Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture
<p>A typical IPN communications relay infrastructure.</p> "> Figure 2
<p>DTN protocol stack vs. OSI stack [<a href="#B57-sensors-25-00195" class="html-bibr">57</a>].</p> "> Figure 3
<p>Comparison of simulated cislunar communication relay architecture and DTN protocol configurations. (<b>a</b>) LTP LTP PRIM. (<b>b</b>) UDP LTP PRIM. (<b>c</b>) LTP UDP SEC. (<b>d</b>) LTP TCP SEC.</p> "> Figure 4
<p>SCNT block diagram. (<b>a</b>) For primary cislunar relay architecture. (<b>b</b>) For secondary cislunar relay architecture.</p> "> Figure 5
<p>Goodput (vs. link delay) comparison of three different protocols and their hybrid over the primary and secondary cislunar communication paths with a BER of 0. (<b>a</b>) Goodput. (<b>b</b>) Goodput differences and <span class="html-italic">p</span>-values.</p> "> Figure 6
<p>Goodput (vs link delay) comparison of three different protocols and their hybrid over the primary and secondary cislunar communication paths with a BER of 10<sup>−6</sup>. (<b>a</b>) Goodput. (<b>b</b>) Goodput differences and <span class="html-italic">p</span>-values.</p> "> Figure 7
<p>Goodput (vs. link delay) comparison of three different protocols and their hybrid over the primary and secondary cislunar communication paths with a BER of 10<sup>−5</sup>. (<b>a</b>) Goodput. (<b>b</b>) Goodput differences and <span class="html-italic">p</span>-values.</p> ">
Abstract
:1. Introduction
2. Related Work on Space DTN
3. Overview of DTN and Its Data Transport Protocols for Space
4. Research Problem and Hypotheses Definition
- LTP LTP PRIM (or simply L_L_P) in Figure 3a—For this configuration, we conduct a DTN test over the PRIM relay path in Figure 1, with BP/LTPCL/UDP/IP/PPP running over both link segments from TX to MX (i.e., from Moon to its orbiter) and from MX to RX (i.e., from a Moon orbiter to Earth ground station), i.e., a single protocol stack, BP/LTPCL/UDP/IP/PPP, runs over both links of a typical primary relay path.
- UDP LTP PRIM (or simply U_L_P) in Figure 3b—For this configuration, we conduct a DTN test over the PRIM relay path in Figure 1, with BP/UDPCL/UDP/IP/PPP running from TX to MX (i.e., from Moon to its orbiter) and BP/LTPCL/UDP/IP/PPP running from MX to RX (i.e., from a Moon orbiter to Earth ground station).
- LTP UDP SEC (or simply L_U_S) in Figure 3c—For this configuration, we conduct a DTN test over the SEC relay path in Figure 1, with BP/LTPCL/UDP/IP/PPP running from TX to MX (i.e., from Moon to an Earth orbiter) and BP/UDPCL/UDP/IP/PPP running from MX to RX (i.e., from an Earth orbiter to Earth ground station).
- LTP TCP SEC (or simply L_T_S) in Figure 3d—For this configuration, we conduct a DTN test over the SEC relay path in Figure 1, with BP/LTPCL/UDP/IP/PPP running from TX to MX (i.e., from Moon to an Earth orbiter) and BP/TCPCL/TCP/IP/PPP running from MX to RX (i.e., from an Earth orbiter to Earth ground station).
- (1)
- Comparison between LTP LTP PRIM and UDP LTP PRIM.
- (2)
- Comparison between LTP LTP PRIM and LTP TCP SEC.
- (3)
- Comparison between LTP TCP SEC and LTP UDP SEC.
- (4)
- Comparison between LTP TCP SEC and UDP LTP PRIM.
- (5)
- Comparison between LTP UDP SEC and UDP LTP PRIM.
5. Testbed Setup and Analysis
5.1. Testbed Setup
5.2. Analysis Methodology
- The test result of (p < 0.01) provides very strong evidence to reject H0, implying significant goodput difference between the two configurations.
- The test result of (0.01 ≤ p < 0.05) provides moderate evidence to reject H0, implying reasonable goodput difference between the two configurations.
- The test result of (0.05 ≤ p < 0.1) provides suggestive evidence to reject H0, implying implicative goodput difference between the two protocols.
- The test result of (p > 0.1) provides no real evidence to reject H0, implying no goodput difference between the two protocols.
6. Performance Evaluation Results
6.1. Comparison with a BER of 0
6.2. Comparison with a BER of 10−6
6.3. Comparison with a BER of 10−5
7. Discussions and Clarification of Comparison Results
7.1. Cislunar (Space) Segment of the End-to-End Path
- Always running LTP over UDP/IP/PPP;
- Always 115,200 bps;
- Varying signal propagation delay (1280 to 5000 ms each way);
- Varying BER (0 to 10−5).
7.2. Primary Configurations (i.e., LTP LTP PRIM and UDP LTP PRIM)
7.2.1. LTP on the Proximity Segment (i.e., LTP LTP PRIM)
7.2.2. UDP on the Proximity Segment (i.e., UDP LTP PRIM)
7.3. Secondary Configurations (i.e., LTP UDP SEC and LTP TCP SEC)
7.3.1. UDP on the Proximity Segment (i.e., LTP UDP SEC)
7.3.2. TCP on the Proximity Segment (i.e., LTP TCP SEC)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, J. The interplanetary Internet. IEEE Spectr. 2005, 42, 31–35. [Google Scholar] [CrossRef]
- Jon, P. Transmission Control Protocol—Darpa Internet Program—Protocol Specification. IETF Req. Comments RFC 793. 1981. Available online: https://www.ietf.org/rfc/rfc793.txt (accessed on 1 March 2024).
- Lakshman, T.; Madhow, U. The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 1997, 5, 336–350. [Google Scholar] [CrossRef]
- Akan, O.; Fang, H.; Akyildiz, I. Performance of TCP protocols in deep space communication networks. IEEE Commun. Lett. 2002, 6, 478–480. [Google Scholar] [CrossRef]
- Durst, R.; Miller, G.; Travis, E. TCP extensions for space communication. ACM/Kluwer WINET J. 1997, 3, 389–403. [Google Scholar]
- Wang, R.; Wei, Z.; Dave, V.; Ren, B.; Zhang, Q.; Hou, J.; Zhou, L. Which DTN CLP is best for long-delay cislunar communications with channel-rate asymmetry? IEEE Wirel. Commun. 2011, 18, 10–16. [Google Scholar] [CrossRef]
- Wang, R.; Wei, Z.; Zhang, Q.; Hou, J. LTP Aggregation of DTN Bundles in Space Communications. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1677–1691. [Google Scholar] [CrossRef]
- Wang, R.; Gutha, B.; Rapet, P.V. Window-based and rate-based transmission control mechanisms over space-Internet links. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 157–170. [Google Scholar] [CrossRef]
- Wang, R.; Taleb, T.; Jamalipour, A.; Sun, B. Protocols for reliable data transport in space internet. IEEE Commun. Surv. Tutor. 2009, 11, 21–32. [Google Scholar] [CrossRef]
- Burleigh, S.; Hooke, A.; Torgerson, L.; Fall, K.; Cerf, V.; Durst, B.; Scott, K.; Weiss, H. Delay-tolerant networking: An approach to interplanetary Internet. IEEE Commun. Mag. 2003, 41, 128–136. [Google Scholar] [CrossRef]
- Fall, F. A delay–tolerant network architecture for challenged internet. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003. [Google Scholar]
- Shao, Z.; Wu, Q.; Fan, P.; Cheng, N.; Chen, W.; Wang, J.; Letaief, K.B. Semantic-Aware Spectrum Sharing in Internet of Vehicles Based on Deep Reinforcement Learning. IEEE Internet Things J. 2024, 11, 38521–38536. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Fan, P.; Fan, Q.; Zhu, H.; Wang, J. Vehicle Selection for C-V2X Mode 4-Based Federated Edge Learning Systems. IEEE Syst. J. 2024, 18, 1927–1938. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Wu, Q.; Fan, P.; Fan, Q.; Wang, J.; Letaief, K.B. Distributed Deep Reinforcement Learning Based Gradient Quantization for Federated Learning Enabled Vehicle Edge Computing. IEEE Internet Things J. 2024; early access. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.; Fan, P.; Fan, Q.; Zhu, H.; Letaief, K.B. Cooperative Edge Caching Based on Elastic Federated and Multi-Agent Deep Reinforcement Learning in Next-Generation Networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 4179–4196. [Google Scholar] [CrossRef]
- Warthman, F. Delay-Tolerant Networks (DTNs): A Tutorial. Wartham Associates, 2003. Available online: https://www.nasa.gov/wp-content/uploads/2023/09/dtn-tutorial-v3.2-0.pdf (accessed on 1 March 2024).
- Cerf, V.; Burleigh, S.; Hooke, A.; Torgerson, L.; Durst, R.; Scott, K.; Fall, K.; Weiss, H. Delay–Tolerant Networking Architecture. IETF Request for Comments RFC 4838, April 2007. Available online: http://www.ietf.org/rfc/rfc4838.txt (accessed on 2 March 2024).
- Burleigh, S.; Scott, K. Bundle Protocol Specification. IETF Request for Comments RFC 5050, November 2007. Available online: http://www.ietf.org/rfc/rfc5050.txt (accessed on 2 March 2024).
- Demmer, M.; Ott, J. Delay Tolerant Networking TCP Convergence Layer Protocol. IRTF RFC 7242. Available online: https://www.rfc-editor.org/rfc/pdfrfc/rfc7242.txt.pdf (accessed on 2 March 2024).
- Kruse, H.; Ostermann, S. UDP Convergence Layers for the DTN Bundle and LTP Protocols. DTN Research Group, November 2008. Available online: https://www.ietf.org/archive/id/draft-irtf-dtnrg-udp-clayer-00.txt (accessed on 2 March 2024).
- Burleigh, S.; Ramadas, M.; Farrell, S. Licklider Transmission Protocol—Motivation. IETF Request for Comments RFC 5325, September 2008. Available online: http://www.ietf.org/rfc/rfc5325.txt?number=5325 (accessed on 2 March 2024).
- Ramadas, M.; Burleigh, S.; Farrell, S. Licklider Transmission Protocol—Specification. IETF Request for Comments RFC 5326, September 2008. Available online: http://www.ietf.org/rfc/rfc5326.txt?number=5326 (accessed on 3 March 2024).
- Farrell, S.; Ramadas, M.; Burleigh, S. Licklider Transmission Protocol—Security Extensions. IETF Request for Comments RFC 5327, September 2008. Available online: https://www.ietf.org/rfc/rfc5327.txt?number=5327 (accessed on 3 March 2024).
- Consultative Committee for Space Data Systems. Cislunar Space Internetworking—Architecture; Draft Informational Report, CCSDS 730.1-G-0, Draft Green Book; National Aeronautics and Space Administration: Washington, DC, USA, 2006.
- The Space Internetworking Strategy Group (SISG). Recommendations on a Strategy for Space Internetworking. Report of the Interagency Operations Advisory Group. August 2010. Available online: https://cwe.ccsds.org/sis/docs/SIS%20Area/SOLAR%20SYSTEM%20INTERNET/SISG%20Phase%20I%20report%20%E2%80%93%20final.pdf (accessed on 3 March 2024).
- Krupiarz, C.; Jennings, E.; Pang, J.; Schoolcraft, J.; Segui, J.; Torgerson, L. Spacecraft Data and Relay Management Using Delay Tolerant Networking. In Proceedings of the AIAA SpaceOps 2006, Rome, Italy, 19 June 2006. [Google Scholar]
- Consultative Committee for Space Data Systems. Rationale, Scenarios, and Requirements for DTN in Space; Informational Report, CCSDS 734.0-G-1, Green Book; National Aeronautics and Space Administration: Washington, WA, USA, 2010.
- Cerf, V.; Burleigh, S.; Hooke, A.; Torgerson, L.; Durst, R.; Scott, K.; Fall, K.; Travis, E.; Weiss, H. Interplanetary Internet (IPN): Architectural definition. IPN Research Group, Internet Draft, May 2001. Available online: https://datatracker.ietf.org/doc/html/draft-irtf-ipnrg-arch-00.txt (accessed on 3 March 2024).
- National Aeronautics and Space Administration (NASA). Tracking and Data Relay Satellite System (TDRSS) Overview. Available online: https://www.nasa.gov/mission/tracking-and-data-relay-satellites/ (accessed on 3 March 2024).
- National Aeronautics and Space Administration. Space Network Users’ Guide (SNUG), 8th ed.; Goddard Space Flight Center: Greenbelt, MD, USA, 2002.
- Oliver, E.; Falaki, H. Performance evaluation and analysis of delay tolerant networking. In Proceedings of the 1st International Workshop on System Evaluation for Mobile Platforms, San Juan, Puerto Rico, 11 June 2007. [Google Scholar]
- Caini, C.; Cornice, P.; Firrincieli, R.; Lacamera, D. A DTN approach to satellite communications. IEEE J. Sel. Areas Commun. 2008, 26, 820–827. [Google Scholar] [CrossRef]
- Wyatt, J.; Burleigh, S.; Jones, R.; Torgerson, L.; Wissler, S. Disruption tolerant networking flight validation experiment on NASA’s EPOXI. In Proceedings of the first International Conference on Advances in Satellite and Space Communications (SPACOMM) 2009, Colmar, France, 20–25 July 2009; pp. 187–196. [Google Scholar]
- Clare, L. Delay/Disruption tolerant networking for space. In Space-Enabled Global Communications & Electronic Systems Industry Update; Cisco Systems: Irvine, CA, USA, 2009. [Google Scholar]
- Jenkins, A.; Kuzminsky, S.; Gifford, K.K.; Pitts, R.L.; Nichols, K. Delay/Disruption–Tolerant Networking: Flight test results from the international space station. In Proceedings of the IEEE Aerospace Conference 2010, Big Sky, MT, USA, 6–13 March 2010. [Google Scholar]
- Consultative Committee for Space Data Systems. CCSDS File Delivery Protocol (CFDP)—Part 1: Introduction and Overview; Informational Report, CCSDS 720.1-G-3, Green Book; National Aeronautics and Space Administration: Washington, DC, USA, 2007.
- Wang, R.; Shrestha, B.L.; Wu, X.; Wang, T.; Ayyagari, A.; Tade, E.; Horan, S.; Hou, J. Unreliable CCSDS File Delivery Protocol (CFDP) over Cislunar Communication Links. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 147–169. [Google Scholar] [CrossRef]
- Baek, W.; Lee, D. Analysis of CCSDS file delivery protocol: Immediate NAK mode. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 503–524. [Google Scholar] [CrossRef]
- Lee, D.; Baek, W. Expected File-Delivery Time of Deferred NAK ARQ in CCSDS File-Delivery Protocol. IEEE Trans. Commun. 2004, 52, 1408–1416. [Google Scholar] [CrossRef]
- Wang, R.; Burleigh, S.C.; Parikh, P.; Lin, C.-J.; Sun, B. Licklider Transmission Protocol (LTP)-Based DTN for Cislunar Communications. IEEE/ACM Trans. Netw. 2011, 19, 359–368. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, R.; Burleigh, S.; Qiu, M.; Sabbagh, A.; Hu, J. Modeling Memory Variation Dynamics for the Licklider Transmission Protocol in Deep-Space Communications. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2510–2524. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, S.; Zhou, Y.; Yang, L.; Wang, R.; Hu, H.; Zhao, K. Study on Checkpoint Timer Optimal Setup of Licklider Transmission Protocol (LTP). IEEE Aerosp. Electron. Syst. Mag. 2022, 35, 4–13. [Google Scholar] [CrossRef]
- Shi, L.; Jiao, J.; Sabbagh, A.; Wang, R.; Yu, Q.; Hu, J.; Wang, H.; Burleigh, S.C.; Zhao, K. Integration of Reed-Solomon codes to licklider transmission protocol (LTP) for space DTN. IEEE Aerosp. Electron. Syst. Mag. 2017, 32, 48–55. [Google Scholar] [CrossRef]
- Lent, R. Analysis of the Block Delivery Time of the Licklider Transmission Protocol. IEEE Trans. Commun. 2019, 67, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Alessi, N.; Caini, C.; de Cola, T.; Raminella, M. Packet Layer Erasure Coding in Interplanetary Links: The LTP Erasure Coding Link Service Adapter. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 403–414. [Google Scholar] [CrossRef]
- Sabbagh, A.; Wang, R.; Zhao, K.; Bian, D. Bundle Protocol Over Highly Asymmetric Deep-Space Channels. IEEE Trans. Wirel. Commun. 2017, 16, 2478–2489. [Google Scholar] [CrossRef]
- Feng, C.; Wang, R.; Bian, Z.; Doiron, T.; Hu, J. Memory Dynamics and Transmission Performance of Bundle Protocol (BP) in Deep-Space Communications. IEEE Trans. Wirel. Commun. 2015, 14, 2802–2813. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, R.; Burleigh, S.C.; Sabbagh, A.; Wu, W.; De Sanctis, M. Performance of bundle protocol for deep-space communications. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2347–2361. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Liang, J.; Zhou, Y.; Zhao, K.; Liu, X. Acknowledgment Mechanisms for Reliable File Transfer Over Highly Asymmetric Deep-Space Channels. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 42–51. [Google Scholar] [CrossRef]
- Bezirgiannidis, N.; Burleigh, S.; Tsaoussidis, V. Delivery Time Estimation for Space Bundles. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1897–1910. [Google Scholar] [CrossRef]
- Yang, G.; Wang, R.; Sabbagh, A.; Zhao, K.; Zhang, X. Modeling Optimal Retransmission Timeout Interval for Bundle Protocol. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2493–2508. [Google Scholar] [CrossRef]
- Sabbagh, A.; Wang, R.; Burleigh, S.; Zhao, K. Analytical Framework for Effect of Link Disruption on Bundle Protocol in Deep-Space Communications. IEEE J. Sel. Areas Commun. 2018, 36, 1086–1096. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, R.; Yang, L.; Liu, X.; Yang, Z.; Zhao, K.; Burleigh, S. A Study of Link Disruption on BP from Spatial and Temporal Perspectives in Deep-Space Communications. IEEE Trans. Veh. Technol. 2021, 70, 11976–11990. [Google Scholar] [CrossRef]
- Yang, L.; Liang, J.; Wang, R.; Liu, X.; De Sanctis, M.; Burleigh, S.; Zhao, K. A Study of Licklider Transmission Protocol (LTP) in Deep-Space Communications in Presence of Link Disruptions. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 6179–6191. [Google Scholar]
- Yang, L.; Wang, R.; Liu, X.; Zhou, Y.; Liu, L.; Liang, J.; Burleigh, S.C.; Zhao, K. Resource Consumption of a Hybrid Bundle Retransmission Approach on Deep-Space Networking Channels. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 34–43. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, R.; Yang, L.; Liang, J.; Burleigh, S.; Zhao, K. A Study of Transmission Overhead of a Hybrid Bundle Retransmission Approach for Deep-Space Communications. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3824–3839. [Google Scholar] [CrossRef]
- Burleigh, S. “Interplanetary Overlay Network Design and Operation v4.1.1”, JPL D-48259, Jet Propulsion Laboratory, California Institute of Technology, CA, May 2023. Available online: https://sourceforge.net/projects/ion-dtn/ (accessed on 10 October 2023).
- The Manned Space Flight Network for Apollo. Available online: http://web.mit.edu/digitalapollo/Documents/Chapter8/apollomsfn.pdf (accessed on 5 March 2024).
- Lunar Reconnaissance Orbiter (LRO). Available online: https://science.nasa.gov/mission/lro/ (accessed on 5 March 2024).
- Dowdy, S.; Wearden, S. Statistics for Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Arsham, H. Kuiper’s P-value as a measuring tool and decision procedure for the goodness-of-fit test. J. Appl. Stat. 1988, 15, 131–135. [Google Scholar] [CrossRef]
Experiment Factors | Settings |
---|---|
Protocol implementation | Interplanetary Overlay Network (ION) v4.1.1 by Jet Propulsion Laboratory (JPL) [57] |
Protocol configurations | LTP LTP PRIM UDP LTP PRIM LTP UDP SEC LTP TCP SEC (with SACK option enabled for TCP) (See Figure 3 for the details) |
LTP segment settings | 100% red data |
LTP segment size | 1000 bytes |
MTU size | 1500 bytes |
Nominal Block Size (NBS) × Maximum number of sessions (NOS) | 1800 (bytes) × 32 (Selected based on tuning the protocol for the maximum goodput) |
Maximum and default sender and receiver buffer size | 16 Mbytes for TX, MX and RX |
Operating system | Fedora Linux 38 (kernel 6.2) |
BER | 0, 10−6, and 10−5 (to emulate different channel qualities) |
One-way link latency | Nine different delays selected in a range of 1280~5000 ms (Typical cislunar link delays chosen according to [24]) |
Channel rate on each link | 115,200 bit/s |
Link disruption | Not introduced |
File size for simulation | 1 Mbyte |
Sample size | 16 repetitive runs |
Mission Name | Data Link Bit Rate | One-Way Link Delay | |
---|---|---|---|
Data Link | Bit Rate | ||
Apollo 11~17 | To Earth | 51.2 kbps (S-band frequency) [58] (pp. 9–10) | ~1.7 s |
Lunar Reconnaissance Orbiter (LRO) | To Earth | 100 kbps~100 Mbps (S- and K-band) [59] | ~1.7 s |
Notations | Descriptions |
---|---|
P-LTP TCP SEC vs. LTP UDP SEC | p-value for goodput difference between LTP TCP SEC and LTP UDP SEC |
P-LTP TCP SEC vs. UDP LTP PRIM | p-value for goodput difference between LTP TCP SEC and UDP LTP PRIM |
P-LTP UDP SEC vs. UDP LTP PRIM | p-value for goodput difference between LTP UDP SEC and UDP LTP PRIM |
P-Threshold | Threshold p-value (set to 0.05) for a comparison reference |
LTP TCP SEC—LTP UDP SEC | Goodput difference between LTP TCP SEC and LTP UDP SEC |
LTP TCP SEC—UDP LTP PRIM | Goodput difference between LTP TCP SEC and UDP LTP PRIM |
LTP UDP SEC—UDP LTP PRIM | Goodput difference between LTP UDP SEC and UDP LTP PRIM |
Performance Ranking | BER = 0 | BER = 10−6 | BER = 10−5 |
---|---|---|---|
1 | LTP LTP PRIM | LTP LTP PRIM | LTP LTP PRIM |
2 | LTP TCP SEC | LTP TCP SEC | LTP TCP SEC (Delay < 2500 ms) UDP LTP PRIM (Delay ≥ 2500 ms) |
3 | LTP UDP SEC (Delay < 3500 ms) UDP LTP PRIM (Delay > 4000 ms) | LTP UDP SEC (Delay < 3500 ms) UDP LTP PRIM (Delay > 3500 ms) | UDP LTP PRIM (Delay < 2500 ms) LTP TCP SEC (Delay ≥ 2500 ms) |
4 | UDP LTP PRIM (Delay < 3500 ms) LTP UDP SEC (Delay ≥ 3500 ms) | UDP LTP PRIM (Delay ≤ 3500 ms) LTP UDP SEC (Delay > 3500 ms) | LTP UDP SEC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wang, E.; Wang, R. Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture. Sensors 2025, 25, 195. https://doi.org/10.3390/s25010195
Wang D, Wang E, Wang R. Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture. Sensors. 2025; 25(1):195. https://doi.org/10.3390/s25010195
Chicago/Turabian StyleWang, Ding, Ethan Wang, and Ruhai Wang. 2025. "Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture" Sensors 25, no. 1: 195. https://doi.org/10.3390/s25010195
APA StyleWang, D., Wang, E., & Wang, R. (2025). Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture. Sensors, 25(1), 195. https://doi.org/10.3390/s25010195