Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network
<p>Topology structure of BPNN.</p> "> Figure 2
<p>Algorithm convergence curve comparison.</p> "> Figure 2 Cont.
<p>Algorithm convergence curve comparison.</p> "> Figure 2 Cont.
<p>Algorithm convergence curve comparison.</p> "> Figure 3
<p>IDBO -BPNN model flow.</p> "> Figure 4
<p>Correlation coefficient matrix.</p> "> Figure 5
<p>Comparison of evaluation indexes of different models.</p> "> Figure 5 Cont.
<p>Comparison of evaluation indexes of different models.</p> ">
Abstract
:1. Introduction
2. Basic Method Principles
2.1. Influence Factors of Gas Permeability in Coal
2.2. BP Neural Network
2.3. Improved DBO
2.3.1. DBO
2.3.2. Improved DBO
2.3.3. Algorithm Validity Test
2.4. Construction of IDBO-BPNN Model
3. Experimental Contrastive Analysis
3.1. Data Source and Principal Component Extraction
3.2. Model Evaluation Index
3.3. Experimental Comparison and Analysis
3.3.1. Multi-Optimization Model Construction
3.3.2. Comparative Analysis
4. Model Case Test
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Shi, Y.; Zeng, J.; Zhang, Q.; Gao, J.; Zhang, L.; Huang, T. Evolutionary Model and Experimental Validation of Gas-Bearing Coal Permeability under Negative Pressure Conditions. ACS Omega 2023, 8, 15708–15720. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wang, G.; Wang, C.; Jiang, Y.; Jiang, F.; Zheng, C. Permeability evolution and gas flow in wet coal under non-equilibrium state: Considering both water swelling and process-based gas swelling. Int. J. Min. Sci. Technol. 2023, 33, 585–599. [Google Scholar] [CrossRef]
- Kong, L.; Luo, Y.; Tang, J.; Wang, Y.; Yuan, F.; Li, S.; Hao, Y. Permeability Damage Mechanism and Evolution of Gas-Bearing Coal Seams Induced by Drilling Fluid. Nat. Resour. Res. 2023, 32, 1639–1655. [Google Scholar] [CrossRef]
- Xue, J.; Li, K.; Shi, Y. Study on Permeability Characteristics of Gas Bearing Coal under Cyclic Load. Sustainability 2022, 14, 11483. [Google Scholar] [CrossRef]
- Deng, S.; Li, X.; Xu, B. Prediction of gas permeability in coal body based on PSO-BP neural network. Miner. Eng. Res. 2022, 37, 35–41. [Google Scholar]
- Zhang, Y.; Lei, J.; Bi, R. Forecast model of coal gas permeability based on ANFIS. Coal Min. Technol. 2017, 22, 101–104. [Google Scholar]
- Li, B.; Yang, K.; Yuan, M.; Xu, J. Experimental study on effect of pore pressure on permeability of coal. China Saf. Sci. J. 2017, 27, 77–82. [Google Scholar]
- Gong, W.; Xie, X.; Liang, Y.; Cui, J. Comparative experimental research on permeability of two kinds of raw coal samples. J. Saf. Sci. Technol. 2017, 13, 47–52. [Google Scholar]
- Sikora, A.; Zielonka, A.; Ijaz, M.F.; Woźniak, M. Digital Twin Heuristic Positioning of Insulation in Multimodal Electric Systems. IEEE Trans. Consum. Electron. 2024, 1, 3436–3445. [Google Scholar] [CrossRef]
- Woźniak, M.; Wieczorek, M.; Siłka, J. BiLSTM deep neural network model for imbalanced medical data of IoT systems. Future Gener. Comput. Syst. 2023, 141, 489–499. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, H.; Han, J.; Song, W. Prediction model on permeability of gas-bearing coal based on MABC-SVM. J. Saf. Sci. Technol. 2015, 11, 11–16. [Google Scholar]
- Shao, L.; Ma, H. Model of coal gas permeability prediction based on PSO-LSSVM. Coal Geol. Explor. 2015, 43, 23–26. [Google Scholar]
- Xie, L.R.; Lu, P.; Fan, W.H.; Ye, W.; Wang, J.R. LVQ-CPSO-BP based prediction technique of coal gas permeability rate. J. Min. Saf. Eng. 2017, 34, 398–404. [Google Scholar]
- Wang, P.; Du, W.; Feng, F. Prediction model of coalbed gas permeability based on optimization of influencing factors. Saf. Coal Mines 2017, 48, 21–25. [Google Scholar]
- Ma, S.; Li, X. Forecast of coal body gas permeability based on factor analysis and BP neural net. Coal Min. Technol. 2018, 23, 108–111. [Google Scholar]
- Song, X.; Ning, Y.; Ding, Y. Prediction of coal gas permeability based on random forest. Coal Technol. 2019, 38, 130–132. [Google Scholar]
- Wei, W.; Ran, L.; Yun, Q.; Baoshan, J.; Zewei, W. Prediction model of coal spontaneous combustion risk based on PSO-BPNN. China Saf. Sci. J. 2021, 33, 127–132. [Google Scholar]
- Man, K.; Wu, L.W.; Liu, X.L.; Song, Z.F.; Liu, Z.X.; Liu, R.L.; Cao, Z.X. Rockburst grade prediction based on grey correlation analysis and SSA-RF model. Met. Mine 2023, 5, 202–212. [Google Scholar]
- Wang, K. Experimental study on new sealing technology of gas extraction borehole. Shandong Coal Sci. Technol. 2023, 41, 128–130. [Google Scholar]
- Zhao, W. Study on Mechanical Properties of Loess Reinforced by Permeable Polymer; Zhengzhou University: Zhengzhou, China, 2022. [Google Scholar]
- Xu, P. Study on the Impact of Airborne Particulate Matter Dispersion in Public Transportation Spaces in High-Rise Residential Buildings; Huazhong University of Science and Technology: Wuhan, China, 2022. [Google Scholar]
- Hu, S. Research on Reliability of Vehicular Communication System Based on Machine Learning; Guilin University Of Electronic Technology: Guilin, China, 2022. [Google Scholar]
- Pan, J.; Li, S.; Zhou, P.; Yang, G.; Lyu, D. Dung Beetle Optimization Algorithm Guided by Improved Sine Algorithm. Comput. Eng. Appl. 2023, 59, 92–110. [Google Scholar]
- Xue, J.; Shen, B. Dung beetle optimizer: A new metaheuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Yao, H.; Li, C.; Yang, P.; Zheng, X. Prediction of Building Cooling Capacity Based on Sine-SSA-BP Model. Comput. Simul. 2023, 40, 525–529. [Google Scholar]
- Fan, Z.; Li, B.; Wang, K.; Zhao, Z. A two-layer IMA resource allocation method based on chaotic mapping and adaptive NSGA-Ⅱ algorithm. Electron. Opt. Control 2022, 29, 25–31. [Google Scholar]
- Panwar, K.; Purwar, R.K.; Srivastava, G. A Fast Encryption Scheme Suitable for Video Surveillance Applications Using SHA-256 Hash Function and 1D Sine-Sine Chaotic Map. Int. J. Image Graph. 2021, 21, 2150022. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S. Improved sparrow search algorithm based on adaptive t-distribution and golden sine and its application. Microelectron. Comput. 2022, 39, 17–24. [Google Scholar]
- Ge, Q.; Li, Y.; Qiao, B.; Zuo, X.; Wang, G. Differential biogeography optimization algorithm based on micro-perturbation and mixed variation. Comput. Eng. Des. 2021, 42, 432–441. [Google Scholar]
- Woźniak, M.; Sikora, A.; Zielonka, A.; Kaur, K.; Hossain, M.S.; Shorfuzzaman, M. Heuristic optimization of multi-pulse rectifier for reduced energy consumption. IEEE Trans. Ind. Inform. 2022, 18, 5515–5526. [Google Scholar] [CrossRef]
- Dai, J. Experimental study on influence of multiple factors on coal permeability. Coal Technol. 2020, 39, 122–125. [Google Scholar]
- Wang, W.; Cui, X.; Qi, Y.; Liang, R.; Jia, B.; Xue, K. Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF. China Saf. Sci. J. 2023, 33, 136–141. [Google Scholar]
- Gu, Y. Prediction of coal gas permeability based on PSOSVM. J. Math. Pract. Theory 2016, 46, 149–155. [Google Scholar]
- Dong, Z.; Sheng, Z.; Zhao, Y.; Zhi, P. Robust optimization design method for structural reliability based on active-learning MPA-BP neural network. Int. J. Struct. Integr. 2023, 14, 248–266. [Google Scholar] [CrossRef]
- Zhou, W.; Lian, J.; Zhang, J.; Mei, Z.; Gao, Y.; Hui, G. Tomato storage quality predicting method based on portable electronic nose system combined with WOA-SVM model. J. Food Meas. Charact. 2023, 17, 3654–3664. [Google Scholar] [CrossRef]
- Zhou, X.H.; Feng, Y.C.; Chen, L.; Luo, W.; Liu, S. Transformer fault diagnosis based on SVM optimized by bald eagle search algorithm. South. Power Syst. Technol. 2023, 17, 99–106. [Google Scholar]
Reference Functions | Dimensionality | Radius |
---|---|---|
30 | [−100, 100] | |
30 | [−10, 10] | |
30 | [−100, 100] | |
30 | [−100, 100] | |
30 | [−500, 500] | |
30 | [−32, 32] | |
4 | [0, 10] | |
30 | [−1.28, 1.28] |
Functions | Evaluation Criteria | WOA | DBO | SABO | GWO | NGO | HHO | IDBO |
---|---|---|---|---|---|---|---|---|
F1 | Optimal value | 2.7 × 10−101 | 2.1 × 10−191 | 1.6 × 10−241 | 4.92 × 10−36 | 1.1 × 10−108 | 7.6 × 10−132 | 0 |
Standard deviation | 1.03 × 10−90 | 1.5 × 10−132 | 0 | 1.57 × 10−33 | 8.7 × 10−106 | 5.7 × 10−109 | 0 | |
Mean value | 3.09 × 10−91 | 2.8 × 10−133 | 2.7 × 10−237 | 1.18 × 10−33 | 3.3 × 10−106 | 1.1 × 10−109 | 0 | |
mid-value | 6.86 × 10−94 | 1.8 × 10−162 | 1.5 × 10−238 | 5.89 × 10−34 | 1 × 10−106 | 7.6 × 10−122 | 0 | |
Worst value | 5.47 × 10−90 | 8.3 × 10−132 | 2.5 × 10−236 | 5.73 × 10−33 | 4.8 × 10−105 | 3.1 × 10−108 | 0 | |
F2 | Optimal value | 5.7 × 10−106 | 5.2 × 10−206 | 2.6 × 10−242 | 1.94 × 10−36 | 3.9 × 10−109 | 8.6 × 10−133 | 0 |
Standard deviation | 9.38 × 10−91 | 8.5 × 10−137 | 0 | 2.09 × 10−34 | 9.5 × 10−107 | 6.9 × 10−113 | 0 | |
Mean value | 2.68 × 10−91 | 1.6 × 10−137 | 1.3 × 10−236 | 8.17 × 10−35 | 4.5 × 10−107 | 1.3 × 10−113 | 0 | |
mid-value | 5.7 × 10−95 | 1.7 × 10−160 | 9 × 10−240 | 2.76 × 10−35 | 9.4 × 10−108 | 1.8 × 10−122 | 0 | |
Worst value | 4.81 × 10−90 | 4.7 × 10−136 | 3.4 × 10−235 | 1.09 × 10−33 | 4.2 × 10−106 | 3.8 × 10−112 | 0 | |
F3 | Optimal value | 3.31 × 10−68 | 1.59 × 10−94 | 4.1 × 10−137 | 2.58 × 10−21 | 6.72 × 10−57 | 2.72 × 10−67 | 0 |
Standard deviation | 3.19 × 10−61 | 7.59 × 10−71 | 5.3 × 10−133 | 2.75 × 10−20 | 8.67 × 10−55 | 4.38 × 10−59 | 0 | |
Mean value | 7.62 × 10−62 | 1.39 × 10−71 | 1.9 × 10−133 | 2.76 × 10−20 | 5.7 × 10−55 | 8.82 × 10−60 | 1.9 × 10−300 | |
mid-value | 2.9 × 10−65 | 5.74 × 10−83 | 2.1 × 10−134 | 1.68 × 10−20 | 2.8 × 10−55 | 9.15 × 10−64 | 0 | |
Worst value | 1.67 × 10−60 | 4.16 × 10−70 | 2.2 × 10−132 | 1.34 × 10−19 | 4.54 × 10−54 | 2.4 × 10−58 | 5.6 × 10−299 | |
F4 | Optimal value | 12,353.02 | 3.6 × 10−157 | 2.62 × 10−97 | 1.21 × 10−10 | 1.03 × 10−34 | 2.7 × 10−117 | 0 |
Standard deviation | 12,261.04 | 2.88 × 10−65 | 1.15 × 10−51 | 7.79 × 10−7 | 2.99 × 10−27 | 6.18 × 10−72 | 0 | |
Mean value | 40,102.65 | 5.26 × 10−66 | 2.13 × 10−52 | 3.05 × 10−7 | 9.91 × 10−28 | 1.13 × 10−72 | 0 | |
mid-value | 38,697.38 | 7.6 × 10−128 | 6.67 × 10−72 | 1.14 × 10−8 | 4.27 × 10−30 | 5.5 × 10−102 | 0 | |
Worst value | 64,604.58 | 1.58 × 10−64 | 6.31 × 10−51 | 3.44 × 10−6 | 1.23 × 10−26 | 3.38 × 10−71 | 0 | |
F5 | Optimal value | 2.7 × 10−164 | 0 | 0 | 9.42 × 10−67 | 1.2 × 10−210 | 1.5 × 10−262 | 0 |
Standard deviation | 5.3 × 10−135 | 0 | 0 | 4.38 × 10−60 | 0 | 0 | 0 | |
Mean value | 1.1 × 10−135 | 6.7 × 10−279 | 0 | 9.29 × 10−61 | 1.7 × 10−204 | 1.9 × 10−221 | 0 | |
mid-value | 1.7 × 10−145 | 0 | 0 | 4.92 × 10−63 | 1.5 × 10−207 | 5.5 × 10−245 | 0 | |
Worst value | 2.9 × 10−134 | 2 × 10−277 | 0 | 2.4 × 10−59 | 2.6 × 10−203 | 5.8 × 10−220 | 0 | |
F6 | Optimal value | 2.9 × 10−160 | 5.6 × 10−216 | 0 | 6.6 × 10−129 | 2.4 × 10−224 | 1.4 × 10−177 | 0 |
Standard deviation | 3.9 × 10−130 | 9.2 × 10−137 | 0 | 9.4 × 10−111 | 0 | 2.7 × 10−147 | 0 | |
Mean value | 8.4 × 10−131 | 1.7 × 10−137 | 2.2 × 10−302 | 1.7 × 10−111 | 4.9 × 10−217 | 7.1 × 10−148 | 0 | |
mid-value | 1.1 × 10−138 | 8.4 × 10−170 | 3 × 10−308 | 7.7 × 10−122 | 2.8 × 10−220 | 4.9 × 10−157 | 0 | |
Worst value | 2.1 × 10−129 | 5.1 × 10−136 | 4.4 × 10−301 | 5.2 × 10−110 | 1.2 × 10−215 | 1.1 × 10−146 | 0 | |
F7 | Optimal value | 2.15 × 10−47 | 3.27 × 10−70 | 0.099873 | 0.099873 | 0.099873 | 2.98 × 10−66 | 0 |
Standard deviation | 0.059587 | 0.042932 | 1.28 × 10−07 | 0.055086 | 1.95 × 10−13 | 5.98 × 10−58 | 0 | |
Mean value | 0.129878 | 0.075022 | 0.099873 | 0.179873 | 0.099873 | 1.86 × 10−58 | 0 | |
mid-value | 0.099873 | 0.099873 | 0.099873 | 0.199873 | 0.099873 | 7.44 × 10−62 | 0 | |
Worst value | 0.299873 | 0.099873 | 0.099874 | 0.299873 | 0.099873 | 2.73 × 10−57 | 0 | |
F8 | Optimal value | 0 | 0.009716 | 0.009716 | 0.009716 | 0.009716 | 0 | 0 |
Standard deviation | 0.018154 | 2.79 × 10−08 | 7.25 × 10−08 | 0.013327 | 5.29 × 10−14 | 0 | 0 | |
Mean value | 0.022947 | 0.009716 | 0.009716 | 0.034005 | 0.009716 | 0 | 0 | |
mid-value | 0.009716 | 0.009716 | 0.009716 | 0.037224 | 0.009716 | 0 | 0 | |
Worst value | 0.078189 | 0.009716 | 0.009716 | 0.078189 | 0.009716 | 0 | 0 |
Test Set Type | Functions | Convergence Curves | Radius |
---|---|---|---|
CEC2017 | Shifted and Rotated Rosenbrock’s Function | [−100, 100] | |
Shifted and Rotated Rastrigin’s Function | |||
Shifted and Rotated Levy Function | |||
Hybrid Function (N = 3) | |||
CEC2021 | Shifted and Rotated Bent Cigar Function | ||
Shifted and Rotated Lunacek bi-Rastrigin Function | |||
Hybrid Function (N = 5) | |||
Composition Function (N = 3) |
No. | Effective Stress/MPa | Gas Pressure/MPa | Temperature/°C | Compressive Strength/MPa | Permeability/(10−5 m2) |
---|---|---|---|---|---|
1 | 2 | 1.8 | 40 | 10.85 | 0.881 |
2 | 1.51 | 0.5 | 55 | 12.85 | 1.062 |
3 | 4.01 | 0.5 | 30 | 14.13 | 0.559 |
… | … | … | … | … | … |
24 | 1.73 | 1.8 | 45 | 14.13 | 0.805 |
25 | 2 | 1 | 60 | 12.62 | 0.633 |
26 | 2.5 | 1.5 | 30 | 12.37 | 0.677 |
… | … | … | … | … | … |
48 | 3.78 | 1 | 30 | 12.85 | 0.491 |
49 | 1.73 | 0.5 | 30 | 14.13 | 1.189 |
50 | 2 | 1 | 70 | 11.5 | 0.632 |
No. | Y1 | Y2 | Y3 | Permeability/(10−5 m2) |
---|---|---|---|---|
1 | 0.615 | −0.972 | 1.635 | 0.881 |
2 | −0.404 | −0.453 | −0.373 | 1.062 |
3 | −0.497 | 2.050 | −2.133 | 0.559 |
… | … | … | … | … |
24 | −0.906 | −1.783 | −0.342 | 0.805 |
25 | 0.173 | −0.330 | 0.496 | 0.633 |
26 | −0.190 | −0.404 | −0.053 | 0.677 |
… | … | … | … | |
48 | 0.092 | 1.489 | −0.806 | 0.491 |
49 | −1.578 | −0.560 | −2.232 | 1.189 |
50 | 0.967 | −0.088 | 1.646 | 0.632 |
Parameter Name | Specific Setting | Parameter Name | Specific Setting |
---|---|---|---|
Population size | 30 | Maximum iterations | 100 |
BPNN training times | 1000 | BPNN target error | 1 × 10−6 |
BPNN learning rate | 0.01 | BPNN hidden layer node | 12 |
SVM cross-validate parameters | 5 | SVM option.gap | 0.9 |
SVM option.cbound | [1, 100] | SVM option.gbound | [1, 100] |
PSO learning factor | 1.5 | PSO inertia weight | 0.8 |
PSO maximum speed limit | 1 | PSO Maximum speed limit PSO minimum speed limit | −1 |
MPA FADs | 0.2 | Probability of WOA contraction enveloping mechanism | [0.1] |
WOA spiral position update probability | [0.1] | Variation range of BES spiral trajectory | (0.5, 2) |
BES position change parameters | (1.5, 2) | BES spiral trajectory parameters | (0, 5) |
No. | True Value | Predicted Value | |||||||
---|---|---|---|---|---|---|---|---|---|
PSO-BPNN | PSO-LSVM | PSO-SVM | MPA-BPNN | WOA-SVM | BES-SVM | DBO-BPNN | IDBO-BPNN | ||
40 | 0.891 | 0.759 | 0.863 | 0.804 | 0.797 | 0.820 | 0.801 | 0.815 | 0.803 |
41 | 0.516 | 0.548 | 0.635 | 0.582 | 0.584 | 0.582 | 0.579 | 0.588 | 0.552 |
42 | 0.619 | 0.525 | 0.582 | 0.585 | 0.609 | 0.600 | 0.613 | 0.608 | 0.611 |
43 | 0.632 | 0.569 | 0.612 | 0.613 | 0.635 | 0.629 | 0.641 | 0.635 | 0.642 |
45 | 0.564 | 0.602 | 0.711 | 0.676 | 0.680 | 0.704 | 0.691 | 0.683 | 0.665 |
46 | 0.786 | 0.724 | 0.867 | 0.840 | 0.811 | 0.870 | 0.841 | 0.844 | 0.865 |
47 | 0.683 | 0.732 | 0.705 | 0.784 | 0.740 | 0.689 | 0.670 | 0.736 | 0.688 |
48 | 0.491 | 0.412 | 0.534 | 0.518 | 0.544 | 0.544 | 0.538 | 0.518 | 0.487 |
49 | 1.189 | 1.044 | 1.171 | 1.070 | 1.163 | 1.146 | 1.113 | 1.127 | 1.151 |
50 | 0.632 | 0.632 | 0.727 | 0.704 | 0.690 | 0.725 | 0.695 | 0.703 | 0.686 |
No. | True Value | Predicted Value | |||||||
---|---|---|---|---|---|---|---|---|---|
PSO-BPNN | PSO-LSSVM | PSO-SVM | PSO-BPNN | WOA-SVM | BES-SVM | PSO-BPNN | IDBO-BPNN | ||
40 | 0.891 | 0.746 | 0.856 | 0.805 | 0.850 | 0.829 | 0.834 | 0.830 | 0.850 |
41 | 0.516 | 0.541 | 0.472 | 0.542 | 0.500 | 0.505 | 0.520 | 0.479 | 0.518 |
42 | 0.619 | 0.651 | 0.589 | 0.607 | 0.634 | 0.639 | 0.558 | 0.613 | 0.621 |
43 | 0.632 | 0.685 | 0.628 | 0.631 | 0.637 | 0.650 | 0.596 | 0.620 | 0.626 |
45 | 0.564 | 0.644 | 0.498 | 0.681 | 0.521 | 0.514 | 0.542 | 0.545 | 0.558 |
46 | 0.786 | 0.788 | 0.723 | 0.864 | 0.759 | 0.712 | 0.750 | 0.812 | 0.789 |
47 | 0.683 | 0.759 | 0.627 | 0.698 | 0.676 | 0.676 | 0.703 | 0.653 | 0.659 |
48 | 0.491 | 0.512 | 0.553 | 0.503 | 0.522 | 0.518 | 0.493 | 0.513 | 0.511 |
49 | 1.189 | 1.134 | 1.174 | 1.165 | 1.186 | 1.185 | 1.153 | 1.167 | 1.190 |
50 | 0.632 | 0.655 | 0.554 | 0.659 | 0.587 | 0.582 | 0.607 | 0.622 | 0.625 |
Models | Model Performance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAPE/% | RMSE | R2 | MSE | FBR/% | |||||||
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
PSO-BPNN | 0.0564 | 0.0695 | 7.35 | 9.65 | 0.0775 | 0.0815 | 0.8568 | 0.8318 | 0.0060 | 0.0066 | 4.83 | 5.61 |
PSO-LSSVM | 0.0542 | 0.0608 | 8.34 | 10.00 | 0.0705 | 0.0751 | 0.8817 | 0.8573 | 0.0050 | 0.0056 | −5.44 | −7.27 |
PSO-SVM | 0.0526 | 0.0692 | 7.38 | 9.95 | 0.0679 | 0.0770 | 0.8903 | 0.8499 | 0.0046 | 0.0059 | −2.56 | −4.30 |
MPA-BPNN | 0.0457 | 0.0510 | 6.65 | 8.00 | 0.0569 | 0.0614 | 0.9230 | 0.9046 | 0.0032 | 0.0038 | −1.49 | −5.14 |
WOA-SVM | 0.0462 | 0.0576 | 6.75 | 8.95 | 0.0582 | 0.0703 | 0.9193 | 0.8748 | 0.0034 | 0.0049 | −2.64 | −5.93 |
BES-SVM | 0.0486 | 0.0548 | 7.00 | 8.19 | 0.0589 | 0.0657 | 0.9173 | 0.8907 | 0.0035 | 0.0043 | −1.31 | −4.33 |
DBO-BPNN | 0.0447 | 0.0551 | 6.54 | 8.27 | 0.0570 | 0.0639 | 0.9225 | 0.8966 | 0.0033 | 0.0041 | −2.60 | −5.17 |
IDBO-BPNN | 0.0397 | 0.0424 | 5.60 | 6.11 | 0.0534 | 0.0550 | 0.9319 | 0.9234 | 0.0029 | 0.0030 | −0.46 | −3.06 |
Models | Model Performance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAPE/% | RMSE | R2 | MSE | FBR/% | |||||||
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
PSO-BPNN | 0.0327 | 0.0511 | 4.63 | 7.27 | 0.0405 | 0.0644 | 0.9609 | 0.8949 | 0.0016 | 0.0042 | −0.62 | −3.10 |
PSO-LSSVM | 0.0167 | 0.0453 | 2.56 | 7.21 | 0.0422 | 0.0506 | 0.9575 | 0.9352 | 0.0018 | 0.0026 | 1.07 | 4.67 |
PSO-SVM | 0.0388 | 0.0398 | 5.52 | 5.85 | 0.0497 | 0.0544 | 0.9411 | 0.9250 | 0.0025 | 0.0030 | −0.49 | −3.08 |
MPA-BPNN | 0.0120 | 0.0233 | 1.70 | 3.67 | 0.0200 | 0.0280 | 0.9905 | 0.9802 | 0.0004 | 0.0008 | −0.35 | 1.77 |
WOA-SVM | 0.0114 | 0.0322 | 1.80 | 4.80 | 0.0286 | 0.0398 | 0.9805 | 0.9599 | 0.0008 | 0.0016 | −0.18 | 2.51 |
BES-SVM | 0.0175 | 0.0300 | 2.49 | 4.16 | 0.0311 | 0.0353 | 0.9770 | 0.9685 | 0.0010 | 0.0012 | 1.21 | 3.34 |
DBO-BPNN | 0.0130 | 0.0246 | 1.91 | 3.61 | 0.0237 | 0.0288 | 0.9866 | 0.9790 | 0.0006 | 0.0008 | 1.02 | 2.06 |
IDBO-BPNN | 0.0045 | 0.0112 | 0.70 | 1.66 | 0.0074 | 0.0168 | 0.9987 | 0.9929 | 0.0001 | 0.0003 | −0.02 | 0.57 |
Effective Stress | Gas Pressure | Compressive Strength | Compressive Strength | |
---|---|---|---|---|
Effective stress | 1 | −0.062 | 0.056 | −0.122 |
Gas pressure | −0.062 | 1 | 0.229 | −0.230 |
Compressive strength | 0.056 | 0.229 | 1 | −0.434 |
Compressive strength | −0.122 | −0.230 | −0.434 | 1 |
No. | True Value | Predicted Value | |||||||
---|---|---|---|---|---|---|---|---|---|
PSO-BPNN | PSO-LSSVM | PSO-SVM | MPA-BPNN | WOA-SVM | BES-SVM | DBO-BPNN | IDBO-BPNN | ||
48 | 0.516 | 0.527 | 0.556 | 0.516 | 0.564 | 0.578 | 0.567 | 0.570 | 0.561 |
49 | 0.810 | 0.834 | 0.762 | 0.836 | 0.840 | 0.828 | 0.845 | 0.827 | 0.839 |
50 | 0.516 | 0.572 | 0.568 | 0.552 | 0.581 | 0.566 | 0.576 | 0.572 | 0.567 |
51 | 0.514 | 0.564 | 0.527 | 0.554 | 0.557 | 0.570 | 0.551 | 0.562 | 0.538 |
52 | 0.511 | 0.557 | 0.522 | 0.550 | 0.516 | 0.520 | 0.517 | 0.518 | 0.533 |
53 | 1.056 | 1.032 | 0.832 | 1.034 | 0.945 | 0.929 | 0.931 | 0.945 | 0.935 |
54 | 0.489 | 0.545 | 0.522 | 0.537 | 0.516 | 0.520 | 0.519 | 0.518 | 0.516 |
55 | 0.680 | 0.649 | 0.718 | 0.658 | 0.742 | 0.762 | 0.718 | 0.752 | 0.718 |
56 | 0.845 | 0.925 | 0.844 | 0.927 | 0.872 | 0.869 | 0.871 | 0.863 | 0.853 |
57 | 0.645 | 0.572 | 0.575 | 0.560 | 0.608 | 0.615 | 0.616 | 0.602 | 0.602 |
58 | 0.431 | 0.667 | 0.616 | 0.667 | 0.598 | 0.602 | 0.616 | 0.590 | 0.560 |
59 | 0.580 | 0.676 | 0.649 | 0.677 | 0.598 | 0.602 | 0.616 | 0.590 | 0.595 |
60 | 0.768 | 0.671 | 0.718 | 0.677 | 0.758 | 0.762 | 0.777 | 0.769 | 0.775 |
61 | 0.478 | 0.547 | 0.532 | 0.540 | 0.549 | 0.538 | 0.547 | 0.535 | 0.557 |
62 | 0.745 | 0.704 | 0.691 | 0.695 | 0.643 | 0.645 | 0.669 | 0.641 | 0.673 |
63 | 0.850 | 0.802 | 0.823 | 0.808 | 0.781 | 0.813 | 0.793 | 0.796 | 0.763 |
64 | 0.834 | 0.862 | 0.801 | 0.863 | 0.817 | 0.799 | 0.826 | 0.802 | 0.792 |
65 | 0.654 | 0.688 | 0.629 | 0.683 | 0.595 | 0.578 | 0.606 | 0.587 | 0.608 |
66 | 0.567 | 0.544 | 0.567 | 0.537 | 0.515 | 0.518 | 0.518 | 0.517 | 0.533 |
67 | 0.582 | 0.561 | 0.628 | 0.532 | 0.589 | 0.575 | 0.582 | 0.580 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cui, X.; Qi, Y.; Xue, K.; Liang, R.; Bai, C. Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network. Sensors 2024, 24, 2873. https://doi.org/10.3390/s24092873
Wang W, Cui X, Qi Y, Xue K, Liang R, Bai C. Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network. Sensors. 2024; 24(9):2873. https://doi.org/10.3390/s24092873
Chicago/Turabian StyleWang, Wei, Xinchao Cui, Yun Qi, Kailong Xue, Ran Liang, and Chenhao Bai. 2024. "Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network" Sensors 24, no. 9: 2873. https://doi.org/10.3390/s24092873
APA StyleWang, W., Cui, X., Qi, Y., Xue, K., Liang, R., & Bai, C. (2024). Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network. Sensors, 24(9), 2873. https://doi.org/10.3390/s24092873