Exploring the Neural Correlates of Flow Experience with Multifaceted Tasks and a Single-Channel Prefrontal EEG Recording
<p>The experimental procedure for the multifaceted flow tasks. ‘S FSS-2’ refers to the Chinese edition of the Short Flow State Scale-2.</p> "> Figure 2
<p>Comparison of subjective flow scores among three conditions of Tetris (**: <span class="html-italic">p</span> < 0.01).</p> "> Figure 3
<p>Rank distribution of subjective flow score by condition. This rank distribution shows how many times each condition was assigned a particular rank by the participants. Each color represents a different rank, and the height of the color segment shows how many participants assigned that rank to the condition.</p> "> Figure 4
<p>Flow score distribution by different ranks. This presents a series of six histograms, each correlating to a distinct rank, numbered from 1 to 6. The horizontal axis (<span class="html-italic">x</span>-axis) of each histogram delineates the flow scores, while the vertical axis (<span class="html-italic">y</span>-axis) quantifies the number of participants for each of these scores.</p> "> Figure 5
<p>EEG power of five frequency bands between mindfulness and resting state conditions (*: <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Correlation between the five frequency bands and the subjective flow scores in the 8 different segments. (<b>a</b>) Pearson correlation between power values of five frequency bands and subjective flow score (*: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01, the same below). (<b>b</b>) Scatterplots in the specific time segments with significant correlations between specific frequency bands and subjective flow score.</p> "> Figure 7
<p>The R<sup>2</sup> of different models across eight time segments, with three bands showing significant positive R<sup>2</sup> scores: (<b>a</b>) combinations of five frequency bands, (<b>b</b>) theta band, and (<b>c</b>) delta band (areas in grey represent predictive models corresponding to cross-validation regressions that performed worse than simply guessing the mean).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Tasks
2.3. Procedure
2.4. EEG Recordings
2.5. Data Analysis
3. Results
3.1. Individuality of Tasks That Induce the Strongest Flow Experience
3.2. EEG Correlates of Flow Experience
3.3. Predictive Modeling of Flow Experiences
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, S.A.; Csikszentmihalyi, M. Flow in Sports; Human Kinetics: Champaign, IL, USA, 1999. [Google Scholar]
- Chilton, G. Art Therapy and Flow: A Review of the Literature and Applications. Art Ther. 2013, 30, 64–70. [Google Scholar] [CrossRef]
- Stavrou, N.A.; Jackson, S.A.; Zervas, Y.; Karteroliotis, K. Flow Experience and Athletes’ Performance with Reference to the Orthogonal Model of Flow. Sport Psychol. 2007, 21, 438–457. [Google Scholar] [CrossRef]
- MacDonald, R.; Byrne, C.; Carlton, L. Creativity and Flow in Musical Composition: An Empirical Investigation. Psychol. Music 2006, 34, 292–306. [Google Scholar] [CrossRef]
- Rossin, D.; Ro, Y.K.; Klein, B.D.; Guo, Y.M. The Effects of Flow on Learning Outcomes in an Online Information Management Cou. J. Inf. Syst. Educ. 2009, 20, 87–98. [Google Scholar]
- Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task. Front. Psychol. 2018, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Brölz, E.; Keune, P.M.; Wesa, B.; Hautzinger, M.; Birbaumer, N.; Strehl, U. Motor Skill Failure or Flow-Experience? Functional Brain Asymmetry and Brain Connectivity in Elite and Amateur Table Tennis Players. Biol. Psychol. 2015, 105, 95–105. [Google Scholar] [CrossRef]
- Wollseiffen, P.; Schneider, S.; Martin, L.A.; Kerhervé, H.A.; Klein, T.; Solomon, C. The Effect of 6 h of Running on Brain Activity, Mood, and Cognitive Performance. Exp. Brain Res. 2016, 234, 1829–1836. [Google Scholar] [CrossRef]
- Keller, J.; Bless, H. Flow and Regulatory Compatibility: An Experimental Approach to the Flow Model of Intrinsic Motivation. Personal. Soc. Psychol. Bull. 2008, 34, 196–209. [Google Scholar] [CrossRef]
- Harmat, L.; de Manzano, Ö.; Theorell, T.; Högman, L.; Fischer, H.; Ullén, F. Physiological Correlates of the Flow Experience during Computer Game Playing. Int. J. Psychophysiol. 2015, 97, 1–7. [Google Scholar] [CrossRef]
- Forkosh, J.; Drake, J.E. Coloring Versus Drawing: Effects of Cognitive Demand on Mood Repair, Flow, and Enjoyment. Art Ther. 2017, 34, 75–82. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Zhang, A.; Lu, W.Q.; Chiou, W.K. How flow and mindfulness interact with each other in mindfulness-based augmented reality mandala coloring activities. Front. Psychol. 2024, 14, 1301531. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Tsai, P.-H.; Lin, Y.-C.; Chen, C.-K.; Chen, C.-Y. Mindfulness Training Enhances Flow State and Mental Health among Baseball Players in Taiwan. Psychol. Res. Behav. Manag. 2018, 12, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Aherne, C.; Moran, A.P.; Lonsdale, C. The Effect of Mindfulness Training on Athletes’ Flow: An Initial Investigation. Sport Psychol. 2011, 25, 177–189. [Google Scholar] [CrossRef]
- Siedlecka, E.; Denson, T.F. Experimental Methods for Inducing Basic Emotions: A Qualitative Review. Emot. Rev. 2019, 11, 87–97. [Google Scholar] [CrossRef]
- Ozawa, S. Emotions Induced by Recalling Memories About Interpersonal Stress. Front. Psychol. 2021, 12, 618676. [Google Scholar] [CrossRef]
- Núñez Castellar, E.P.; Antons, J.; Marinazzo, D.; Van Looy, J. Mapping Attention during Gameplay: Assessment of Behavioral and ERP Markers in an Auditory Oddball Task. Psychophysiology 2019, 56, e13347. [Google Scholar] [CrossRef]
- Yun, K.; Doh, S.; Carrus, E.; Wu, D.-A.; Shimojo, S. Neural Correlates of Flow Using Auditory Evoked Potential Suppression. arXiv 2017, arXiv:1711.06967. [Google Scholar]
- Huskey, R.; Craighead, B.; Miller, M.B.; Weber, R. Does Intrinsic Reward Motivate Cognitive Control? A Naturalistic-fMRI Study Based on the Synchronization Theory of Flow. Cogn. Affect. Behav. Neurosci. 2018, 18, 902–924. [Google Scholar] [CrossRef]
- Jackson, S.A.; Marsh, H.W. Development and Validation of a Scale to Measure Optimal Experience: The Flow State Scale. J. Sport Exerc. Psychol. 1996, 18, 17–35. [Google Scholar] [CrossRef]
- Jackson, S.A.; Eklund, R.C. Assessing Flow in Physical Activity: The Flow State Scale–2 and Dispositional Flow Scale–2. J. Sport Exerc. Psychol. 2002, 24, 133–150. [Google Scholar] [CrossRef]
- Jackson, S.A.; Martin, A.J.; Eklund, R.C. Long and Short Measures of Flow: The Construct Validity of the FSS-2, DFS-2, and New Brief Counterparts. J. Sport Exerc. Psychol. 2008, 30, 561–587. [Google Scholar] [CrossRef]
- Eldar, E.; Rutledge, R.B.; Dolan, R.J.; Niv, Y. Mood as Representation of Momentum. Trends Cogn. Sci. 2016, 20, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Schacter, D.L.; Guerin, S.A.; Jacques, P.L.S. Memory Distortion: An Adaptive Perspective. Trends Cogn. Sci. 2011, 15, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Shafer, G.R.; Kahnerman, D.; Slovic, P.; Tversky, A. Judgment Under Uncertainty: Heuristics and Biases. J. Am. Stat. Assoc. 1984, 79, 223. [Google Scholar] [CrossRef]
- Alameda, C.; Sanabria, D.; Ciria, L.F. The Brain in Flow: A Systematic Review on the Neural Basis of the Flow State. Cortex 2022, 154, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yu, J.; Song, M.; Yu, C.; Wang, F.; Sun, P.; Wang, D.; Zhang, D. EEG Correlates of Ten Positive Emotions. Front. Hum. Neurosci. 2017, 11, 26. [Google Scholar] [CrossRef]
- Hu, X.; Zhuang, C.; Wang, F.; Liu, Y.-J.; Im, C.-H.; Zhang, D. fNIRS Evidence for Recognizably Different Positive Emotions. Front. Hum. Neurosci. 2019, 13, 120. [Google Scholar] [CrossRef]
- Shui, X.; Chen, Y.; Hu, X.; Wang, F.; Zhang, D. Personality in Daily Life: Multi-Situational Physiological Signals Reflect Big-Five Personality Traits. IEEE J. Biomed. Health Inform. 2023, 27, 2853–2863. [Google Scholar] [CrossRef]
- Ulrich, M.; Keller, J.; Hoenig, K.; Waller, C.; Grön, G. Neural Correlates of Experimentally Induced Flow Experiences. NeuroImage 2014, 86, 194–202. [Google Scholar] [CrossRef]
- de Sampaio Barros, M.F.; Araújo-Moreira, F.M.; Trevelin, L.C.; Radel, R. Flow Experience and the Mobilization of Attentional Resources. Cogn. Affect. Behav. Neurosci. 2018, 18, 810–823. [Google Scholar] [CrossRef]
- Yoshida, K.; Sawamura, D.; Inagaki, Y.; Ogawa, K.; Ikoma, K.; Sakai, S. Brain Activity during the Flow Experience: A Functional near-Infrared Spectroscopy Study. Neurosci. Lett. 2014, 573, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Neurocognitive Mechanisms Underlying the Experience of Flow. Conscious. Cogn. 2004, 13, 746–761. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Tamborini, R.; Westcott-Baker, A.; Kantor, B. Theorizing Flow and Media Enjoyment as Cognitive Synchronization of Attentional and Reward Networks. Commun. Theory 2009, 19, 397–422. [Google Scholar] [CrossRef]
- Li, W.; Wu, C.; Hu, X.; Chen, J.; Fu, S.; Wang, F.; Zhang, D. Quantitative Personality Predictions From a Brief EEG Recording. IEEE Trans. Affect. Comput. 2022, 13, 1514–1527. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Yuan, Z.; Liao, H.; Li, X. Neurofeedback Training for Children with ADHD Using Individual Beta Rhythm. Cogn. Neurodyn. 2022, 16, 1323–1333. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, Y.; Xu, B.; Zhang, D. The Developmental Trajectory of Task-Related Frontal EEG Theta/Beta Ratio in Childhood. Dev. Cogn. Neurosci. 2023, 60, 101233. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Zhang, X.; Luo, T.; Li, R.; Zhao, Y.; Liu, B.; Peng, H. Cross-Subject Aesthetic Preference Recognition of Chinese Dance Posture Using EEG. Cogn. Neurodyn. 2023, 17, 311–329. [Google Scholar] [CrossRef]
- Sultanov, M.; İsmailova, K. EEG Rhythms in Prefrontal Cortex as Predictors of Anxiety among Youth Soccer Players. Transl. Sports Med. 2019, 2, 203–208. [Google Scholar] [CrossRef]
- Xu, X.; Kong, Q.; Zhang, D.; Zhang, Y. An Evaluation of Inter-Brain EEG Coupling Methods in Hyperscanning Studies. Cogn. Neurodyn. 2022, 18, 67–83. [Google Scholar] [CrossRef]
- Chen, J.; Qian, P.; Gao, X.; Li, B.; Zhang, Y.; Zhang, D. Inter-Brain Coupling Reflects Disciplinary Differences in Real-World Classroom Learning. npj Sci. Learn. 2023, 8, 11. [Google Scholar] [CrossRef]
- de Manzano, Ö.; Theorell, T.; Harmat, L.; Ullén, F. The Psychophysiology of Flow during Piano Playing. Emotion 2010, 10, 301–311. [Google Scholar] [CrossRef]
- Klasen, M.; Weber, R.; Kircher, T.T.J.; Mathiak, K.A.; Mathiak, K. Neural Contributions to Flow Experience during Video Game Playing. Soc. Cogn. Affect. Neurosci. 2012, 7, 485–495. [Google Scholar] [CrossRef]
- Peifer, C.; Wolters, G.; Harmat, L.; Heutte, J.; Tan, J.; Freire, T.; Tavares, D.; Fonte, C.; Andersen, F.O.; van den Hout, J.; et al. A Scoping Review of Flow Research. Front. Psychol. 2022, 13, 815665. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Brown, C.R. EEG Differences in Children between Eyes-Closed and Eyes-Open Resting Conditions. Clin. Neurophysiol. 2009, 120, 1806–1811. [Google Scholar] [CrossRef]
- Liu, W. Revision on Chinese Edition of the Short Flow State Scale and the Short Dispositional Flow Scale. China Sport Sci. 2010, 30, 64–70. [Google Scholar]
- Sun, J.C.-Y.; Yeh, K.P.-C. The Effects of Attention Monitoring with EEG Biofeedback on University Students’ Attention and Self-Efficacy: The Case of Anti-Phishing Instructional Materials. Comput. Educ. 2017, 106, 73–82. [Google Scholar] [CrossRef]
- EEG Band Power Values: Units, Amplitudes, and Meaning/Development/Knowledge Base-NeuroSky-Home Page Support. Available online: http://support.neurosky.com/kb/development-2/eeg-band-power-values-units-amplitudes-and-meaning (accessed on 11 January 2024).
- Lomas, T.; Ivtzan, I.; Fu, C.H.Y. A Systematic Review of the Neurophysiology of Mindfulness on EEG Oscillations. Neurosci. Biobehav. Rev. 2015, 57, 401–410. [Google Scholar] [CrossRef]
- Scheinost, D.; Noble, S.; Horien, C.; Greene, A.S.; Lake, E.M.; Salehi, M.; Gao, S.; Shen, X.; O’Connor, D.; Barron, D.S.; et al. Ten Simple Rules for Predictive Modeling of Individual Differences in Neuroimaging. NeuroImage 2019, 193, 35–45. [Google Scholar] [CrossRef]
- Leroy, A.; Cheron, G. EEG Dynamics and Neural Generators of Psychological Flow during One Tightrope Performance. Sci. Rep. 2020, 10, 12449. [Google Scholar] [CrossRef]
- Knyazev, G.G. Motivation, Emotion, and Their Inhibitory Control Mirrored in Brain Oscillations. Neurosci. Biobehav. Rev. 2007, 31, 377–395. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V. Event-Related Delta and Theta Synchronization during Explicit and Implicit Emotion Processing. Neuroscience 2009, 164, 1588–1600. [Google Scholar] [CrossRef]
- Harmony, T. The Functional Significance of Delta Oscillations in Cognitive Processing. Front. Integr. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef]
- Shehata, M.; Cheng, M.; Leung, A.; Tsuchiya, N.; Wu, D.-A.; Tseng, C.; Nakauchi, S.; Shimojo, S. Team Flow Is a Unique Brain State Associated with Enhanced Information Integration and Interbrain Synchrony. Eneuro 2021, 8, ENEURO.0133-21.2021. [Google Scholar] [CrossRef]
- Jensen, O.; Kaiser, J.; Lachaux, J.-P. Human Gamma-Frequency Oscillations Associated with Attention and Memory. Trends Neurosci. 2007, 30, 317–324. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal Theta as a Mechanism for Cognitive Control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef]
- Ishii, R.; Canuet, L.; Ishihara, T.; Aoki, Y.; Ikeda, S.; Hata, M.; Katsimichas, T.; Gunji, A.; Takahashi, H.; Nakahachi, T.; et al. Frontal Midline Theta Rhythm and Gamma Power Changes during Focused Attention on Mental Calculation: An MEG Beamformer Analysis. Front. Hum. Neurosci. 2014, 8, 406. [Google Scholar] [CrossRef]
- Chen, J.; Xu, B.; Zhang, D. Inter-Brain Coupling Analysis Reveals Learning-Related Attention of Primary School Students. Educ. Technol. Res. Dev. 2013, 1–15. [Google Scholar] [CrossRef]
- Hong, B.; Guo, F.; Liu, T.; Gao, X.; Gao, S. N200-Speller Using Motion-Onset Visual Response. Clin. Neurophysiol. 2009, 120, 1658–1666. [Google Scholar] [CrossRef]
- Grabowska, A.; Sondej, F.; Senderecka, M. A Machine Learning Study of Anxiety-Related Symptoms and Error-Related Brain Activity. J. Cogn. Neurosci. 2024, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Cannard, C.; Wahbeh, H.; Delorme, A. Electroencephalography Correlates of Well-Being Using a Low-Cost Wearable System. Front. Hum. Neurosci. 2021, 15, 745135. [Google Scholar] [CrossRef]
- Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Shalaby, M.A.W. EEG-Based Emotion Recognition Using 3D Convolutional Neural Networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [Google Scholar] [CrossRef]
- Chakravarthi, B.; Ng, S.-C.; Ezilarasan, M.R.; Leung, M.-F. EEG-Based Emotion Recognition Using Hybrid CNN and LSTM Classification. Front. Comput. Neurosci. 2022, 16, 1019776. [Google Scholar] [CrossRef] [PubMed]
- Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. Emotion Recognition Based on EEG Using LSTM Recurrent Neural Network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 355–358. [Google Scholar] [CrossRef]
- Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, F.; Chen, X. EEG-Based Emotion Recognition via Channel-Wise Attention and Self Attention. IEEE Trans. Affect. Comput. 2023, 14, 382–393. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Wang, F.; Zhang, D. Ten Challenges for EEG-Based Affective Computing. Brain Sci. Adv. 2019, 5, 1–20. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Hu, X.; Zhang, D.; Song, S. Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition. IEEE Trans. Affect. Comput. 2023, 14, 2496–2511. [Google Scholar] [CrossRef]
Delta | Theta | Alpha | Beta | Gamma | |
---|---|---|---|---|---|
1~30 s | 0.16 (0.407) | 0.15 (0.436) | 0.10 (0.602) | 0.03 (0.897) | 0.07 (0.720) |
31~60 s | 0.20 (0.309) | 0.10 (0.600) | 0.09 (0.654) | 0.25 (0.202) | 0.15 (0.462) |
61~90 s | 0.04 (0.826) | 0.09 (0.649) | 0.15 (0.454) | 0.23 (0.249) | 0.10 (0.616) |
91~120 s | 0.11 (0.590) | 0.03 (0.865) | −0.10 (0.606) | −0.09 (0.645) | 0.18 (0.362) |
121~150 s | 0.46 * (0.013) | 0.44 * (0.020) | 0.07 (0.711) | 0.16 (0.417) | 0.37 (0.050) |
151~180 s | 0.39 * (0.038) | 0.49 ** (0.008) | 0.12 (0.543) | 0.21 (0.274) | 0.39 * (0.041) |
181~210 s | 0.19 (0.341) | 0.16 (0.426) | 0.05 (0.818) | 0.22 (0.257) | 0.21 (0.289) |
211~240 s | 0.32 (0.100) | 0.42 * (0.026) | 0.16 (0.424) | 0.29 (0.129) | 0.24 (0.225) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, Y.; Unenbat, B.; Tang, S.; Wang, F.; Lin, B.; Zhang, D. Exploring the Neural Correlates of Flow Experience with Multifaceted Tasks and a Single-Channel Prefrontal EEG Recording. Sensors 2024, 24, 1894. https://doi.org/10.3390/s24061894
Hang Y, Unenbat B, Tang S, Wang F, Lin B, Zhang D. Exploring the Neural Correlates of Flow Experience with Multifaceted Tasks and a Single-Channel Prefrontal EEG Recording. Sensors. 2024; 24(6):1894. https://doi.org/10.3390/s24061894
Chicago/Turabian StyleHang, Yuqi, Buyanzaya Unenbat, Shiyun Tang, Fei Wang, Bingxin Lin, and Dan Zhang. 2024. "Exploring the Neural Correlates of Flow Experience with Multifaceted Tasks and a Single-Channel Prefrontal EEG Recording" Sensors 24, no. 6: 1894. https://doi.org/10.3390/s24061894
APA StyleHang, Y., Unenbat, B., Tang, S., Wang, F., Lin, B., & Zhang, D. (2024). Exploring the Neural Correlates of Flow Experience with Multifaceted Tasks and a Single-Channel Prefrontal EEG Recording. Sensors, 24(6), 1894. https://doi.org/10.3390/s24061894