoA | Gauss–Newton, Phase detection algorithm | Simulation: Remcom XFdtd Software, Experimentation: half-wave dipole | MSE: 28 mm | The accuracy is reportedly improved by approximately 15% when using an adaptive simplified human body model compared to a homogeneous body model at MICS band. |
Ref (Year) | Technique | Algorithm Environment | Validation | Error/Accuracy | Notes |
---|---|---|---|---|---|
[77] (2022) | Image Processing with a self-attention mechanism | Attention Aware CNN | Public datasets: Bleeding dataset and Kvasir-Capsule dataset | Accuracy: Bleeding dataset: 95.1% Kvasir-Capsule dataset: 94.7%. | A dual-branch CNN model integrating self-attention mechanisms and using ResNet-50 to improve classification accuracy and lesion localization in WCE images at 30 fps. |
[79] (2019) | Modified R-CNN | ResNet-50 and ResNet-101 models with data augmentation and fine-tuning | CVC-ColonDB, CVC-PolypHD, and ETIS-Larib | F1 score: 96.67% F2 score: 96.10%. | The work introduces a modified R-CNN for polyp identification and adapts deep learning models trained on non-medical images. |
[80] (2021) | Deep CNN with attention mechanism | WCENet Grad-CAM++ and SegNet | KID dataset for WCE images | Accuracy: 98%, Dice Score: 56% | The study introduces a hybrid anomaly localization method for identification and segmentation of abnormal regions. |
[83] (2021) | Feature point tracking techniques | SURF and RANSAC | 84 videos from 42 patients | Error: 4 ± 0.7 cm | The study utilizes feature point tracking to estimate capsule displacement and orientation. |
[84] (2021) | Hybrid: Video + IMU | Fusion Algorithm | Experiment: Ex-vitro porcine intestine | Accuracy: 0.95 cm | Hybrid method uses four low-resolution side-wall cameras and an IMU with a 9 DoF sensor for 6 DoF localization. |
[85] (2022) | Hybrid: Video + RSSS + ToF | STN, HCO, CapsNet | Simulation: UWB, 8–50 RXs | Error: 5.41 mm Accuracy: 96.43% | The method integrates RF and vision-based data for localization using a fusion of multiple algorithms. |
[86] (2022) | Hybrid: Video + Magnetic | MagnetO Fuse | Experiment: 3 × 3 sensor array, robotics arm, bio-tissues | Average Error: Stationary Capsule: 0.84 mm Moving Capsule: 3.5 mm | The proposed algorithm uses mathematical models to reconstruct the capsule’s position and low-resolution side wall cameras to assess motion. |
[87] (2018) | Hybrid: Video + RSSI | CAC-RSSI, L-M | Experiment: Human mimicking phantom and pig small intestine | Error: 0.98 cm | A four-camera VGA-resolution WCE system is used to improve data transmission and localization accuracy, utilizing BCC, CAC-RSSI, and L-M algorithms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Tom, N.; Alsunaydih, F.N.; Yuce, M.R. Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review. Sensors 2025, 25, 253. https://doi.org/10.3390/s25010253
Ali MA, Tom N, Alsunaydih FN, Yuce MR. Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review. Sensors. 2025; 25(1):253. https://doi.org/10.3390/s25010253
Chicago/Turabian StyleAli, Muhammad A., Neil Tom, Fahad N. Alsunaydih, and Mehmet R. Yuce. 2025. "Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review" Sensors 25, no. 1: 253. https://doi.org/10.3390/s25010253
APA StyleAli, M. A., Tom, N., Alsunaydih, F. N., & Yuce, M. R. (2025). Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review. Sensors, 25(1), 253. https://doi.org/10.3390/s25010253