Modulating Driver Alertness via Ambient Olfactory Stimulation: A Wearable Electroencephalography Study
<p>Overview of the study methodology. (<b>A</b>) Driving simulation system (<b>B</b>) Behavioral data including brake reaction time (RT) and subjective rating to verbal questionnaires (<b>C</b>) 19-channel EEG signal acquisition system and EEG signal preprocessing (<b>D</b>) EEG metrics calculation: power spectral density (PSD) in 5-frequency bands (<b>E</b>) EEG metrics calculation: graph theoretical analysis in functional brain connectivity (<b>F</b>) Classifier discriminating between fragrance’s alerting and relaxing effect and statistical analysis.</p> "> Figure 2
<p>Schematic overview of the experimental procedure. Study participants underwent two experimental sessions, each consisting of the following sequence of events: SACT task to assess baseline attention state for the respective session; behavioral questionnaires (KSS); short break 10 min; 60-min driving task, during which the fragrance stimulus corresponding to that session started to be released at the minute 30 mark; behavioral questionnaires (KSS, alerting/relaxing; NASA TLX). The order of the two sessions (corresponding to the two fragrance stimuli) was randomized across subjects.</p> "> Figure 3
<p>(<b>A</b>) The bar graphs illustrate the average ratings on perceived fragrance stimulus character (1 = Strongly No, 2 = No; 3 = Neutral; 4 = Yes; 5 = Strongly Yes). The ratings represent averages of the scores of the corresponding set of questions (relaxing and alerting character) for each of the two fragrance stimuli (coded here as relaxing and alerting fragrance). (<b>B</b>) the scores corresponding to the Karolinska Sleepiness Scale (KSS). 1 = Extremely alert; 10 = Extremely sleepy. Error bars represent standard error of mean. Statistical significance was determined with a significance level of <span class="html-italic">p</span> < 0.05 (*).</p> "> Figure 4
<p>The graph illustrates changes in braking reaction time over 30-min segments: (<b>A</b>) without fragrance stimuli, during the [0–30] min segment, and (<b>B</b>) with the fragrance stimuli during the [30–60] min segment of the driving task. The two lines represent the two experimental sessions, corresponding to the two fragrance stimuli. The X-axis represents experimental time over 5 min epochs, and the Y-axis represents standardized average reaction times. Statistical significance indicates differences between the two groups during the [30–45] min segment, with a significance level of <span class="html-italic">p</span> < 0.01 (**). No statistically significant differences were observed in the [0–30] min segment.</p> "> Figure 5
<p>Classification accuracies obtained by the four classifiers in discriminating the altering versus relaxing state during the [30–45] min segment of the experiment using EEG metrics from each of the frequency bands and all frequency bands combined (All Bands). Delta band [1–4 Hz], theta band [4–8 Hz], alpha band [8–13 Hz], beta band [13–30 Hz], and gamma band [30–40 Hz]. Error bars represent ±1 standard error of the mean.</p> "> Figure 6
<p>Correlational analysis on the association of driver’s behavior with EEG metrics in the alpha frequency band over the [30–45] min segment of the driving task. Topographic scalp maps indicate the correlation coefficients of braking RT and EEG metrics at all EEG channel locations. Channels with statistically significant correlation coefficients are marked with bold circles (<span class="html-italic">p</span> < 0.05, following FDR correction with the Benjamini–Hochberg method).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Scheduling
2.2. Experimental Procedure
2.3. EEG Signal Recording and Pre-Processing
2.4. Feature Extraction—Brain Metrics
2.5. Statistical Analysis
2.6. Supervised Learning
2.6.1. k-Nearest Neighbors
2.6.2. Support Vectors Machine (SVM) with Linear Kernel
2.6.3. SVM with Radial Basis Function (RBF) Kernel
2.6.4. Extreme Gradient Boosting (XGBoost)
2.6.5. Cross-Validation and Hyperparameter Tuning
3. Results
3.1. Behavioral and Self-Reported Measures
3.1.1. Questionnaires
3.1.2. Behavioral Data—Reaction Times
3.2. EEG Metrics—Significant Differences
3.3. Classification Results
3.4. RT versus Brain Metrics—Correlational Analysis
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAR | Automatic Artifact Rejection |
ACC | Adaptive cruise control |
EEG | Electroencephalography |
KSS | Karolinska Sleepiness Scale |
NASA TLX | NASA Task Load Index |
PSD | Power spectral density |
SVM | Support Vector Machine |
RBF | Radial basis function kernel |
kNN | k Nearest Neighbors |
RT | Reaction Time |
XGBoost | Extreme Gradient Boosting |
References
- Oken, B.S.; Salinsky, M.C.; Elsas, S. Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clin. Neurophysiol. 2006, 117, 1885–1901. [Google Scholar] [CrossRef] [PubMed]
- Bioulac, S.; Micoulaud-Franchi, J.A.; Arnaud, M.; Sagaspe, P.; Moore, N.; Salvo, F.; Philip, P. Risk of motor vehicle accidents related to sleepiness at the wheel: A systematic review and meta-analysis. Sleep 2017, 40, zsx134. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.M.; Dingus, T.A.; Guo, F.; Fang, Y.; Perez, M.; McClafferty, J.; Tefft, B.C. Prevalence of Drowsy Driving Crashes: Estimates from a Large-Scale Naturalistic Driving Study (Research Brief); AAA Foundation for Traffic Safety: Washington, DC, USA, 2018. [Google Scholar]
- Wang, H.; Dragomir, A.; Abbasi, N.I.; Li, J.; Thakor, N.V.; Bezerianos, A. A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn. Neurodyn. 2018, 12, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Di Flumeri, G.; Ronca, V.; Giorgi, A.; Vozzi, A.; Arico, P.; Sciaraffa, N.; Zeng, H.; Dai, G.; Kong, W.; Babiloni, F.; et al. EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications. Front. Hum. Neurosci. 2022, 16, 866118. [Google Scholar] [CrossRef] [PubMed]
- Seet, M.; Bezerianos, A.; Panou, M.; Bekiaris, E.; Thakor, N.; Dragomir, A. Individual Susceptibility to Vigilance Decrement in Prolonged Assisted Driving Revealed by Alert-State Wearable EEG Assessment. IEEE Trans. Cogn. Dev. Syst. 2022, 15, 1586–1594. [Google Scholar] [CrossRef]
- Lin, C.-T.; Huang, K.-C.; Chuang, C.-H.; Ko, L.-W.; Jung, T.-P. Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra. J. Neural Eng. 2013, 10, 056024. [Google Scholar] [CrossRef]
- Phan, M.T.; Thouvenin, I.; Frémont, V. Enhancing the driver awareness of pedestrian using augmented reality cues. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1298–1304. [Google Scholar]
- Al-Shargie, F.; Tariq, U.; Mir, H.; Alawar, H.; Babiloni, F.; Al-Nashash, H. Vigilance decrement and enhancement techniques: A review. Brain Sci. 2019, 9, 178. [Google Scholar] [CrossRef]
- Abbasi, N.I.; Bodala, I.P.; Bezerianos, A.; Sun, Y.; Al-Nashash, H.; Thakor, N.V. Role of multisensory stimuli in vigilance enhancement-a single trial event related potential study. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2446–2449. [Google Scholar]
- Baron, R.A.; Kalsher, M.J. Effects of a pleasant ambient fragrance on simulated driving performance: The sweet smell of⋯ safety? Environ. Behav. 1998, 30, 535–552. [Google Scholar] [CrossRef]
- Li, G.; Chung, W.Y. Combined EEG-gyroscope-tDCS brain machine interface system for early management of driver drowsiness. IEEE Trans. Hum.-Mach. Syst. 2017, 48, 50–62. [Google Scholar] [CrossRef]
- Ho, C.; Spence, C. Olfactory facilitation of dual-task performance. Neurosci. Lett. 2005, 389, 35–40. [Google Scholar] [CrossRef]
- Dozio, N.; Maggioni, E.; Pittera, D.; Gallace, A.; Obrist, M. May I Smell Your Attention: Exploration of Smell and Sound for Visuospatial Attention in Virtual Reality. Front. Psychol. 2021, 12, 671470. [Google Scholar] [CrossRef]
- Angelucci, F.L.; Silva, V.V.; Dal Pizzol, C.; Spir, L.G.; Praes, C.E.; Maibach, H. Physiological effect of olfactory stimuli inhalation in humans: An overview. Int. J. Cosmet. Sci. 2021, 36, 117–123. [Google Scholar] [CrossRef]
- Hongratanaworakit, T.; Buchbauer, G. Human behavioral and physiological reactions to inhalation of sweet orange oil. In Proceedings of the III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 5: Quality, Efficacy, Safety, Processing and Trade in Medicinal 679, Chiang Mai, Thailand, 3–7 February 2003; pp. 75–81. [Google Scholar]
- Lwin, M.O.; Malik, S.; Neo, J.R. Effects of scent and scent emission methods: Implications on workers’ alertness, vigilance, and memory under fatigue conditions. Environ. Behav. 2021, 53, 987–1012. [Google Scholar] [CrossRef]
- Wintersberger, P.; Dmitrenko, D.; Schartmüller, C.; Frison, A.K.; Maggioni, E.; Obrist, M.; Riener, A. S (C) ENTINEL: Monitoring automated vehicles with olfactory reliability displays. In Proceedings of the 24th International Conference on Intelligent User Interfaces 2019, Marina del Ray, CA, USA, 16–20 March 2019; pp. 538–546. [Google Scholar]
- Dmitrenko, D.; Maggioni, E.; Brianza, G.; Holthausen, B.E.; Walker, B.N.; Obrist, M. Caroma therapy: Pleasant scents promote safer driving, better mood, and improved well-being in angry drivers. In Proceedings of the 2020 Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–13. [Google Scholar]
- Schneider, R. Natural Odor Inhalers (AromaStick®) Outperform Red Bull® for Enhancing Cognitive Vigilance: Results From a Four-Armed, Randomized Controlled Study. Percept. Mot. Ski. 2021, 128, 135–152. [Google Scholar] [CrossRef]
- Mancini, M.; Cherubino, P.; Cartocci, G.; Martinez, A.; Borghini, G.; Guastamacchia, E.; di Flumeri, G.; Rossi, D.; Modica, E.; Menicocci, S.; et al. Forefront users’ experience evaluation by employing together virtual reality and electroencephalography: A case study on cognitive effects of scents. Brain Sci. 2021, 11, 256. [Google Scholar] [CrossRef]
- Lohani, M.; Payne, B.R.; Strayer, D.L. A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving. Front. Hum. Neurosci. 2019, 13, 00057. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Q.; Lee, S. Gaze and Eye Tracking: Techniques and Applications in ADAS. Sensors 2019, 19, 5540. [Google Scholar] [CrossRef] [PubMed]
- Larue, G.S.; Rakotonirainy, A.; Pettitt, A.N. Predicting Reduced Driver Alertness on Monotonous Highways. IEEE Pervasive Comput. 2015, 14, 78–85. [Google Scholar] [CrossRef]
- Seet, M.; Dragomir, A.; Harvy, J.; Thakor, N.; Bezerianos, A. Objective assessment of trait attentional control predicts driver response to emergency failures of vehicular automation. Accid. Anal. Prev. 2022, 168, 106588. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.; Wang, H.; Dragomir, A.; Thakor, N.V.; Bezerianos, A.; Li, J. Regression Based Continuous Driving Fatigue Estimation: Towards Practical Implementation. IEEE Trans. Cogn. Dev. Syst. 2019, 12, 323–331. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Hart, S.G. NASA-Task Load Index (NASA-TLX); 20 Years Later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Fransisco, CA, USA, 16–20 October 2006; Volume 50, pp. 904–908. [Google Scholar]
- Draheim, C.; Tsukahara, J.S.; Martin, J.D.; Mashburn, C.A.; Engle, R.W. A toolbox approach to improving the measurement of attention control. J. Exp. Psychol. Gen. 2021, 150, 242–275. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M. A An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Seet, M.; Harvy, J.; Bose, R.; Dragomir, A.; Bezerianos, A.; Thakor, N.V. Differential impact of autonomous vehicle malfunctions on human trust. IEEE Trans. Intell. Transp. Syst. 2020, 11, 548–557. [Google Scholar] [CrossRef]
- Abbasi, N.I.; Harvy, J.; Bezerianos, A.; Thakor, N.V.; Dragomir, A. Topological re-organisation of the brain connectivity during olfactory adaptation-an eeg functional connectome study. In Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 635–638. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P. Odor perception and beliefs about risk. Chem. Senses 1996, 21, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Sun, Z.; Yan, X.; Gao, X.; Lv, Q.; Wei, Y. Differences in olfactory habituation between orthonasal and retronasal pathways. J. Physiol. Sci. 2021, 71, 36. [Google Scholar] [CrossRef]
- Abbasi, N.I.; Bose, R.; Bezerianos, A.; Thakor, N.V.; Dragomir, A. EEG-based classification of olfactory response to pleasant stimuli. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5160–5163. [Google Scholar]
- Chaichanasittikarn, O.; Jiang, M.; Seet, M.; Saba, M.; Hamano, J.; Dragomir, A. Wearable EEG-Based Classification of Odor-Induced Emotion. In Proceedings of the 11th International IEEE/EMBS Conference on Neural Engineering (NER), Baltimore, MD, USA, 24–27 April 2023; pp. 1–4. [Google Scholar]
- Muller, K.R.; Anderson, C.W.; Birch, G.E. Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 165–169. [Google Scholar] [CrossRef]
- Sadaghiani, S.; Kleinschmidt, A. Brain networks and α-oscillations: Structural and functional foundations of cognitive control. Trends Cogn. Sci. 2016, 20, 805–817. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Fan, J.; Byrne, J.; Worden, M.S.; Guise, K.G.; McCandliss, B.D.; Fossella, J.; Posner, M.I. The Relation of Brain Oscillations to Attentional Networks, The relation of brain oscillations to attentional networks. J. Neurosci. 2007, 27, 6197–6206. [Google Scholar] [CrossRef]
- Rohenkohl, G.; Nobre, A.C. Alpha oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 2011, 31, 14076–14084. [Google Scholar] [CrossRef]
- Wascher, E.; Arnau, S.; Gutberlet, I.; Karthaus, M.; Getzmann, S. Evaluating pro-and re-active driving behavior by means of the EEG. Front. Hum. Neurosci. 2018, 12, 205. [Google Scholar] [CrossRef]
- Simpson, T.G.; Rafferty, K. EEG Correlates of Driving Performance. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 232–247. [Google Scholar] [CrossRef]
- Wascher, E.; Getzmann, S.; Karthaus, M. Driver state examination—Treading new paths. Accid. Anal. Prev. 2016, 91, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.L.; Roberts, D.M.; Barragan, D.; Lee, J.D.; Lerner, N.; Higgins, J.S. Detecting and quantifying mind wandering during simulated driving. Front. Hum. Neurosci. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Sinding, C.; De Wijk, R.A.; Hummel, T. Habituation and adaptation to odors in humans. Psychol. Behav. 2017, 177, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Underwood, G.; Crundall, D.; Chapman, P. Driving simulator validation with hazard perception. Transp. Res. Part F Traffic Psychol. Behav. 2017, 14, 435–446. [Google Scholar] [CrossRef]
- Ieracitano, C.; Morabito, F.C.; Hussain, A.; Mammone, N. A Hybrid-Domain Deep Learning-Based BCI For Discriminating Hand Motion Planning From EEG Sources. Int. J. Neural Syst. 2021, 31, 2150038. [Google Scholar] [CrossRef] [PubMed]
Graph Metrics | Mathematical Formula |
---|---|
Nodal Degree () | = |
Nodal Betweenness () | = |
Nodal Efficiency () | = |
Nodal Clustering Coefficient () | = |
EEG Metric/ Channel Location | Delta Band [1–4] Hz | Theta Band [4–8] Hz | Alpha Band [4–8] Hz | Beta Band [13–30] Hz | Gamma Band [30–40] Hz |
---|---|---|---|---|---|
Nodal Degree | Fp1, Fp2, C3, Cz, P8, T4 | Fp2, F7, F8, F4, P7, T3 | F3, C4 | Fp1, F4, P8, Pz, P4 | P7 |
Nodal Betweenness | Fp1, Cz, C4, P8, T3 | Fp2, F7 | F3, C4, P8, Pz, O1 | Fp1, P8, Pz, P4 | Fp1, C4, P7 |
Nodal Efficiency | Fp1, Fp2, F8, C3, Cz, P8, T4 | F7, F8, F4, Cz, P7, T3 | F3 | Fp1, F4, Pz, P4 | F8, Pz, P4, O2 |
Nodal Clustering Coefficient | F7, C3, Pz, P3 | Cz | C3, P3 | Fp2, C3 | F3 |
Power Spectral Density | F3, F8, P4, O2, T4 | F3, F8, P4, O1, T4 | Fp1, F7, F3, F8, Fz, F4, C3, Pz, P4, T4 | Fp1, F7, F3, F8, Fz, F4, Cz, C4, P4 | F7, F3, Fz, F4, C3, Cz, C4, P3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Chaichanasittikarn, O.; Seet, M.; Ng, D.; Vyas, R.; Saini, G.; Dragomir, A. Modulating Driver Alertness via Ambient Olfactory Stimulation: A Wearable Electroencephalography Study. Sensors 2024, 24, 1203. https://doi.org/10.3390/s24041203
Jiang M, Chaichanasittikarn O, Seet M, Ng D, Vyas R, Saini G, Dragomir A. Modulating Driver Alertness via Ambient Olfactory Stimulation: A Wearable Electroencephalography Study. Sensors. 2024; 24(4):1203. https://doi.org/10.3390/s24041203
Chicago/Turabian StyleJiang, Mengting, Oranatt Chaichanasittikarn, Manuel Seet, Desmond Ng, Rahul Vyas, Gaurav Saini, and Andrei Dragomir. 2024. "Modulating Driver Alertness via Ambient Olfactory Stimulation: A Wearable Electroencephalography Study" Sensors 24, no. 4: 1203. https://doi.org/10.3390/s24041203
APA StyleJiang, M., Chaichanasittikarn, O., Seet, M., Ng, D., Vyas, R., Saini, G., & Dragomir, A. (2024). Modulating Driver Alertness via Ambient Olfactory Stimulation: A Wearable Electroencephalography Study. Sensors, 24(4), 1203. https://doi.org/10.3390/s24041203