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Abstract: Physical exercise affects many facets of life, including mental health, social interaction,
physical fitness, and illness prevention, among many others. Therefore, several AI-driven techniques
have been developed in the literature to recognize human physical activities. However, these tech-
niques fail to adequately learn the temporal and spatial features of the data patterns. Additionally,
these techniques are unable to fully comprehend complex activity patterns over different periods, em-
phasizing the need for enhanced architectures to further increase accuracy by learning spatiotemporal
dependencies in the data individually. Therefore, in this work, we develop an attention-enhanced
dual-stream network (PAR-Net) for physical activity recognition with the ability to extract both
spatial and temporal features simultaneously. The PAR-Net integrates convolutional neural networks
(CNNs) and echo state networks (ESNs), followed by a self-attention mechanism for optimal feature
selection. The dual-stream feature extraction mechanism enables the PAR-Net to learn spatiotemporal
dependencies from actual data. Furthermore, the incorporation of a self-attention mechanism makes
a substantial contribution by facilitating targeted attention on significant features, hence enhancing
the identification of nuanced activity patterns. The PAR-Net was evaluated on two benchmark
physical activity recognition datasets and achieved higher performance by surpassing the baselines
comparatively. Additionally, a thorough ablation study was conducted to determine the best optimal
model for human physical activity recognition.

Keywords: physical activity recognition; deep learning; machine learning; skeleton data; echo
state networks

1. Introduction

Human physical activity recognition (HPAR) has emerged as a crucial area of research
with diverse applications in surveillance systems [1], health care systems [2,3], gyms [4],
gaming [5], etc. Additional applications of PAR include assisting older people to live freely
and safely in the community while utilizing the improved healthcare system. Moreover,
vision-based human activity recognition for human–computer interaction (HCI) has at-
tracted the interest of many researchers in recent times. For example, the invention of Kinect
enables real-time HCI by recognizing user gestures and body motions to control a character
or for gameplay features. However, despite advancements in vision-based HCI, the major
obstacle is the automatic recognition of gesture, action, and behavioral context, which is
still an open and challenging topic to tackle. Therefore, several researchers utilized Kinect
for the evaluation of indoor HPAR for full body tracking and gesture-based detection by
an intelligent HCI system [5,6]. Human activity recognition is an essential domain that
involves analyzing the gestures and actions that humans perform throughout their daily
lives. Researchers use many data modalities to understand and identify these activities,
with each modality providing distinct insights into patterns of human motion [7–10]. RGB
video data are one of the modalities that collect visual information by using the colors
red, green, and blue and provide a comprehensive perspective of the activities performed
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by humans [11,12]. They offer a comprehensive depiction of applications’ objects and
motions, allowing for meticulous examination using image processing and computer vision
methodologies. Although RGB data provide extensive visual information, they often pose
difficulties in processing caused by variables such as variations in lighting, obstructions,
and distracting background elements, all of which may impact the accuracy of identification.
On the other hand, skeletal data offer a different and often more sophisticated method for
recognizing activities [13]. They simplify human postures into essential joint coordinates,
providing an organized depiction of physical motions [14]. This data type offers a stream-
lined and concentrated perspective, highlighting the fundamental characteristics necessary
for identifying actions. Skeleton data provide a stable and robust representation by record-
ing body joint spatial connections and configurations throughout motions [15]. They are
less influenced by external variables like lighting conditions or background clutter. By
concentrating on the fundamental elements of joint positions and motions, this abstraction
simplifies the recognition process, allowing for a more efficient and precise study of human
activities. The advantage of skeletal data over RGB data in certain situations stems from
their capacity to condense intricate motions into essential joint locations and trajectories,
resulting in a more distinct and less distorted depiction of human activities. The simplified
representation of skeletal data allows for more efficient analysis and identification, making
them a preferred method in situations where exact activity detection is essential, such as
in gesture recognition [16], sports analytics [17], or healthcare applications [18] that need
precise movement monitoring. While RGB data provide a wider contextual perspective,
skeletal data’s concentrated representation is frequently more appropriate and resilient for
the recognition and categorization of human physical activity.

Recently, artificial intelligence-based methods, especially deep learning, have achieved
outstanding breakthroughs in human activity recognition. Accurate and real-time recogni-
tion of human activities provides valuable insights into understanding human behavior,
promoting fitness, and enhancing quality of life. Furthermore, advancements in sensor
technology and the availability of large-scale annotated datasets have fueled the develop-
ment of sophisticated activity recognition systems. Among the various modalities used
for PAR, skeleton data have gained significant attention due to their effectiveness, low
computational cost, and robustness to occlusions and noise. Skeleton data represent human
body movements as a series of 2D or 3D joint positions over time, which can be captured
using depth sensors, such as Microsoft Kinect, or through pose estimation techniques [19]
from 2D images or videos. The inherent spatiotemporal representation of skeleton data
enables a concise yet informative representation of human actions, making them an ideal
input for activity recognition models.

Deep learning-based methods have demonstrated remarkable performance for HPAR.
However, several challenges are associated with the current literature. The baseline meth-
ods utilize CNN or recurrent neural network (RNN) variants for HPAR. However, these
methods can only extract spatial or temporal patterns from the data, while HPAR data
have spatiotemporal dependencies. To overcome this challenge, the recent literature has
developed hybrid models; however, these methods utilize stacked layer phenomena, which
extract spatial patterns followed by temporal patterns or vice versa. Furthermore, the
output of these methods is directly inputted into fully connected layers for classification.
To overcome these challenges, we developed a PAR-Net that extracts both spatial and
temporal features simultaneously. The PAR-Net integrates a CNN for spatial patterns
and an ESN for temporal dependencies for extraction. The output of both streams is
then concatenated, followed by a self-attention mechanism for optimal feature selection.
Additionally, we investigate the network’s interpretability, providing insights into how it
learns to recognize specific activities from the skeleton data. The main contributions of this
research are as follows:

1. The PAR-Net introduces a novel dual-stream paradigm tailored for HPAR, which
involves the integration of two distinct streams within the network architecture. The
first stream utilized a CNN, which is adept at capturing spatial patterns inherent in
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the data. Simultaneously, the second stream incorporates an ESN, which is uniquely
designed to capture temporal dependencies embedded within the activity sequences.
By operating these streams in parallel, the PAR-Net inherently preserves both spatial
and temporal characteristics crucial for accurate activity recognition, thereby overcom-
ing the limitations posed by prior models that could only capture spatial or temporal
aspects separately or in stacked layer phenomena.

2. The PAR-Net incorporates a crucial self-attention mechanism. This mechanism dy-
namically highlights relevant spatiotemporal features while suppressing noise and
irrelevant information. By allowing the network to focus on critical aspects of the data
selectively, the self-attention mechanism significantly enhances the discriminative
capabilities of the PAR-Net. This integration empowers the network to learn more
salient representations, thereby contributing to improved accuracy and robustness in
physical activity recognition tasks.

3. This research extensively examines the PAR-Net and other architectures through
thorough ablation studies. Each component, including the dual-stream design,
self-attention mechanism, CNN–ESN architecture, and other architecture utiliza-
tion, is systematically evaluated to understand their individual impact before the
PAR-Net selection.

4. To gauge the efficacy and superiority of the PAR-Net, comprehensive comparisons are
made against the baseline methods commonly used in physical activity recognition.
The evaluation encompasses various metrics, including accuracy, robustness, and
computational efficiency, comparing the PAR-Net performance against baselines.

The rest of the paper is structured as follows: Section 2 presents a review of related
works in human physical activity recognition and discusses existing approaches using
skeleton data. Section 3 details the architecture and components of the PAR-Net. Section 4
presents the experimental setup, dataset descriptions, evaluation metrics, and comparative
analysis with state-of-the-art methods. Finally, Section 5 concludes the paper and outlines
potential directions for future research in this domain.

2. Literature Review

Over the past eight years, significant advancements have been made in human physical
activity recognition using 2D skeleton data based on advanced neural network architectures.
For instance, Shi et al. [20] demonstrated the efficacy of CNNs for skeleton-based action
recognition. The authors proposed a method to map 2D joint coordinates to heatmaps,
effectively transforming the skeleton data into a format suitable for CNN input. Although
lacking temporal modeling, this study laid the foundation for CNN-based approaches
in the field. The authors [21] proposed a novel LSTM network called global context-
aware attention LSTM (GCA-LSTM), which mainly focuses on useful joints using a global
context memory cell. They also introduced a recurrent attention mechanism to increase
the attention capability of the network and combined fine-grained and coarse-grained
attention in a two-stream framework. This approach achieves state-of-the-art accuracy
on five different challenging datasets utilized by researchers for skeleton-based action
recognition. Liu et al. [22] proposed a skeleton visualization method for view-invariant
human action recognition. The method involves a view-invariant transform based on
sequences to eliminate the influence of view variations, visualizing transformed skeletons
as color images, and applying visual and motion enhancement methods to enhance local
patterns. A CNN-based model is then used to extract informative and discriminative
features from the RGB images, and decision-level fusion is applied to generate action
class scores.

Another research study [23] provided a deep learning-inspired ConvNets-based strat-
egy for activity identification utilizing numerous visual signals. It also presented a novel
technique for producing skeletal pictures that reflect motion data. RGB, skeletal data, and
depth from RGB-D sensors are employed in the method, which is subsequently trained
on ConvNets and merged at the outcome level. Ghazal et al. [24] focused on vision-based
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human activity recognition (HAR) using skeletal data obtained from standard cameras.
The approach extracts motion features from the 2D positions of human skeleton joint data
through the OpenPose library. The study used supervised machine learning with different
classifiers (K-nearest neighbors (KNN), support vector machine (SVM), naive Bayes (NB),
linear discriminant, and feed-forward back-propagation neural network) to recognize four
activity classes: standing, walking, sitting, and falling. The experimental results showed
that the K-nearest neighbors classifier performed the best among the others. This method
offers device-independent HAR for various applications like video surveillance, telecare,
ambient intelligence, and robot navigation. Experimental results for deep learning methods
like [25], where a CNN and long short-term memory (LSTM) have been adopted to obtain
spatial-temporal information, show that the score fusion of CNN and LSTM performs
better than LSTM, achieving 87.40% accuracy and ranking 1st in the Large-Scale 3D Human
Activity Recognition Challenge in Depth Videos. Li et al. [26] developed actional–structural
graph convolutional networks (AS-GCNs) that integrate both actional and structural graph
convolutions to capture the dynamics of actions and the spatial relationships between joints.
The actional graph convolution captures the temporal dependencies between joints, while
the structural graph convolution focuses on modeling the skeletal structure. The AS-GCN
demonstrated superior performance on challenging action recognition tasks, emphasizing
the importance of considering both spatial and temporal aspects. Another study proposed
an intelligent HAR-based system [27] that combines image processing and deep learning
techniques using human skeleton information and automatically recognizes human daily
activities. This approach has proven promising because of its low computation cost and
high accuracy outcomes, making it suitable for embedded systems.

However, effective model training is essential for PAR systems to accurately detect hu-
man body parts and the required physical activities. Therefore, Nadeem et al. [28] presented
an integrated framework that deals with multidimensional features using a fusion of human
body part models and quadratic discriminant analysis. Multilevel features are extracted as
displacement parameters, representing the spatiotemporal properties of body parts over
time. The recognition engine utilizes a maximum-entropy Markov model to process these
characteristics. The experimental findings demonstrated that this method outperformed
existing techniques in terms of accuracy for body part identification and physical activity
recognition. The body part detection accuracy achieved a rate of 90.91% on the sports action
dataset provided by the University of Central Florida. In contrast, the accuracy for activity
recognition on UCF YouTube action dataset was found to be 89.09% and the accuracy on
IM-DailyRGBEvents dataset was 88.26%, respectively. To capture spatial information and
temporal variations for action classification, Tasnim et al. [29] offered a spatio-temporal
image formation (STIF) approach for 3D skeletal joints. The transfer learning technique was
used by utilizing the pre-trained weights of the models, including MobileNetV2, ResNet18,
and DenseNet121, and their proposed method. The method outperformed prior works
using UTD-MHAD and MSR-Action3D datasets, including STIF representation, attaining
performance accuracy of approximately 98.93%, 98.80%, and 99.65% on UTD-MHAD and
96.00%, 97.08%, and 98.75% on MSR-Action3D datasets for each method, respectively.
A dual-stream structured graph convolution network (DS-SGCN) was proposed in [30]
to address the issue of skeleton-based action recognition. The DS-SGCN integrates the
spatiotemporal joint coordinates and appearance contexts of skeletal joints, allowing for
a better representation of discrete joints. The module encodes segregated body parts and
dynamic interactions in a spatiotemporal sequence. Structured intra-part graphs represent
distinct body parts, while inter-part graphs model dynamic interactions across different
body parts. The DS-SGCN acquires intrinsic properties and dynamic interactions of human
activity by learning on both inter- and intra-part graphs. After integrating spatial context
and coordinate cues, a convolution-filtering process captures the temporal dynamics of
human movement. The fusion of two streams of graph convolution responses predicts
category information about human action end-to-end. The DS-SGCN technique achieved
encouraging performance on five benchmark datasets.
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Another method developed in [31] aimed to assess the efficacy of two RNN models,
namely the 2BLSTM and 3BGRU, in accurately detecting daily postures and possibly
dangerous situations in a home monitoring system. The analysis was conducted using
3D skeletal data obtained from a Kinect V2 device. The RNN models were evaluated
using two distinct feature sets: one composed of eight kinematic characteristics that were
manually picked using a genetic algorithm, and another composed of 52 ego-centric 3D
coordinates for each skeletal joint, together with the subject’s distance from the Kinect
V2. In order to enhance the capacity of the 3BGRU model to make generalizations, they
used a data augmentation technique to ensure a balanced training dataset and attained
the highest level of accuracy of 88%. Cheng et al. [32] proposed a system for recognizing
physical exercise from video frames (extracted 3D human skeleton data using VIBE) using
deep semantic features and repetitive segmentation algorithms. The system locates and
segments the activity into multiple unit actions, improving recognition and time intervals.
Experiments on the “NOL-18 Exercise” dataset showed an accuracy of 96.27% with a
0.23% time error. This system could be used in fitness or rehabilitation centers for patient
treatment. Another study [33] presented a human tracking model for squat exercises
using open-source MediaPipe technology. The model detects and tracks vital body joints,
analyzing critical joint motions for abnormal movements. Validated using a squat dataset
from ten healthy individuals, the model uses double exponential smoothing to classify
movements as normal or abnormal. The model accurately predicted six out of ten subjects,
with a mean square error of 56.31% for normal squat and 29.78% mean square error
for abnormal squat setting, respectively. This low-cost camera-based squat movement
condition detection model effectively detects workout movement abnormalities. Chariar
et al. [34] introduced a method for classifying different types of squats and recommending
the appropriate version for individuals. The study utilized MediaPipe and a deep learning-
based approach to determine whether squatting is performed correctly or incorrectly. A
stacked Bidirectional Gated Recurrent Unit (Bi-GRU) with an attention layer was used
to consistently and fairly evaluate each user, categorizing squats into seven classes. The
model was compared to other advanced models, both with and without the attention layer,
and it outperformed the baselines. Recently, Li et al. [35] developed a unique approach to
recognizing human skeletal movement in energy-efficient smart homes by fusing several
CNNs. Gray value encoding is used in this technique to encode spatiotemporal information
for each 3D skeletal sequence. The CNN fusion model uses three SPI and three STSI
sequences as model input for skeletal activity recognition, allowing hierarchical learning of
spatiotemporal features. Experimental results were carried out on three public datasets,
showing that their performance is better than that of state-of-the-art methods. To address
the limitations of traditional machine learning and deep learning models for activity
recognition, the authors [36] developed a hybrid model that combines CNN and LSTM
for activity recognition. They also generated a new dataset containing 12 different classes
of human physical activities, collected from 20 participants using the Kinect V2 sensor.
Through an extensive study, the CNN-LSTM technique achieved an accuracy of 90.89%,
demonstrating its suitability for HAR applications. Furthermore, Luwe et al. [37] presented
a hybrid deep learning model called 1D-CNN-BiLSTM for recognizing human activities
using data collected from wearable sensors. Using bidirectional long short-term memory
(BiLSTM), the model encodes long-range relationships while transforming sensor time
series data into high-level representative characteristics.

Researchers have explored various approaches, including multi-modal fusion, atten-
tion mechanisms, visualization networks, and domain adaptation, to enhance the accuracy,
interpretability, and generalization capabilities of the models. These advancements con-
tribute to human activity recognition systems for diverse real-world applications using
different types of input data, which collectively contribute to developing a robust and
reliable system and also provide valuable insights into building more efficient recognition
systems. In summary, the literature review highlights the evolution of methodologies in
human physical activity recognition using skeleton data. However, several challenges are
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associated with the current literature. For instance, hybrid models in HPAR often employ
sequential approaches, limiting their ability to extract both spatial and temporal features
concurrently. This compromises accurate recognition as it fails to preserve the intricate rela-
tionship between spatial and temporal characteristics. Furthermore, existing methods lack
efficient strategies for feature selection, potentially leading to suboptimal representations
and impacting recognition accuracy. To overcome these challenges, the PAR-Net introduces
a dual-stream paradigm, integrating a CNN for spatial patterns and an ESN for temporal
dependencies. This simultaneous extraction of spatial and temporal features preserves
the essential characteristics for accurate activity recognition. Additionally, the PAR-Net
incorporates a self-attention mechanism, dynamically highlighting salient spatiotemporal
features, thereby enhancing discriminative capabilities. This comprehensive approach
ensures optimal feature representation and addresses the limitations of prior methods,
leading to superior performance in accuracy, robustness, and computational efficiency for
physical activity recognition.

The existing literature predominantly focuses on solo architectures for HPAR, over-
looking the challenge posed by datasets containing both spatial and temporal features. Solo
models struggle to effectively extract both types of features, hindering their performance.
While some hybrid models have been proposed, such as combinations of CNN and RNN
variants, they often utilize a stacked layer phenomenon for feature extraction. This ap-
proach, where one model learns from the original data while the subsequent model learns
from the extracted features, faces difficulties in capturing effective temporal dependencies
due to the reduction in data dimensionality after each convolutional layer. Moreover, the
outputs of these models, whether solo or hybrid, are directly fed to dense layers without
optimal feature selection. Consequently, the accuracy attained is insufficient for real-world
implementation. In response to these limitations, we developed a PAR-Net, leveraging
a dual-stream architecture to extract spatial and temporal features from raw data. These
features are then concatenated and subjected to a self-attention mechanism for optimal
feature selection, followed by classification using dense layers. Notably, the PAR-Net
achieves higher accuracy compared to baseline models, addressing the shortcomings of
existing approaches.

3. Proposed Methodology

A PAR-Net was developed to address the inherent challenges in recognizing complex
activities from skeleton data. It incorporates various modules, including CNN, ESN, and
self-attention, to extract spatial and temporal features effectively, where the integration of
the attention module plays a crucial role in feature selection. All these modules are further
discussed in the subsequent sections.

3.1. Spatial Feature Extraction

The 1D CNN is an effective architecture for extracting spatial patterns from data [38].
Unlike traditional approaches, which are reliant on handcrafted features, a 1D CNN au-
tomatically learns hierarchical representations of spatial features, making it capable of
discerning complex patterns. Skeleton-based human physical activity recognition data
provide a unique perspective on human movements through joints and key point configu-
rations over time. A 1D CNN uses filters over the spatial dimension for feature extraction
that gradually abstracts into high-level feature representation. A CNN layer is followed by
a max-pooling layer to reduce the computational burden by focusing on the most salient in-
formation in feature maps. To finally classify the resulting features, the output is forwarded
to fully connected layers. This architecture excels at learning both short-term and long-term
dependencies within the data, making it well-suited for discerning nuanced patterns in
activities. The processes of the lth convolution operation, max pooling operation, and fully
connected layer can be mathematically demonstrated below where Equation (1) can be
written as:

Yl
ij = σ

((
∑M

m=1 W l
m,j·X0

i=m−1,j

)
+ Bl

j

)
, (1)
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Here, Bl
j is the bias term of the jth feature map, W represents the weights, m is the filter,

and σ is the activation function (e.g., ReLU).

pl
ij = maxs

di=0

(
Yl−1

i∗t+di,j

)
(2)

Equation (2) shows the mathematical representation of the max pooling operation,
which downsamples the input by selecting the maximum value for the window. Where t is
the stride and s is the size of the pooling operation.

dl
i = ∑j=1 W l−1

ji

(
σ
(

Xl−1
i

))
+ Bl−1

j , (3)

where W l−1
ji is the weights, σ is the activation function, Xl−1

i is the input data, and Bl−1
j is

the bias term in Equation (3).

3.2. Temporal Feature Learning

The ESN is the reservoir computing architecture that has become popular for process-
ing sequential data, which makes it useful for time series analysis and advantageous in
physical activity detection compared to other RNN architectures in terms of effectiveness
and efficiency. ESNs can be distinguished from the other RNNs by a fixed, randomly gener-
ated reservoir of neurons that function as a dynamic memory. The ESNs have a fixed set
of parameters and only optimize the output layer weights during training; they are better
suited for applications with minimal labeled data because training is less complicated. The
intrinsic memory capacity of ESNs is well suited for processing skeleton data. The reservoir
of the network extracts temporal features from the sequential input by identifying patterns
and relationships. Due to its dynamic properties, the reservoir can accurately simulate
the temporal information of human actions and can accurately identify complex activities.
To employ ESNs for activity recognition with skeleton data, the input sequences, which
describe the spatiotemporal dynamics of human motions, are fed into the reservoir. The
input data are converted into a high-dimensional state space by the reservoir. A linear
readout layer that maps the high-dimensional representations to the target activity classes
is subsequently trained using the reservoir states. Particularly, the only portion of the
network that is trained is this readout layer, which streamlines the optimization procedure.
ESNs have the benefit of being robust against noise, capturing long-term dependencies,
and providing effective training with a small amount of labeled data. Due to the intrinsic
memory provided by the fixed reservoir structure, the network can recognize and make use
of temporal patterns in the skeletal data. Moreover, ESN training makes it easy, especially
in situations where gathering sizable, labeled datasets might be difficult.

The ESN is mainly composed of three layers (input layer, reservoir layer, and output
layer), as shown in Figure 1. The input layer and reservoir layer are generated randomly.
The reservoir layer consists of N neurons and is considered fading memory, where x(t) is
the input and h(t) combines it at time t. The state of the ESN is updated by Equation (4), as
given in [39].

h(t) = ∅(Winx(t) + Wh (t − 1) + Wbacky(t − 1) + bx), (4)

The activation function utilized in reservoir neurons is represented by ∅(
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ESN implementation has two steps for target prediction, where the first step is spec-
ifying 𝑊௜௡, 𝑊, and states of ESN. The input weights 𝑊௜௡ and 𝑊 of the reservoir layer 
are generated randomly and kept constant. The output weights 𝑊௢௨௧ are optimized, all 
states are stored in matrix 𝐻, and the targeted outputs are stored in a feature vector 𝑦∗. 
Finally, the model is connected with a linear regressor where the ridge regressor is used, 
which computes the regularized least-square problem using Equation (8), where 𝛽 ∈ 𝑅ା 
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3.3. Self-Attention Mechanism 
The self-attention mechanism is a key tool for improving model performance, partic-

ularly in hybrid models. Both stream outputs are combined in order to generate a single 
feature vector, which is then inputted into SAM to provide a representative pattern for the 
final prediction. Figure 2 illustrates a visual representation of each stream output, concat-
enation layer, SAM, and fully connected layer. We integrate the SAM to select optimal 
features from the data by dynamically adjusting the importance of hidden patterns. SAM 
is used to identify the key patterns in the merged feature vector of the CNN and ESN 
streams prior to the prediction process. It also analyzes the correlation of hidden charac-
teristics across different timestamps in each dimension. In SAM, the score of hidden fea-
tures of the 𝑔௧௛ time stamp in the 𝑝௧௛ dimension can be calculated using Equation (9): 

), the weight
matrices of the reservoir layer are represented by Win ∈ RM×N , the weight matrices of the
input and output feedback are represented by Wback ∈ RN×Y, and the input bias is denoted
by bx ∈ RN×1. The input y(t − 1) at the current instant is desired. Hence, Wbacky(t − 1) can
be combined with the Winu(t) item. Equation (4) can be written as shown in Equation (5),
where bx can be fused into Winx(t) while only connecting the output rather than connecting
the input and other neurons in the reservoir layer.

h(t) = ∅(Win[1 : x(t)] + Wh (t − 1)), (5)
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Equation (6) is used to determine the target Y(t) at time t:

Y(t) = Wouth(t)+by, (6)

where the output weights of the ESN are denoted with Wout ∈ R(N+1)×Y, the output bias is
denoted by by ∈ RN×1, and by is fused with Wouth(t) according to Equation (6), which can
be written as shown in Equation (7):

Y(t) = Wout[1; h(t)], (7)

ESN implementation has two steps for target prediction, where the first step is spec-
ifying Win, W, and states of ESN. The input weights Win and W of the reservoir layer
are generated randomly and kept constant. The output weights Wout are optimized, all
states are stored in matrix H, and the targeted outputs are stored in a feature vector y∗.
Finally, the model is connected with a linear regressor where the ridge regressor is used,
which computes the regularized least-square problem using Equation (8), where β ∈ R+

represents the L2 regularization coefficient.

W∗
out =

(
argmin
W ∈ R

)
1
2
||HW − y∗||2 + β

2
||W||2 =

(
HT H + βI)−1HTy∗ (8)

3.3. Self-Attention Mechanism

The self-attention mechanism is a key tool for improving model performance, partic-
ularly in hybrid models. Both stream outputs are combined in order to generate a single
feature vector, which is then inputted into SAM to provide a representative pattern for
the final prediction. Figure 2 illustrates a visual representation of each stream output, con-
catenation layer, SAM, and fully connected layer. We integrate the SAM to select optimal
features from the data by dynamically adjusting the importance of hidden patterns. SAM is
used to identify the key patterns in the merged feature vector of the CNN and ESN streams
prior to the prediction process. It also analyzes the correlation of hidden characteristics
across different timestamps in each dimension. In SAM, the score of hidden features of the
gth time stamp in the pth dimension can be calculated using Equation (9):

Sg, p = fsco
(
Wg,p

[
h1,p, h3,p, h3,p, . . . hn,p,

])
, p = 1, 2, 3 . . . n, g = 1, 2, 3 . . . t (9)

Here, the pth dimension of the hidden state on the gth timestamp is represented by
hg,p, the weight metric is indicated by Wg,p, a function implemented by fully connected
layers is represented by fsco, the number of timestamps is represented by t, and the hidden
feature dimension is represented by n. The final layers of our proposed model are fully
connected layers, which are used for activity recognition. The SAM output is flattened
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to a Zl = Z2, Z2, Z3 . . . Zn feature vector, where the number of SAM output dimensions is
represented by l. The output of the attention module is fed to a dense layer.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 21 
 

 

𝑆௚,௣ =  𝑓௦௖௢൫𝑊௚,௣ൣℎଵ,௣, ℎଷ,௣, ℎଷ,௣, … ℎ௡,௣, ൧൯, 𝑝 = 1,2,3 … 𝑛, 𝑔 = 1,2,3 … 𝑡 (9) 

Here, the 𝑝௧௛ dimension of the hidden state on the 𝑔௧௛ timestamp is represented by ℎ௚,௣, the weight metric is indicated by 𝑊௚,௣, a function implemented by fully connected 
layers is represented by 𝑓௦௖௢, the number of timestamps is represented by 𝑡, and the hid-
den feature dimension is represented by 𝑛. The final layers of our proposed model are 
fully connected layers, which are used for activity recognition. The SAM output is flat-
tened to a 𝑍௟ =  𝑍ଶ, 𝑍ଶ, 𝑍ଷ … 𝑍௡ feature vector, where the number of SAM output dimen-
sions is represented by 𝑙. The output of the attention module is fed to a dense layer. 

 
Figure 2. Main framework of the PAR-Net. 

3.4. PAR-Net 
We proposed a dual-stream model with an attention mechanism called PAR-Net to 

efficiently recognize physical activities using skeleton data. In the spatial stream, CNN 
layers are employed to extract spatial features from the input skeleton data. These convo-
lutional layers apply filters to the data, capturing hierarchical spatial patterns. In the tem-
poral stream, the ESN is integrated to model the temporal dynamics of the skeletal se-
quence. In the CNN stream, the data are processed by two 1D-convalutional layers with 
64 and 128 filters and a kernel size of 3 and 1, respectively. This process is followed by a 
dense layer with 128 units and a flattened layer. Meanwhile, the ESN stream utilizes an 
Echo State RNN cell consisting of 32 units, which has been configured with a hyperbolic 
tangent (tanh) activation function. The cell is started with predetermined parameters, in-
cluding decay, epsilon, and alpha, and is configured to update certain variables through-
out the training process. The output of both streams is then combined by a concatenation 
method and forwarded to a self-attention mechanism. A self-attention mechanism is used 
to select more prominent features from the combined feature vector. These optimal fea-
tures are then fed to a dense layer consisting of 64 units using a rectified linear unit (ReLU) 
activation function. Finally, a SoftMax layer consisting of 5 units (depending on the num-
ber of classes) is applied to calculate the model output probabilities for the various activity 
classes. The model is trained using the Adam optimizer, with a learning rate of 0.0001, 
and the categorical cross-entropy loss function. During the training process, the model is 
adjusted to the training data using a batch size of 32 for 100 epochs. 

4. Experimental Results 
This section delves into a detailed exploration of the evaluation metrics, datasets, and 

performance comparisons of different models. Specifically, we focus on assessing the effi-
cacy of the PAR-Net in comparison to baseline models. We have used two datasets for the 
evaluations of our proposed model and the dataset details are given in Table 1. Several 
evaluation metrics are used to assess the performance of models that aim to recognize or 

Figure 2. Main framework of the PAR-Net.

3.4. PAR-Net

We proposed a dual-stream model with an attention mechanism called PAR-Net to ef-
ficiently recognize physical activities using skeleton data. In the spatial stream, CNN layers
are employed to extract spatial features from the input skeleton data. These convolutional
layers apply filters to the data, capturing hierarchical spatial patterns. In the temporal
stream, the ESN is integrated to model the temporal dynamics of the skeletal sequence.
In the CNN stream, the data are processed by two 1D-convalutional layers with 64 and
128 filters and a kernel size of 3 and 1, respectively. This process is followed by a dense
layer with 128 units and a flattened layer. Meanwhile, the ESN stream utilizes an Echo
State RNN cell consisting of 32 units, which has been configured with a hyperbolic tangent
(tanh) activation function. The cell is started with predetermined parameters, including
decay, epsilon, and alpha, and is configured to update certain variables throughout the
training process. The output of both streams is then combined by a concatenation method
and forwarded to a self-attention mechanism. A self-attention mechanism is used to select
more prominent features from the combined feature vector. These optimal features are then
fed to a dense layer consisting of 64 units using a rectified linear unit (ReLU) activation
function. Finally, a SoftMax layer consisting of 5 units (depending on the number of classes)
is applied to calculate the model output probabilities for the various activity classes. The
model is trained using the Adam optimizer, with a learning rate of 0.0001, and the categori-
cal cross-entropy loss function. During the training process, the model is adjusted to the
training data using a batch size of 32 for 100 epochs.

4. Experimental Results

This section delves into a detailed exploration of the evaluation metrics, datasets,
and performance comparisons of different models. Specifically, we focus on assessing the
efficacy of the PAR-Net in comparison to baseline models. We have used two datasets for
the evaluations of our proposed model and the dataset details are given in Table 1. Several
evaluation metrics are used to assess the performance of models that aim to recognize or
classify human activities based on skeletal joint data captured from devices. We used accu-
racy, precision, recall, and F1-score for performance and comparative analysis; the details
of these metrics are given in [36]. The experiments are conducted on a computational setup
composed of a GeForce RTX 3070 GPU with 8 GB of RAM, a Core i7 processor with 32 GB
of onboard memory, and the Windows 10 operating system (Nvidia Corporation, Santa
Clara, CA, USA). The implementation was carried out using Python V3.7.4, employing the
Keras deep learning framework built on TensorFlow.
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Table 1. Types of activities and skeleton points in each dataset.

Datasets Skeleton Joints Data Activities

PAR Dataset

1. Head
2. Neck
3. Spine Shoulder
4. Spin Mid
5. Spine Base
6. Shoulder Right
7. Shoulder Left
8. Hip Right
9. Hip Left

10. Elbow Right
11. Wrist Right
12. Hand Right
13. Hand Tip Right
14. Thumb Right
15. Elbow Left
16. Wrist Left
17. Hand Left

18. Hand Tip Left
19. Thumb Left
20. Knee Right
21. Ankle Right
22. Foot Right
23. Knee Left
24. Ankle Left
25. Foot Left

1. Overhead Arm Raise
2. Front Arm Raise
3. Arm Curl
4. Chair Stand
5. Balance Walk
6. Side Leg Raise (Right, Left)
7. Shoulder
8. Chest
9. Leg Raise (Forward,
Backward)
10. Arm Circle
11. Side Twist (Right, Left)
12. Squats

PER Dataset

0. nose
1. left_eye_inner
2. left_eye
3. left_eye_outer
4. right_eye_inner
5. right_eye
6. right_eye_outer
7. left_ear
8. right_ear
9. mouth_left
10. mouth_right

11. left_shoulder
12. right_shoulder
13. left_elbow
14. right_elbow
15. left wrist
16. right_wrist
17. left_pinky
18. right_pinky
19. left_index
20. right_index
21. left_thumb

22. right_thumb
23. left_hip
24.right_hip
25. left_knee
26. right_knee
27. left_ankle
28. right_ankle
29. left_heel
30. right_heel
31. left_foot_index
32. right_foot_index

1. Jumping Jack
2. Push-ups
3. Pull-ups
4. Sit-ups
5. Squats

4.1. Dataset Description

In this study, we used two datasets for the PAR-Net evaluation. The first dataset,
the Physical Activity Recognition Dataset (PAR) [36], is composed of 12 distinct activities
performed by 20 different individuals aged 25–35 years. Data collection involved the use
of Microsoft’s Kinect sensor V2, which is capable of extracting 25 different joints from the
human body (refer to Figure 3). The dataset contains the x- and y-axis values of all body
joints and stores them as CSV files. Each participant performed an activity for 10 s, resulting
in 200 samples for each activity, with 10 repetitions per participant (totaling 120 samples
per participant). The Kinect V2 sensor was employed to extract human skeleton joints
using the Discrete Gestures Basics WPF SDK. Joint data were captured by the Kinect Body
View script and saved as CSV files.

The data are organized in the sequence shown in Figure 3, representing 25 body joints,
labeled numerically as indicated in Table 1. The labeled activity data files are consolidated
and identified by their respective class numbers. All activity files are then merged into a
single training file and transferred to the model using 5 different frame sequences, such as
30, 60, 90, 120, and 150 frame sequence data.

The second dataset used in this study is called the Physical Exercise Recognition
Dataset (PER) [40], which is composed of 10 different poses that can be used to distinguish
5 exercise activities. The exercises are jumping jacks, push-ups, sit-ups, pull-ups, and squats.
The dataset is composed of 33 different landmarks representing the positions of human
body parts. A sequence of poses is provided to preserve the order of frames in each record.
The data is collected from 447 videos in which different people are performing exercises,
and these videos are collected from the Countix dataset, which provides the YouTube links
to several activity videos. The videos are downloaded and preprocessed, where the frames
are extracted from the videos and stored. They used the MediaPipe framework to extract
the human skeletal data from the video frames, which can efficiently predict the location of
33 landmarks on the human body and face and store it as CSV files. The labels are provided
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with data in separate CSV files, which contain details about the data and their specific
labels. The detailed explanation of both datasets used in this research is shown in Table 1.
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4.2. Comparative Analysis of Different Models

The performance of different deep learning models is evaluated for activity recognition
on different frame sequences, such as 30, 60, 90, 120, and 150 frames. The data of each
frame are stored row-wise in a CSV file, where the information for each frame includes
the coordinates of skeletal joints and corresponding labels indicating the specific activity.
Therefore, each row of data represents one frame of the activity sequence, with the activity
label in the last column. The term "frames" refers to the number of consecutive frames of
skeleton data passed to the model as input. For example, when we mention using 30 frames
of data, it means that we fed sequences of 30 consecutive frames of data to the model.
The accuracy of each model is emphasized during these intervals, offering information
about how effective it is in terms of accuracy, as reported in Table 2. The ablation results
show a consistent tendency among the models evaluated, where most models show a
reasonable level of accuracy at shorter intervals but are unable to sustain it as the frame
intervals increase. Certain models, such as the MLP, CNN, LSTM, Bidirectional LSTM, ESN,
GRU, BiGRU, CNN-GRU, CNN-LSTM, CNN–ESN, and Dual-Stream CNN–ESN without
an attention mechanism, show good accuracy at certain intervals on both datasets but
become less accurate at longer frames, suggesting that they are unable to capture long-term
temporal dependencies. Nonetheless, the proposed dual-stream model, coupled with the
attention mechanism, consistently obtains the best results comparatively. Figure 4 shows
the accuracy of our proposed model compared to other models.
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Table 2. Accuracy comparison of models across different frames.

PAR Dataset

No. Model Name 30 60 90 120 150

1 MLP 85.45 83.64 83.47 87.05 71.51

2 CNN 88.88 88.22 87.65 83.74 75.47

3 LSTM 83.31 80.64 74.69 82.92 66.09

4 BiLSTM 90.15 85.39 89.30 82.02 66.26

5 ESN 85.55 90.73 82.17 92.01 81.66

6 GRU 87.96 86.32 83.57 87.74 80.63

7 BiGRU 86.57 92.83 85.89 83.74 73.49

8 CNN-GRU 89.25 88.63 88.48 87.60 82.96

9 CNN-LSTM [36] 90.89 88.98 90.44 87.94 76.50

10 CNN–ESN 83.76 87.01 78.56 91.66 75.81

11 Dual-Stream CNN–ESN 89.10 90.15 87.03 90.28 82.78

12 PAR-Net 93.69 92.33 92.82 93.93 87.09

PER Dataset

1 MLP 88.21 87.50 84.82 85.71 88.39

2 CNN 87.14 92.14 87.50 86.42 90.17

3 LSTM 85.53 87.50 82.14 81.42 75.89

4 BiLSTM 91.42 88.57 77.67 83.57 84.82

5 ESN 86.67 87.25 84.82 83.52 81.77

6 GRU 88.56 85.90 82.70 83.75 79.35

7 BiGRU 87.66 89.20 86.50 83.78 81.89

8 CNN-GRU 90.57 88.55 87.99 90.33 82.66

9 CNN-LSTM 89.64 90.00 85.00 82.14 91.96

10 CNN–ESN 90.17 87.65 81.53 89.54 78.82

11 Dual-Stream CNN–ESN 90.50 89.54 88.78 87.47 83.78

12 PAR-Net 92.85 89.64 92.51 88.57 93.75
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Figure 4. The accuracy of different models on the PAR and PER datasets.

Table 3 shows the precision scores generated by various deep-learning models used
to recognize activities at different intervals of time: 30, 60, 90, 120, and 150 frames. These
models include the MLP, CNN, LSTM, Bidirectional LSTM, ESN, GRU, BiGRU, CNN-GRU,
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CNN-LSTM, CNN–ESN, and Dual-Stream CNN–ESN without an attention mechanism.
However, when the frame intervals increase, they show a reduction in accuracy, suggest-
ing that greater periods cannot be reliably predicted. On the other hand, the PAR-Net
consistently performs well with higher precision scores through all frame intervals and
also maintains an impressive level of precision, peaking at 94.41% at 120 frames on the
PAR dataset, while the peak precision score is 94.88% on the physical exercise recognition
dataset. Such high performance highlights the PAR-Net's ability to reliably anticipate a
wide range of actions, demonstrating its advantage over other models during evaluation
across varying time intervals, as shown in Figure 5. The recall and F1-score metrics are
also used to evaluate the performance of different models with diverse frame sequences, as
shown in Tables 4 and 5 respectively. The performance of these models decreases when
the sequence increases. However, the PAR-Net performs well at longer intervals, peaking
at 120 sequences with a recall value of 94.02% and a 94% F1-score on the physical activity
recognition dataset, while the recall score and F1-score on the physical exercise dataset are
94.02% and 93.5%, respectively, as given in Figures 6 and 7.

Table 3. Precision comparison of models across different frames.

PAR Dataset

No. Model Name 30 60 90 120 150

1 MLP 86.18 84.37 85.12 88.54 74.97

2 CNN 89.20 88.48 88.37 83.93 78.04

3 LSTM 83.94 82.51 74.95 84.04 64.01

4 BiLSTM 90.74 85.90 89.62 82.52 70.35

5 ESN 85.81 90.77 82.37 92.03 81.10

6 GRU 87.91 86.95 84.02 87.89 81.51

7 BiGRU 86.58 92.95 85.80 83.30 73.48

8 CNN GRU 89.49 89.28 88.79 88.62 85.87

9 CNN-LSTM [36] 91.11 89.31 91.13 88.82 76.13

10 CNN–ESN 83.92 87.23 78.56 91.78 76.85

11 Dual-Stream CNN–ESN 89.22 90.20 87.62 90.52 84.02

12 PAR-Net 93.84 92.53 93.48 94.41 87.39

PER Dataset

1 MLP 88.08 86.65 83.61 87.29 87.19

2 CNN 86.90 91.53 86.55 87.61 89.37

3 LSTM 85.99 86.59 80.48 81.08 75.53

4 BiLSTM 91.27 87.85 76.85 83.22 83.68

5 ESN 86.07 86.07 83.33 85.11 81.55

6 GRU 88.10 85.60 82.20 82.55 80.10

7 BiGRU 86.56 89.55 86.21 82.90 80.98

8 CNN GRU 90.10 88.29 87.56 90.25 81.25

9 CNN-LSTM 89.43 90.23 85.09 82.58 91.51

10 CNN–ESN 90.85 87.39 81.22 89.21 78.22

11 Dual-Stream CNN–ESN 90.90 89.70 89.54 86.95 83.66

12 PAR-Net 92.31 88.40 92.23 89.57 94.88
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Table 4. Recall comparison of models across different frames.

PAR Dataset

No. Model Name 30 60 90 120 150

1 MLP 85.39 83.43 83.58 86.86 71.92

2 CNN 88.86 88.07 87.77 83.50 75.36

3 LSTM 83.24 81.23 74.15 82.84 65.89

4 BiLSTM 90.05 85.24 89.41 82.11 67.16

5 ESN 85.22 90.64 81.73 92.03 80.77

6 GRU 87.70 86.63 83.64 87.78 80.24

7 BiGRU 86.46 92.85 86.01 83.19 72.87

8 CNN GRU 89.22 89.09 88.61 87.58 82.32

9 CNN-LSTM [36] 90.84 88.79 90.56 88.10 75.82

10 CNN–ESN 83.57 86.97 78.15 91.64 74.66

11 Dual-Stream CNN–ESN 88.99 89.92 86.71 90.34 82.75

12 PAR-Net 93.78 92.25 92.70 94.02 87.29

PER Dataset

1 MLP 87.99 85.60 82.72 82.75 87.63

2 CNN 86.93 91.78 86.13 83.82 89.48

3 LSTM 85.15 86.75 78.76 80.03 72.39

4 BiLSTM 91.46 87.71 74.08 80.34 84.05

5 ESN 88.98 90.13 87.72 83.33 81.03

6 GRU 88.90 85.15 82.87 84.65 79.55

7 BiGRU 88.10 89.23 86.78 84.55 82.10

8 CNN GRU 90.55 87.99 88.12 90.74 83.14

9 CNN-LSTM 89.40 88.65 84.59 77.61 91.06

10 CNN–ESN 90.89 87.15 81.36 89.14 78.87

11 Dual-Stream CNN–ESN 90.35 89.12 87.85 88.20 83.22

12 PAR-Net 91.75 89.56 90.25 86.89 92.68

Sensors 2024, 24, x FOR PEER REVIEW 14 of 21 
 

 

3 LSTM 85.99 86.59 80.48 81.08 75.53 
4 BiLSTM 91.27 87.85 76.85 83.22 83.68 
5 ESN 86.07 86.07 83.33 85.11 81.55 
6 GRU 88.10 85.60 82.20 82.55 80.10 
7 BiGRU 86.56 89.55 86.21 82.90 80.98 
8 CNN GRU 90.10 88.29 87.56 90.25 81.25 
9 CNN-LSTM 89.43 90.23 85.09 82.58 91.51 

10 CNN–ESN 90.85 87.39 81.22 89.21 78.22 

11 
Dual-Stream 
CNN–ESN 90.90 89.70 89.54 86.95 83.66 

12 PAR-Net 92.31 88.40 92.23 89.57 94.88 

 
Figure 5. The precision of different models on the PAR and PER datasets. 

Table 4. Recall comparison of models across different frames. 

PAR Dataset 
No. Model Name 30 60 90 120 150 

1 MLP 85.39 83.43 83.58 86.86 71.92 
2 CNN 88.86 88.07 87.77 83.50 75.36 
3 LSTM 83.24 81.23 74.15 82.84 65.89 
4 BiLSTM 90.05 85.24 89.41 82.11 67.16 
5 ESN 85.22 90.64 81.73 92.03 80.77 
6 GRU 87.70 86.63 83.64 87.78 80.24 
7 BiGRU 86.46 92.85 86.01 83.19 72.87 
8 CNN GRU 89.22 89.09 88.61 87.58 82.32 
9 CNN-LSTM [36] 90.84 88.79 90.56 88.10 75.82 

10 CNN–ESN 83.57 86.97 78.15 91.64 74.66 

11 
Dual-Stream 
CNN–ESN 88.99 89.92 86.71 90.34 82.75 

12 PAR-Net 93.78 92.25 92.70 94.02 87.29 
PER Dataset 

1 MLP 87.99 85.60 82.72 82.75 87.63 
2 CNN 86.93 91.78 86.13 83.82 89.48 
3 LSTM 85.15 86.75 78.76 80.03 72.39 
4 BiLSTM 91.46 87.71 74.08 80.34 84.05 
5 ESN 88.98 90.13 87.72 83.33 81.03 
6 GRU 88.90 85.15 82.87 84.65 79.55 
7 BiGRU 88.10 89.23 86.78 84.55 82.10 

Figure 5. The precision of different models on the PAR and PER datasets.



Sensors 2024, 24, 1908 15 of 21

Table 5. F1-score comparison of models across different frames.

PAR Dataset

No. Model Name 30 60 90 120 150

1 MLP 85.37 83.32 83.12 86.36 70.61

2 CNN 88.82 88.10 87.46 83.37 74.74

3 LSTM 83.08 80.68 73.98 82.47 63.87

4 BiLSTM 90.15 85.43 89.43 81.76 64.45

5 ESN 85.55 90.66 81.53 91.96 80.66

6 GRU 87.69 86.57 83.29 87.76 79.91

7 BiGRU 86.39 92.86 85.82 83.03 72.88

8 CNN GRU 89.17 88.74 88.59 87.44 80.96

9 CNN-LSTM [36] 90.85 88.87 90.29 87.80 75.13

10 CNN–ESN 83.56 86.94 78.89 91.63 74.81

11 Dual-Stream CNN–ESN 88.97 89.92 86.58 90.22 82.57

12 PAR-Net 93.73 92.18 92.90 94.00 87.18

PER Dataset

1 MLP 87.82 85.67 82.52 82.76 87.28

2 CNN 86.64 91.62 85.93 84.22 89.24

3 LSTM 84.99 86.61 77.47 79.77 71.12

4 BiLSTM 91.33 87.74 70.46 79.43 83.44

5 ESN 87.50 88.05 85.47 84.21 82.10

6 GRU 88.70 86.10 82.10 83.10 79.87

7 BiGRU 87.10 89.89 86.89 83.65 81.25

8 CNN GRU 90.22 88.25 87.88 90.35 82.54

9 CNN-LSTM 89.34 89.04 84.22 77.29 91.18

10 CNN–ESN 90.66 87.58 81.87 89.55 78.55

11 Dual-Stream CNN–ESN 90.88 88.90 88.22 87.77 83.50

12 PAR-Net 91.94 88.54 90.70 87.51 93.50
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Overall, the PAR-Net performed better in all evaluated measures (accuracy, precision,
recall, and F1-score), demonstrating its ability to capture complex temporal correlations
and make accurate predictions over extended periods. Although some models demonstrate
proficiency within particular temporal domains, they are unable to preserve stability
and uniformity, particularly as the input sequences of the model increase. Therefore, the
empirical results emphasize the PAR-Net as an optimal solution among the assessed models,
supported by its dual-stream design and integrated attention mechanism. The ability of the
PAR-Net to interpret activities over a range of time intervals highlights an optimal solution
for activity recognition tasks, providing a thorough understanding of temporal and spatial
dynamics in input data.

In order to provide a thorough study of the model’s performance, we have included
confusion matrices for both datasets at different frame sequences (30, 60, 90, 120, and
150). The confusion matrices, which provide the counts of true positive, true negative,
false positive, and false negative predictions for each activity class, provide insightful
information about the classification results. Figure 8 shows the confusion metrics of
different frame sequences on the PAR dataset, where the activities in the confusion metrics
are represented by the number sequences mentioned in Table 1. Figure 9 represents the
confusion metrics of the PER dataset on various frame sequences.
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4.3. Stability Analysis Test

Stability analysis involves examining a model’s behavior and performance through-
out many training iterations and epochs to determine its consistency and dependability.
This research evaluates many aspects of the model’s learning dynamics, with a specific
emphasis on its capacity to reach an optimum solution without experiencing overfitting
or underfitting. Stability analysis involves examining the consistency and convergence
of accuracy trends over consecutive epochs while analyzing the training and validation
accuracy graphs. Both training and validation accuracy should ideally show consistent
improvement and stability, indicating successful learning without affecting generalization.
When analyzing the training and validation loss graphs, stability analysis entails observ-
ing the decreasing trend of loss values over epochs to verify that the model is efficiently
reducing errors. An important part of stability analysis is recognizing the convergence of
validation loss, which signals that the model has achieved its optimum performance on the
validation set. Figures 10 and 11 show the training and validation accuracy and loss on the
PAR and PER datasets, respectively.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 9. The confusion metrics of the PAR-Net on different sequences on the PER dataset. 

4.3. Stability Analysis Test 
Stability analysis involves examining a model’s behavior and performance through-

out many training iterations and epochs to determine its consistency and dependability. 
This research evaluates many aspects of the model’s learning dynamics, with a specific 
emphasis on its capacity to reach an optimum solution without experiencing overfitting 
or underfitting. Stability analysis involves examining the consistency and convergence of 
accuracy trends over consecutive epochs while analyzing the training and validation ac-
curacy graphs. Both training and validation accuracy should ideally show consistent im-
provement and stability, indicating successful learning without affecting generalization. 
When analyzing the training and validation loss graphs, stability analysis entails observ-
ing the decreasing trend of loss values over epochs to verify that the model is efficiently 
reducing errors. An important part of stability analysis is recognizing the convergence of 
validation loss, which signals that the model has achieved its optimum performance on 
the validation set. Figures 10 and 11 show the training and validation accuracy and loss 
on the PAR and PER datasets, respectively. 

 
Figure 10. The training and validation accuracy and loss graphs on the PAR dataset. Figure 10. The training and validation accuracy and loss graphs on the PAR dataset.



Sensors 2024, 24, 1908 18 of 21Sensors 2024, 24, x FOR PEER REVIEW 18 of 21 
 

 

  
Figure 11. The training and validation accuracy and loss graphs on the PER dataset. 

4.4. Statistical Significance Tests 
Statistical significance tests, or t-tests, are used in our research to evaluate and guar-

antee the suggested model’s capacity for generalization. It is a systematic process used in 
statistical analysis to determine whether the results of the experiment provide strong 
enough evidence to reject a null hypothesis against an alternative hypothesis. This test 
aims to determine whether any differences or impacts in the data are statistically signifi-
cant or just due to random variation. The procedure usually starts by creating two oppos-
ing hypotheses: the null hypothesis (H0), stating no impact or difference, and the alterna-
tive hypothesis (H1), proposing the existence of an effect. We chose a significance level (α) 
of 0.05 to determine the threshold of significance for approving or disapproving the null 
hypothesis. The significance test uses an appropriate test statistic, t-statistics, to produce 
either the p-value or critical value. The p-value indicates the likelihood of observing the 
data or more extreme data if the null hypothesis is true, but the critical value indicates the 
threshold at which the null hypothesis is rejected. The null hypothesis is determined by 
comparing the estimated p-value to the specified significance level or determining 
whether the test statistic is inside the rejection zone. When the p-value is less than α or 
when the test statistic exceeds the critical value, the null hypothesis is rejected, suggesting 
a statistically significant difference. If the p-value is greater than α or if the test statistic is 
within the non-rejection zone, the null hypothesis is not rejected since there is not enough 
evidence to support its rejection. The model is considered accurate if the t-statistic value 
is low, and the p-value is acquired through the comparison of the PAR-Net with another 
baseline model. The significance test provides a structured method to make meaningful 
inferences from data, facilitating informed decision-making and inference in scientific 
studies. Table 6 shows the significant test results comparison of the PAR-Net with other 
baseline models.  

Table 6. Significance test results for comparative analysis of the PAR-Net with other baselines using 
p-values. 

No. Model Name p-Value 
1 PAR-Net vs. MLP 0.015 
2 PAR-Net vs. CNN 0.029 
3 PAR-Net vs. LSTM 0.025 
4 PAR-Net vs. BiLSTM 0.030 
5 PAR-Net vs. ESN 0.029 
6 PAR-Net vs. GRU 0.028 

Figure 11. The training and validation accuracy and loss graphs on the PER dataset.

4.4. Statistical Significance Tests

Statistical significance tests, or t-tests, are used in our research to evaluate and guar-
antee the suggested model’s capacity for generalization. It is a systematic process used
in statistical analysis to determine whether the results of the experiment provide strong
enough evidence to reject a null hypothesis against an alternative hypothesis. This test
aims to determine whether any differences or impacts in the data are statistically significant
or just due to random variation. The procedure usually starts by creating two opposing
hypotheses: the null hypothesis (H0), stating no impact or difference, and the alternative
hypothesis (H1), proposing the existence of an effect. We chose a significance level (α)
of 0.05 to determine the threshold of significance for approving or disapproving the null
hypothesis. The significance test uses an appropriate test statistic, t-statistics, to produce
either the p-value or critical value. The p-value indicates the likelihood of observing the
data or more extreme data if the null hypothesis is true, but the critical value indicates the
threshold at which the null hypothesis is rejected. The null hypothesis is determined by
comparing the estimated p-value to the specified significance level or determining whether
the test statistic is inside the rejection zone. When the p-value is less than α or when the test
statistic exceeds the critical value, the null hypothesis is rejected, suggesting a statistically
significant difference. If the p-value is greater than α or if the test statistic is within the
non-rejection zone, the null hypothesis is not rejected since there is not enough evidence
to support its rejection. The model is considered accurate if the t-statistic value is low,
and the p-value is acquired through the comparison of the PAR-Net with another baseline
model. The significance test provides a structured method to make meaningful inferences
from data, facilitating informed decision-making and inference in scientific studies. Table 6
shows the significant test results comparison of the PAR-Net with other baseline models.

The PAR-Net holds significant potential for real-world applications, particularly in
healthcare, sports training, and smart home systems. In healthcare, it enables remote
monitoring and customized therapies by tracking patients’ physical activity levels, which is
especially beneficial for long-term health issues and rehabilitation. Athletes can benefit from
improved training and performance monitoring through insights into movement patterns
and workload management, reducing the risk of injuries. Integrating the model into
smart home devices enhances comfort and energy efficiency by adjusting environmental
parameters based on inhabitants’ activities and preferences. However, challenges arise from
reliance on precise data collection devices and fluctuations in data integrity and external
circumstances, necessitating improvements in data collection methods, noise handling, and
validation through longitudinal studies. Investigating hybrid methodologies combining
skeletal data with other modalities may enhance adaptability in various scenarios.
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Table 6. Significance test results for comparative analysis of the PAR-Net with other baselines using
p-values.

No. Model Name p-Value

1 PAR-Net vs. MLP 0.015

2 PAR-Net vs. CNN 0.029

3 PAR-Net vs. LSTM 0.025

4 PAR-Net vs. BiLSTM 0.030

5 PAR-Net vs. ESN 0.029

6 PAR-Net vs. GRU 0.028

7 PAR-Net vs. BiGRU 0.029

8 PAR-Net vs. CNN-GRU 0.033

9 PAR-Net vs. CNN-LSTM 0.034

10 PAR-Net vs. CNN–ESN 0.036

11 PAR-Net vs. Dual-Stream CNN–ESN 0.041

5. Conclusions and Future Work

This paper proposes a dual-stream architecture followed by an attention mechanism
that can effectively recognize human physical activity. Using skeletal data and sophisticated
models has been a key strategy in physical activity identification. By putting forth a novel
solution, the PAR-Net performance is evaluated on two datasets aimed at transforming
this field and efficiently recognizing human physical activity. The main goal is to recognize
complex activity patterns across varied time intervals, broken down into frame sequences
of 30, 60, 90, 120, and 150 sequences in both datasets, and compare the results of different
methods. After a thorough analysis, the proposed model performs better than existing mod-
els. The PAR-Net demonstrated its superiority in properly identifying physical activities by
outperforming other models over a wide range of temporal sequences.

Limitations and Future Direction

The PAR-Net achieved higher performance; however, several limitations are associated
with its current implementation and areas for future exploration. The PAR-Net's reliance
solely on skeleton data disregards the potential information collected from other modalities
like RGB images or depth maps. Incorporating multimodal data sources could enrich
feature representation and boost the model's robustness. Furthermore, the model focuses on
single-person skeletal data, which restricts its applicability in scenarios involving multiple
individuals. Future research should prioritize developing models capable of concurrently
processing multi-person skeletal data to effectively address real-world interactions. The
PAR-Net uses multiple architectures to extract spatial and temporal features, which makes
the model computationally expensive. Future research should explore the development of
a unified architecture capable of extracting both spatial and temporal features efficiently for
human physical activity recognition. This could involve the creation of a single architecture
tailored to handle both types of features, potentially reducing computational complexity
while maintaining performance. Moreover, real-time deployment considerations require
optimization of the model architecture and inference techniques for efficient real-time
performance. Furthermore, the absence of a comprehensive graphical user interface (GUI)
hinders the model's accessibility and usability, highlighting the need for an intuitive
interface design. By addressing these limitations and exploring potential avenues for
enhancement, we aim to advance the efficacy and applicability of human physical activity
recognition systems.
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