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Abstract: Optical remote sensing images have a wide range of applications but are often affected
by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become
indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to
climate change, plays a crucial role in the East Asian water cycle and regional climate due to its
snow cover. However, the rich ice and snow resources, rapid snow condition changes, and active
atmospheric convection in the plateau as well as its surrounding mountainous areas, make optical
remote sensing prone to cloud interference. This is particularly significant when monitoring snow
cover changes, where cloud removal becomes essential considering the complex terrain and unique
snow characteristics of the Tibetan Plateau. This paper proposes a novel Multi-Scale Attention-based
Cloud Removal Model (MATT). The model integrates global and local information by incorporating
multi-scale attention mechanisms and local interaction modules, enhancing the contextual semantic
relationships and improving the robustness of feature representation. To improve the segmentation
accuracy of cloud- and snow-covered regions, a cloud mask is introduced in the local-attention
module, combined with the local interaction module to modulate and reconstruct fine-grained details.
This enables the simultaneous representation of both fine-grained and coarse-grained features at
the same level. With the help of multi-scale fusion modules and selective attention modules, MATT
demonstrates excellent performance on both the Sen2_MTC_New and XZ_Sen2_Dataset datasets.
Particularly on the XZ_Sen2_Dataset, it achieves outstanding results: PSNR = 29.095, SSIM = 0.897,
FID = 125.328, and LPIPS = 0.356. The model shows strong cloud removal capabilities in cloud- and
snow-covered areas in mountainous regions while effectively preserving snow information, and
providing significant support for snow cover change studies.
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1. Introduction

In recent years, remote sensing imagery has garnered widespread attention due to its
promising applications in fields such as earth observation and environmental monitoring [1].
However, on average, 66% of the earth’s sky is covered by clouds annually [2]. Clouds
seriously affect the quality of optical remote sensing images, which not only obscures the
surface information but also destroys the spectral and texture information of the ground
surface, which greatly reduces the reliability of remote sensing images and increases
the difficulty of data processing [3]. If imagery is discarded, it will result in wasted
data and even no imagery data available in some cloudy areas. Therefore, in order to
improve the availability of optical remote sensing image data, it is a necessary and effective
preprocessing method to reconstruct the cloud coverage area. In high-altitude regions,
however, the alternating coverage of clouds and snow poses additional challenges. Snow
often exhibits similar reflectance characteristics and texture information to clouds, which
significantly impairs the accuracy of cloud detection, making cloud removal in these areas
more challenging than in other scenarios. To better understand the challenges of cloud
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removal on the Tibetan Plateau and the progress in research, it is essential to recognize
the limitations of single-temporal cloud removal methods when dealing with images
that have extensive cloud coverage. While these methods can generate relatively stable
cloud-free images from individual cloud-covered images, the lack of sufficient ground
information in cases of widespread cloud coverage makes it more difficult to produce
cloud-free imagery. In such situations, the performance of single-temporal cloud removal
methods is constrained, making them inadequate for practical applications. In recent
years, researchers have been exploring the use of multi-temporal satellite images for cloud
removal and have achieved significant results. Multi-temporal cloud removal methods
utilize multiple cloud-covered images from the same location as input, integrating spatial
and temporal information to generate cloud-free images. For example, Li et al. proposed a
convolutional neural network (CNN)–based autoencoder for cloud removal using multi-
temporal satellite images [4]. Jin et al. approached the cloud removal problem as a
conditional image synthesis challenge and proposed a spatiotemporal generative network
for cloud removal [5].

The Tibetan Plateau, known as one of the regions with the highest snowfall in the
world, presents significant challenges for cloud removal due to its complex climatic features
and geographical conditions. With an average elevation exceeding 4000 m, the Tibetan
Plateau is the largest and highest plateau globally, and its sensitivity to climate change
makes monitoring snow cover changes crucial [6]. As the “Water Tower of Asia”, the
melting snow on the Tibetan Plateau provides water for major rivers such as the Yangtze,
Yellow, Yarlung Tsangpo, Indus, and Ganges. However, traditional field surveys and mete-
orological observation methods are difficult to implement in this region, complicating the
accurate measurement of snow changes. In this context, satellite remote sensing technology
has gradually become the mainstream method for snow monitoring due to its advantages
of continuity, broad coverage, high temporal resolution, and reliable data quality, effectively
compensating for the limitations of ground-based meteorological station data. However,
the annual average cloud cover over the Tibetan Plateau reaches a maximum of approxi-
mately 87% [7] and the high spectral similarity between clouds and snow further increases
the classification errors in the images. These two factors significantly hinder the utilization
and analysis of remote sensing images, particularly when clouds and snow are mixed,
making cloud removal from the imagery especially challenging.

2. Related Works
2.1. Cloud and Snow Segmentation

Cloud detection in cloud- and snow-covered areas is a crucial step in the cloud re-
moval process. By identifying the percentage of cloud cover, cloud detection can serve
as an important indicator of image quality and data availability [8]. It helps extract use-
ful data, enhances the storage and transmission efficiency of image data, and provides
essential products during the preprocessing stage, maximizing the utility of remaining
cloud-free areas and improving the applicability of images, especially in cloud- and snow-
covered [9]. However, currently, only a few satellite products (such as Landsat, MODIS,
and Sentinel-2) provide corresponding cloud mask products [10]. Therefore, developing
fast and straightforward cloud detection algorithms is particularly important.

Over the past few decades, various cloud detection methods have been developed [11].
These methods typically rely on comparisons between clouds and background surfaces
within a specified target area. Comparisons can be based on differences in single spectral
bands, spectral combinations, or the temporal and spatial characteristics of clouds. Addi-
tionally, they may involve a combination of the spectral, spatial, and texture features of
clouds [12].

Deep learning methods have achieved significant success in cloud detection, greatly
enhancing the accuracy and generalization performance of cloud detection. Deep Convolu-
tional Neural Networks (DCNNs) have been widely applied in cloud detection due to their
ability to automatically extract high-level features from images [13]. Various metrics have
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been introduced in DCNNs to improve accuracy. For instance, spatial pyramid pooling
mechanisms [14,15], multi-level feature fusion structures [16], attention mechanisms [17,18],
physical models [19], GANs [20], and deep supervision mechanisms [21] have all been
proposed for cloud detection. Furthermore, some DCNNs have been combined with re-
mote sensing data related to geographic attributes [22], spatial features [23], and object
element properties [24] to enhance cloud detection performance. Liu et al. used spectral
observations from the Advanced Himawari Imager (AHI) for cloud detection based on
machine learning (ML), introducing three different surface processing models to eliminate
the impact of surface conditions on cloud detection [25] Shang et al. developed a cloud
detection algorithm for the Cloud, Atmospheric Radiation, and Renewable Energy (CARE)
dataset, which employs a threshold-based test and an additional Extremely Randomized
Trees (ERT) model to detect all-day clouds in the full-disk measurements from Himawari-
8 [26]. These methods have shown advanced results on challenging cloud detection or
cloud-snow separation datasets.

Cloud detection is an essential step for obtaining accurate and complete ground
images by removing cloud layers. However, achieving high-quality, cloud-free images is
not solely dependent on effective cloud detection. Data fusion techniques play a crucial
role in effectively inferring ground images under multi-cloud conditions. These techniques
can integrate multiple remote sensing images to compensate for the information gaps
caused by cloud contamination, thereby improving the overall quality and accuracy of
the reconstructed images. Despite recent advancements in satellite imaging technology,
obtaining high-quality, cloud-free images for specific times and regions remains a challenge.
To address this challenge, this paper proposes a method that combines cloud detection
with data fusion techniques to effectively infer ground images under cloudy conditions,
ultimately improving the quality and accuracy of the reconstructed images.

2.2. Cloud Removal

To reduce the impact of clouds, significant efforts have been made in the field of
cloud removal. The reconstruction of cloud-free images is essentially an information
reconstruction process, and existing cloud removal methods can be categorized into three
types based on the source of auxiliary information: spatial-based, multi-temporal, and
multi-source methods [3].

Spatial-based methods utilize information from cloud-free areas within cloud images
to restore pixel values in cloud shadow regions. The most basic form of these methods is
interpolation [4]. For example, Meng et al. [27] used a feature dictionary learned from cloud-
free areas to restore missing information patch by patch through sparse representation.
When the cloud area is small, spatial-based methods can effectively remove clouds without
relying on additional images, making them simple and efficient. However, as the area of
cloud obstruction increases, the performance of spatial-based methods declines significantly,
or they may even fail.

Multi-source methods use images obtained from one or more other sensors as auxiliary
images for cloud removal. A series of studies have explored the potential of using Synthetic
Aperture Radar (SAR) data as auxiliary data for cloud removal in optical images, as SAR
data can penetrate cloud cover to obtain ground information beneath the clouds [28]. For
instance, DSen2-CR utilized deep residual neural networks to predict the target cloud-
free optical image by integrating Sentinel-1 SAR images and Sentinel-2 optical images.
The Simulation Fusion GAN [9] combined SAR and damaged optical images with two
generative adversarial networks to obtain cloud-free results for simulated GaoFen-2 multi-
cloud data and real multi-cloud Sentinel-2 data. GLF-CR [29] integrated the contributions
of Sentinel-1 SAR images in recovering reliable texture details and maintaining global
consistency to reconstruct the occluded areas of Sentinel-2 optical images. With the rapid
development of deep learning, the multi-source data fusion approach for cloud removal
demonstrates powerful feature extraction capabilities, leading some researchers to apply
CNNs to cloud removal tasks and develop SAR-based image fusion methods [30]. These
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methods significantly improve the utilization of information from SAR images while
enhancing cloud removal effectiveness.

Multi-temporal methods utilize cloud-free images captured by the same sensor at
nearby times as sources for reconstructing the cloud-obscured areas. With advances in
remote sensing technology, satellites can capture images of the same location at shorter
time intervals. This progress allows for the easy acquisition of multiple satellite images
taken simultaneously, providing ample data support for designing effective cloud removal
methods. Generally, cloud positions vary over time, and areas obscured by clouds at the
same geographical location do not completely overlap at different moments. By leveraging
spectral and temporal information, existing multi-temporal cloud removal methods inte-
grate multiple mixed-cloud images to generate detailed cloud-free images. For instance,
Sarukkai et al. [31] utilized a spatio-temporal generator network to approximate cloud-free
Sentinel-2 images while capturing correlations among multi-temporal cloud images over
the region. Huang et al. [32] proposed a Cloud Transformer generative adversarial network,
which took three temporal cloud images as input and generated the corresponding cloud-
free images, designed a feature extractor to maintain the weight of the cloud-free region,
while reducing the weight of the multi-cloud region, and passed the extracted features
to the conformer module to find the most critical representation. MCGAN [33] extended
Conditional GANs (CGANs) from RGB images to multi-spectral images for cloud removal.
Spa-GAN [34] introduced a spatial attention mechanism in GANs to improve information
recovery in cloud regions, resulting in higher-quality cloud-free images. AE [35] adopted a
convolutional autoencoder trained on multi-temporal remote sensing datasets to remove
clouds. STNet [22] integrated cloud detection techniques and fused spatiotemporal features
from multiple cloud images for cloud removal. CTGAN [32] introduced a transformer-
based GAN for cloud removal. PMAA [36] implemented efficient cloud removal using a
progressive autoencoder. Cloud removal is fundamentally an image recovery task, where
complete high-quality images are reconstructed from low-quality or degraded images.

Despite these methods’ limitations, which may not maintain the spatial continuity of
objects in the recovered images, multi-temporal complementary methods have proven to
be effective for removing thick clouds and have been widely applied across various appli-
cations. However, further research is needed to enhance the robustness and applicability of
these methods in the presence of significant spectral differences and to ensure spatial conti-
nuity in the recovered images. To address these issues, we proposed a high-performance
progressive multi-scale attention autoencoder (MATT). This model effectively captures
fine-grained and coarse-grained features across different scales. In the cloud removal
model, we introduced a multi-scale fusion module, generating cloud mask data during the
network’s operation, and combining cloud-covered images to produce cloud heat maps
that enhance the ability to distinguish between land cover types. Additionally, the model
reconstructed fine-grained image structures from the extracted local and global features.
Experimental results indicate that this method exhibits significant advantages in both
accuracy and practical effectiveness, providing an innovative solution to the cloud removal
problem on the Tibetan Plateau. This enhancement facilitates better monitoring of snow
cover changes and delivers accurate data support for regional water resource management.

3. Methodology

As shown in Figure 1, cloud removal from multi-temporal and multi-source remote
sensing images mainly involves obtaining cloud-free images from multiple images. We
denote the three cloudy satellite images as

{
Xi ∈ R4×H×W

∣∣i = 1, 2, 3
}

here H and W rep-
resent the height and width of the images, respectively, and ‘4’ indicates four spectral
channels (RGB and infrared bands). y ∈ R4×H×W represents the cloud-free image at the
current location. We assume that for any given location Xi changes slowly over time, and
the cloud coverage within the images varies. To detect cloud-covered areas, we compute
the cloud mask using multi-scale fusion, incorporating attention mechanisms to accurately
differentiate between cloud-covered and snow-covered regions.
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Figure 1. A brief explanation of the input and output for cloud detection and removal data is as
follows: three cloudy remote sensing images from different periods, their corresponding cloud-snow
segmentation masks, and a cloud-free reference image are processed through the cloud removal
model to generate reconstructed cloud-free images.

Given the input of multi-temporal satellite images {Xi|i = 1, 2, 3}, we first preprocess
them using a weight-sharing approach consisting of several convolutional layers with
residual connections, which serves as the input to the cloud removal autoencoder. Next,
the encoder in the cloud removal autoencoder utilizes a generalized representation of
multi-granular resolution features, global and local multi-scale feature fusion, and efficient
partitioning of multi-task information flow to extract features from both cloudy and cloud-
free regions. Finally, based on the multi-scale fused features, we obtain global attention,
and in the decoder, we connect the local and global features. With sufficient supplementary
data, we can recover the cloud-covered areas and reconstruct the cloudy images.

3.1. Cloud and Snow Segmentation Module

The structure of the Cloud and Snow Segmentation Module [37] is shown in Figure 2. It
consists of a feedforward stem, four feature processing modules (CF-ATT), and a projection
head. Each feature extraction module contains a multi-scale feature fusion module and
a feature extraction module, which extracts cloud and snow segmentation feature maps
through multi-task gradient flow.
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In the feature extraction module, the Multi-scale Feature Processing Module (CF-ATT)
gradually extracts the deep features of the image through downsampling, while reducing
the spatial resolution of the feature map, extracting multi-layer features at different scales,
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and improving the accuracy of cloud and snow segmentation by using the feature maps
from different scales. This module not only enhances the feature representation ability of
cloud and snow segmentation through the fusion of feature maps but also preserves the
details of cloud and snow boundaries by learning information at various scales. Specifically,
the feature extraction module first performs feature extraction on the input and then fuses
feature maps from different scales to obtain richer contextual information. These feature
maps are then processed through a series of convolutional layers to generate feature maps
for cloud and snow segmentation for subsequent tasks.

3.2. High-Performance Cloud Removal Module

We have designed a novel high-performance cloud removal model to efficiently per-
form cloud image restoration, and the image reconstruction network uses encoders and
decoders to implement the image restoration process. It takes spatiotemporal features
Uc ∈ R12×H×W as input, which are obtained by concatenating {Ui|i, 2, 3} along the channel
dimension. Through progressive refinement, the model reconstructs cloud-covered images
into cloud-free versions, enhancing image clarity and detail restoration. The cloud removal
module is described in the following sections.

3.2.1. Encoder

To maximize the retention of useful information, we employ a multi-scale feature
extraction encoder, which captures features at different resolutions to enhance information
preservation, as shown in Figure 3. By applying downsampling operations, we progres-
sively increase the depth of the image features while reducing the spatial dimensions. This
ensures a broader receptive field while retaining as much key information as possible.
Specifically, we use several 3 × 3 depthwise separable convolution layers with a stride of
2 × 2, which reduces the image size and expands the receptive field. After N downsam-
pling steps, N + 1 multi-scale features are obtained, with each feature map having different
resolutions. The equation is as follows:{

Fi ∈ Rc× H
2i ×

W
2i

∣∣∣∣i = 0, 1, 2, . . . N
}

(1)

where C represents the number of channels after each convolution layer, instance normal-
ization and the ReLU activation function are applied to ensure the stability and non-linear
representation of feature extraction. Finally, the extracted multi-scale features Fi are fed
into the multi-scale attention module for further feature fusion and processing.
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Figure 3. In the encoder, we downsample the input image N times. Then, multi-scale features are
fused through average pooling and multi-branch convolutions. Multi-scale feature fusion layer
processes the fused features to obtain global attention for modulating the multi-scale features. During
the reconstruction process, we use a local interaction module to recover more details.

3.2.2. Multi-Scale Attention Module

Considering that the semantic repair of images requires deep semantic features, and
many existing image inpainting network layers are often not deep enough, this paper
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suggests that the Multi-Scale Attention Module module is used to perform deep repair
of the network layer. The module not only realizes the fusion of features obtained by
convolution with different expansion rates but also realizes the fusion of shallow features
and deep features, so as to ensure that the shallow feature information of the undamaged
part of the image will not be lost. This paper then uses the self-attention mechanism and
Selective Attention in the network. Multi-Scale Attention Module is introduced into the
encoder: (1) multi-scale extraction and fusion; (2) Convolution-Self-Attention Block; and (3)
Selective Attention.

Traditional encoder-decoder architectures often suffer from information loss, especially
during global multi-scale feature interactions. To solve this problem, we introduce multi-
scale feature extraction and fusion, as shown in Figure 4, to enhance the model’s image
reconstruction ability in areas where the boundary between cloud and snow is not clear.
By leveraging the complementary strengths of multi-scale features, the model effectively
resolves ambiguities in cloud-snow boundaries, ensuring precise differentiation of ground
objects, and thereby improving the quality and completeness of image reconstruction.
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The key focus of multi-scale feature extraction lies in the hierarchical analysis of
information at different scales, ensuring that the model can comprehensively capture both
the detailed features and overall structure of the scene. Through a multi-branch feature
extraction module, convolutional kernels with different receptive fields are dedicated to
capturing global scene information and local fine-grained textures. For instance, large-scale
convolutional kernels or dilated convolutions primarily focus on the overall distribution
and morphological characteristics of cloud- and snow-covered areas, while small-scale
convolutional kernels specialize in accurately locating boundaries, textures, and other
intricate details. Additionally, by incorporating feature mappings from various receptive
fields, the model achieves a comprehensive interpretation of the input imagery, providing
diversity and robustness for subsequent feature processing and image reconstruction. This
process aims to enhance the model’s ability to represent image features across different
scales without directly performing feature fusion.

Multi-scale feature fusion is a key operation in the reconstruction of images with
cloud- and snow-covered regions. Integrating features extracted from various receptive
fields enables a comprehensive analysis and precise reconstruction of cloud and snow
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regions. First, a multi-branch structure is utilized to extract features from input images. The
global branch employs dilated convolutions to capture large-scale contextual information,
highlighting the overall distribution of cloud- and snow-covered areas. Meanwhile, the
local branch focuses on edges and textures using standard convolution kernels, aiding in
the localization of boundaries and intricate features. Furthermore, through the adaptive
fusion of multi-scale features, the model can balance the importance of global and local
information based on the morphological characteristics of clouds and snow, optimizing the
representation of image content. During the fusion phase, a combination of feature concate-
nation and channel compression effectively integrates multi-branch features, enhancing
the model’s semantic understanding and detail restoration capabilities for cloud and snow
regions. This process not only improves the model’s perception of complex scenes with
cloud and snow coverage but also significantly enhances the accuracy and completeness of
image reconstruction.

In practice, the features of each branch in the F-Unit are first transformed using a
standard 3 × 3 convolution, generating feature mappings at different scales. In this process,
convolution operations use rotating kernels, where parameters ω and ρ represent the
weight vector and bias vector of the convolution, respectively. The F-Unit shows the
transformed structure of the branches.

Next, the three parallel 3 × 3 convolution kernels in the F-Unit are further fused
and transformed into a single 3 × 3 convolution kernel, illustrating the fusion process of
the three units in F-Unit, and showing the convolution operations in the reparametrized
CF-Unit. Finally, by loading the parameters ϕ and into the 3 × 3 convolution of the CF-Unit,
the lossless reparameterization process of the multi-scale feature fusion unit is completed,
further enhancing the model’s ability to capture multi-scale features.

The specific calculation formula is as follows:

Fu = F − Unit(1 × 1Conv, 3 × 3Conv, BN, Identitly) (2)

F′
u = F − Unit′

(
3 × 3Conv′1, 3 × 3Conv′2, 3 × 3Conv′3

)
(3)

FU= F′′
u = CF − Unit(3 × 3Conv′′ ) (4)

Unlike CNNs, which only focus on local information, Transformer utilizes a self-
attention mechanism to compute dependencies over a larger area, as shown in Figure 5,
which is considered a key reason why it is superior to CNNs. However, previous research
has shown that visual Transformers tend to extract local information in the shallow layers
while capturing broader information in the deeper layers. This phenomenon indicates
that using self-attention in the shallow layers is ineffective, as attempting to compute
dependencies over larger ranges can lead to redundant calculations. Given the challenges
in acquiring large-scale remote sensing datasets for cloud removal, minimizing redundant
computations and parameters is essential to prevent overfitting, particularly when working
with small to medium-sized datasets. To address this, we introduce self-attention in the
deeper layers to effectively encode spatial information and capture long-range dependen-
cies. To strike a balance between performance and efficiency, we implement a simplified
self-attention mechanism through a convolutional modulation operation, referred to as
the Convolution-Self-Attention Block (C-SA). This operation employs larger convolution
kernels to avoid the time-consuming and complex issues associated with traditional atten-
tion matrix calculations, thereby enhancing the efficiency and performance of the network.
Through this approach, we aim to reduce computational overhead while extracting features,
enabling the model to better capture global information and contextual relationships in
the cloud removal task, ultimately improving the cloud removal effect and the model’s
generalization ability.

Fk = FU+αW3(DWConvk×k(W1FU),⊙W2FU) (5)

Fg = Fk + βV2(V1Fk + DWConvk×k(V1Fk)) (6)
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where Conv represents a common 1 × 1 convolution, and DWConv represents a k × k deep
convolution. In fact, k is set to equal to 3 and W is the corresponding linear transformation.
W1, W2, and W3 are linear layers, α are learnable parameters, and DWConvk×k represents
k × k deep convolution. Then, we add a residual connection after self-attention to reduce
information loss. Self-attention is followed by a feedforward network (FFN), which consists
of a deeply separable convolutional layer and two linear layers. V1 and V2 are linear layers,
and β are learnable parameters. V1 and V2 are linear layers, and β are learnable parameters.
In summary, by processing a transformer layer, we get a feature Fg with global information.
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We use global attention Fg to perform adaptive recalibration on the input features Fi.
The core idea behind this mechanism is that the information extracted by different layers of
the neural network has distinct characteristics: earlier layers capture rich low-level texture
features, while deeper layers extract more abstract and semantic high-level information.
To effectively integrate these features, we first upsample the global attention feature Fg
using nearest neighbor interpolation so that it has the same spatial dimensions as Fi. This
step ensures consistency and comparability of the information. Subsequently, we apply an
affine transformation.

F′
i = φ

(
σ
(
Z1

(
Fg
)))⊙

Z2(Fi) + φ
(
Z3

(
Fg
))

(7)

to obtain the feature representation
{

F′
i ∈ Rc× H

2i ×
W
2i

∣∣∣∣i = 0, . . . , N
}

, where Z1, Z2, Z3 are

linear layers, σ denotes the Sigmoid activation function, and φ represents the nearest
neighbor interpolation.

3.2.3. Decoder

In our model, the global feature Oi has a large receptive field, capable of containing
rich high-level semantic information. In contrast, the local feature F′

i+1 primarily provides
low-level texture information but has a relatively small receptive field. Therefore, to
effectively fuse these two types of features, we designed a local interaction module as the
core component of the decoder.

The primary task of this local interaction module is to progressively restore the image
resolution by utilizing the previously modulated global feature Oi and the local feature F′

i+1
to generate a more refined output. Specifically, we first perform convolution modulation
on the global feature Oi to enhance its ability to model local information. Then, we use the
upsampled global feature as weights to obtain more robust local features.

On this basis, we concatenate the convolution-modulated Oi with the local feature F′
i+1,

generating a refined feature representation that contains both global and local information.
This process is implemented through three depth convolution layers (D1, D2, D3), with
details such as normalization layers omitted. Finally, the processed feature map will be se-
lected as the output of the current cloud removal model, ensuring that the output image has
a higher resolution and richer feature expression capability. This design not only improves
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the model’s expressive power but also effectively combines information from different
levels, thereby enhancing the accuracy and robustness of the cloud removal process.

3.3. Loss Function

To optimize the cloud removal network and enhance the model’s cloud removal
capabilities for generating high-fidelity cloud-free images, we calculate the L1 loss between
the generated cloud-free images and the ground truth to align their divergences.

ΓL1(F) = ||y − F(x)||1 (8)

Let x represent the multi-temporal cloudy images, F represent the cloud removal
model, y represent the ground truth, and F(x) represent the estimated cloud-free image.

4. Experiments
4.1. Data

To validate the effectiveness of the model and its components, we conducted experi-
ments using a widely recognized dataset as well as a self-constructed dataset.

Sen2_MTC_New: This dataset [36] is created from publicly available Sentinel-2 images and
contains approximately 50 non-overlapping tiles. Each tile consists of about 70 pairs of cropped
256 × 256 pixel patches, with three cloudy images corresponding to one cloud-free image. The
number of channels C is 4 (RGB and infrared), and the pixel values range from 0 to 10,000.

XZ_Sen2_Dataset: To evaluate the model’s capability to remove clouds and snow
in high-altitude regions, we selected data from the Nyingchi area of Tibet. Each dataset
comprises three temporally close cloudy images and a cloud-free reference image, as
shown in Figure 6. Due to the research objective, the selected data specifically features
mixed coverage of clouds and snow in high-altitude areas. This dataset includes 16 non-
overlapping remote sensing images, each cropped into 1740 patches of 256 × 256 pixels,
with three cloudy images corresponding to one cloud-free image. The number of channels
C is 4 (RGB and infrared). As shown in Figure 3, the dataset includes Sentinel-2 images,
featuring the 10 m resolution bands of Sentinel-2, including Bands B2, B3, B4, and B8, with
all band values clipped to [0, 10,000].
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cloud amounts.



Sensors 2024, 24, 7848 11 of 20

4.2. Implementation Details

To facilitate the reproducibility of experiments, this section provides a detailed overview
of the hyperparameter configurations used during training, as well as the metrics employed
to evaluate the experimental results.

4.2.1. Training Settings

Initially, we normalize all images to the range of [−1, 1]. Multiple cloudy images are
then concatenated along the channel dimension and passed through several bottleneck
layers composed of convolutions for feature extraction. The downsampling and upsam-
pling counts for both the encoder and decoder are set to 4, while the number of channels
in the hidden layers is configured to 32. During the training phase, we employ the Adam
optimizer, with an initial learning rate of 5 × 10−4 and a weight decay of 1 × 10−5. To
manage learning rates effectively, we utilize cosine decay [23] for scheduling. The training
process spans 120 epochs with a batch size of 4, and the model yielding the best Structural
Similarity Index Measure (SSIM) on the validation set is selected for testing on the test set.

The experiments are conducted on an NVIDIA GeForce RTX 3090 GPU graphics card
paired with an Intel Core i7 quad-core processor, running on a Windows 10 operating
system. The deep learning framework used is PyTorch, and the program is implemented in
Python 3.9.

4.2.2. Evaluation Metrics

In all experiments, we report the Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index Measure (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and
Fréchet Inception Distance (FID) for the test set, in order to assess the quality of the gener-
ated cloud-free images. It is important to note that PSNR and SSIM measure differences
between images on a pixel basis, while FID and LPIPS evaluate differences based on deep
feature vectors.

Peak Signal-to-Noise Ratio (PSNR) is a traditional Image Quality Assessment (IQA)
metric, where higher PSNR values typically indicate higher image quality. Equation (9) can
be defined as follows:

PSNR = 10×log10

(
MAX2

MSE

)
(9)

MSE =
∑N

i=1

(
yi −

∧
yi

)2

N
(10)

where yi and ŷi are the actual and simulated values for the i-th pixel, and N is the number
of pixels. Where MAX represents the maximum pixel value of the image, in this context,
MAX is 255. MSE is an acronym for Mean Squared Error and can be defined by Equation
(10).

The Structural Similarity Index (SSIM) measures the structural similarity between a
real image and a simulated image and is defined by Equation (11):

SSIM(x, y) =

(
2µxuy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (11)

where µx is the mean of x, µy is the mean of y, ∂x is the variance of x, ∂y is the variance of
y, ∂xy is the covariance of x and y, c1 =

(
k1L)2 and c2 = (k2L) are constants to maintain

stability, and L is the dynamic range of pixel values. The SSIM value ranges from −1 to 1,
where a value of 1 indicates identical images.

Learned Perceptual Image Patch Similarity (LPIPS) is a metric used to measure the
perceptual similarity between two images. Unlike traditional metrics such as PSNR and
SSIM, LPIPS is learned through deep learning methods and can better simulate human
visual perception. A smaller LPIPS value indicates greater similarity between the two im-
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ages. Given a reference image patch x and a noisy distorted image patch x0, the perceptual
similarity metric is formulated as follows:

d(x, x0) = ∑l
1

HlWl
∑h,w||wl ⊗

(
Λ
y

l

hw − Λ
y

l

0hw

)
||22 (12)

where d is the distance between x0 and x. Extract the feature stack from the L layers and
perform unit normalization along the channel dimension. Scale the activation channels
using the vector wl and finally, calculate the L2 distance. Then, average over the spatial
dimensions and sum over the channels.

The Fréchet Inception Distance (FID) is a metric used to evaluate the performance of
generative models, particularly in the context of Generative Adversarial Networks (GANs).
It aims to measure the difference between the distributions of generated images and real
images, indicating the quality and diversity of the generated images. A lower FID value
signifies that the generated images are closer to the distribution of real images, and thus, it
is generally considered indicative of a better generative model. The Equation is calculated
as follows:

FID = ||µr − µg||2 + Tr(∑
r
+∑

g
−2(∑

r
∑
g
)

1/2
) (13)

µr: Calculation of the Mean of Real Image Features
µg: Generating Image Feature Data
Σr: Covariance Matrix of Real Images
Σg: Covariance Matrix of Real Images
Compared to traditional image quality assessment metrics (PSNR and SSIM), FID and

LPIPS align more closely with human visual perception. Moreover, LPIPS can almost be
considered a localized version of the FID metric, as it tends to exhibit minimal variation
even when FID scores fluctuate significantly. Therefore, when LPIPS scores approach
similar values, we prioritize the FID scores for assessment.

4.3. Cloud Removal Results

In this section, we conduct experiments using images from the Sen2_MTC_New
and XZ_Sen2_Dataset datasets to evaluate the effectiveness of the proposed cloud image
reconstruction method. In most cases, as long as the local weather is not excessively cloudy,
the proposed method can effectively reconstruct the cloud-free areas of the original images.
We tested the multi-cloud image algorithm on land images from different regions. We used
three different terrains: grasslands, mountains, and fields, to assess the performance of the
cloud image algorithm across varying landscapes. All terrains were obtained from Sentinel-
2, with images composed of bands 4, 3, and 2 to display natural true color images. Despite
significant local variations in spectrum and radiation, along with the complexity of the
regions and notable elevation changes, the proposed reconstruction method demonstrated
its effectiveness, successfully recovering most of the information obscured by clouds.

As shown in Figure 7, the impact of removing thick clouds on three temporal images
in the agricultural scene is illustrated. The figure demonstrates that our method effectively
restores non-overlapping areas from different time points. However, as indicated by the
red box, the texture recovery in overlapping cloud-covered regions varies. Overall, the
restoration results of this method are more realistic and resemble the original images, with
a better restoration effect on specific details.
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Figure 7. Cloud removal experimental results in agricultural scenes. (a–c) are cloud-free images from
different time periods, (d) represents cloud-free reference images, and (e) represents decloud-free
reconstructed images. The red box indicates the key decloud-de-rebuilding area.

As shown in Figure 8, this model demonstrates the effectiveness of thick cloud removal
in green land scenes, comparing the reconstructed images with the original images. The
green land undergoes minimal change across the three time points, resulting in slight
differences in the recovery outcomes. It is evident that the restoration of water areas is
less effective, with average detail recovery capabilities. The edges of rivers appear blurred,
leading to unnatural visual textures and the loss of small details.
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Figure 8. Cloud removal experimental results in the green land scene. (a–c) are cloud-free images
from different time periods, (d) represents cloud-free reference images, and (e) represents decloud-free
reconstructed images. The red box indicates the key decloud-de-rebuilding area.

Through Figures 9 and 10, we can observe that removing clouds in mountainous areas
with complex textures and snow cover presents significant challenges. Figure 9 illustrates
the cloud removal reconstruction effect in snow-covered mountainous regions. The intricate
terrain contains a wealth of details, making it difficult to fully restore all features. The
results indicate that the repair effect is better in areas with light cloud cover, where the
mountainous texture information is well preserved. In Figure 10, depicting areas with
heavy cloud cover, as shown in the yellow box, there are issues with incomplete recovery
of the cloud-free images at different time points, leading to some loss of features and color
distortion in certain regions. However, the extent of the snow-covered areas has been
well preserved.
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(e) represents decloud-free reconstructed images. The yellow box indicates the key decloud-de-
rebuilding area.
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Figure 10. Cloud removal results in mountainous areas with heavy cloud cover and snow. (a–c) are
cloud-free images from different time periods, (d) represents cloud-free reference images, and
(e) represents decloud-free reconstructed images. The yellow box indicates the key decloud-de-
rebuilding area.

This experiment evaluated our model’s performance in cloud removal for high-altitude
snow-covered areas. By adjusting various modules within the model, we obtained cloud
mask images for cloud removal in snow-covered regions. The integration of attention
modules allowed for effective localization of most cloudy areas during the removal process,
while retaining regions with snow that are similar to clouds, facilitating subsequent studies
on changes in snow-covered areas.

5. Discussion
5.1. Contribution of This Study

We designed a series of ablation experiments to verify the effectiveness of the MATT
component. We conducted the ablation experiments on the XZ_Sen2_Dataset. Table 1
presents the results of the quantitative experiments, where we can observe that enhanc-
ing the attention on cloudy areas significantly improves the accuracy of cloud removal
in snow-covered regions of the plateau. Additionally, we explored the impact of the
multi-scale fusion module on cloud removal results. From the comparison of results in
Table 1, we found that the multi-branch fusion module yielded higher precision. This
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indicates that each of our modules is effective, demonstrating that our proposed method
has strong performance.

Table 1. Ablation study on the XZ_Sen2_Dataset. A “
√

” indicates that the component was used,
while a “×” indicates that it was not.

Multi-Scale Fusion Attation-Self
SA PSNR SSIM

Sum Multi-Branched W-SA C-SA

× × × × × 28.189 0.786
√

× × × × 28.455 0.795

×
√

× × × 28.674 0.834

×
√ √

× × 28.727 0.851

×
√

×
√

× 28.907 0.889

×
√

×
√ √

29.095 0.897

Since the proposed method is based on temporal recovery, it assumes that there are
similar or stable spectral characteristics at different time points in the target area. While
our method shows typical performance, it still exhibits certain limitations. Firstly, despite
our efforts to minimize the impact of temporal differences on the reconstructed images,
significant changes in snow-covered areas remain evident. Secondly, the reconstruction of
texture information in complex mountainous environments in plateau regions has not been
preserved with high precision. Lastly, although our method is specifically designed for
cloud removal tasks, it has not undergone comprehensive validation across multiple tasks.

5.2. Ablation Experiments
5.2.1. Multi-Scale Fusion Module

We investigated the impact of various multi-scale feature fusion methods on cloud
removal performance, as shown in Table 1. Compared to the summation operation, multi-
branch feature fusion emerged as the optimal feature fusion strategy, ultimately enhancing
PSNR by 0.219 and SSIM by 0.039. It is noteworthy that while multi-branch feature fusion
improves the accuracy of the final reconstruction, it also increases computational complexity.

5.2.2. Self-Attention

As presented in Table 1, we examined the effects of various self-attention strategies on
cloud removal performance. We compared C-MSA and W-SA (Window-Self-Attention) and
concluded that the model with the added convolutional self-attention module achieved the
best cloud removal results.

5.2.3. Selective Attention (SA)

In our study of the impact of selective attention on cloud removal performance, we
emphasized the differences between clouds and snow by overlaying the cloud mask as one
of the input layers on the cloudy images. The results indicated that employing the selective
attention module can enhance cloud removal performance. When the cloud mask module
is added as an input layer to strengthen selective attention, it improves the segmentation
of clouds and snow in the attention map. The shallow feature extraction in the network
contains some redundant information, and the selective attention mechanism effectively
filters out this useless information while enhancing useful information, resulting in more
refined feature representations. By incorporating the cloud mask layer in the selective
attention module, the generated cloud attention map for cloud and snow segmentation
becomes more accurate. Accuracy evaluation metrics indicate that the proposed method
achieves a cloud detection accuracy greater than 0.9, with low error and miss detection rates.
This level of accuracy is sufficient for reconstructing cloud-free images. It is important to
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note that detection accuracy may be influenced by cloud thickness; thicker clouds generally
result in higher accuracy.

SA enables cloud region localization. To verify the distinction capability of SA for
cloud and snow, it is evident that the added cloud mask module significantly improves
the segmentation of cloud and snow. As shown in Figure 11, the combination of attention
modules generates an attention map that successfully fits the regional distribution of clouds,
which proves the rationality of the cloud removal model.
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5.3. Comparison with State-of-the-Art Techniques

We provide a comparison of the cloud removal performance and efficiency of our pro-
posed model against existing models such as CTGAN [32], Pix2Pix [38], DENen2-CR [27],
UnCRtainTS [39], PMAA [36], AttentionGAN [40], and HS2P [41] on the Sen2_MTC_New
and XZ_Sen2_Dataset datasets. As shown in Table 2, our model consistently achieves
superior PSNR and SSIM scores, demonstrating the effectiveness of our approach. On both
benchmark datasets, the performance of our model significantly outperforms previous
models and methods.

Table 2. Quantitative comparison of cloud removal performance of MATT with existing models on
Sen2_MTC_New and XZ_Sen2_Dataset.

Method
Sen2_MTC_New XZ_Sen2_Dataset

PSNR SSIM FID LPIPS PSNR SSIM FID LPIPS

CTGAN 16.223 0.449 161.334 0.501 21.372 0.448 193.470 0.504
Pix2Pix 16.872 0.566 143.762 0.423 22.980 0.488 169.374 0.467

DSen2-CR 18.995 0.607 134.672 0.513 26.796 0.833 133.387 0.330
UnCRtainTS 19.702 0.628 118.737 0.364 26.419 0.824 138.634 0.402

PMAA 18.331 0.615 125.456 0.372 27.289 0.837 130.856 0.367
AttentionGAN 18.760 0.600 122.372 0.398 27.343 0.877 134.538 0.333

HS2P 19.642 0.686 99.876 0.319 28.052 0.862 130.279 0.336
MATT (Our) 19.767 0.688 98.407 0.315 29.095 0.897 125.328 0.356
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As shown in Figure 12, we have selected four sets of images to illustrate the effects
of different cloud removal methods and to show how our approach compares to existing
methods. We observed that our model had the highest reconstruction accuracy in high-
altitude cloud and snow cover areas compared to other models.
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Figure 12. In the case of four different levels of cloud coverage, each data set represents cloud-covered
images and cloud-free images, along with the image reconstruction results of cloud-snow covered
areas using different cloud removal methods.

MATT achieved consistent results across all evaluation metrics for cloud removal, demon-
strating the full potential of our proposed method; specifically, MATT’s PSNR = 29.095, SSIM
= 0.897, FID = 125.328, and LPIPS = 0.356. In contrast, the performance values of existing
models were significantly lower. According to Table 2, our method performed well, particu-
larly as it surpassed methods based solely on SAR (CGAN) when using SAR-optical fusion.
The possible reasons are as follows: SAR images primarily capture structural characteristics
of surfaces. Therefore, the CGAN relying solely on SAR images can restore major geometric
information but struggles to recover local color variations. The PMAA method, which
utilizes multi-temporal variations and attention mechanisms for cloud differentiation, can
remove clouds, but using only cloud images in remote sensing yields visually plausible yet
misleading information, as thick cloud layers completely obscure the surface and result
in lost information. In contrast, SAR-optical fusion methods can leverage SAR to provide
occlusion information while using cloud images for rich color and texture, leading to
better outcomes.

From the visualization results, we observed that two-step fusion methods (i.e., Sim-
Fus-GAN, DRIBs-GAN, and ours) restored more details than one-step fusion methods (i.e.,
SAR-Opt-cGAN, DSen2-CR, TF-CRNet, and GLF-CR). We explain this by stating that a
single fusion network simultaneously learns cloud segmentation, SAR-to-optical trans-
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formation, and global consistency maintenance, which have differing task characteristics,
making it challenging to ensure optimal performance across all tasks. For example, if the
conversion from SAR to optical is not well learned, the recovered texture and details will
be compromised. In contrast, two-step algorithms learn the SAR-to-optical conversion
separately, making full use of SAR information. However, they still face challenges such
as the heterogeneity between SAR and optical features and the imbalance in handling
cloud and non-cloud regions. Our method alleviates these issues and achieves higher
performance. Overall, the multi-scale progressive cloud removal model for high-altitude
snow-covered mountainous areas outperforms all existing multi-temporal cloud removal
models. Compared to existing SAR-integrated cloud removal models, MATT achieved
significant performance improvements on both datasets. These results indicate that the
MATT model excels in both accuracy and efficiency for high-altitude mountain regions
with snow and cloud cover.

5.4. Limitations and Future Works

While the proposed method for cloud removal in snow-covered areas of complex
plateau terrain still has some limitations, it demonstrates good effectiveness in removing
cloudy regions while preserving snowy areas. However, there are still several restrictions
persist. Firstly, due to the structural limitations of the model, MATT does not fully consider
the attention mechanism across different channels, as there are variations in the cloud
penetration capabilities of different spectral bands in optical images. This also contributes
to the model’s better performance in visual feature recovery. Secondly, while the model
learns global features, the concept of global features pertains to the 256 × 256 slices input
into the model, which may not accurately describe the characteristics of panoramic remote
sensing images.

In future work, we aim to extensively create training datasets tailored to different
satellite data sources and investigate data from various origins and resolutions, further
validating the generalization capability of the MATT model. Additionally, efforts should
be made to enhance the capability to differentiate clouds from snow, as well as to im-
prove the accuracy of restoration, thereby minimizing the temporal factors’ impact on
image reconstruction.

6. Conclusions

This paper addresses the substantial cloud removal errors that can occur in scenarios
where snow and clouds coexist, proposing a multi-attention progressive cloud removal
model tailored to snow-covered mountainous areas in the Tibetan Plateau. Compared to
other baselines, the integration of multi-scale fusion, global attention, and selective attention
modules significantly reduces errors in easily confusable areas. The results demonstrate
that this network achieves a cloud removal accuracy of PSNR = 29.095, SSIM = 0.897,
FID = 125.328, and LPIPS = 0.356 for high-altitude snow-covered mountainous regions.
The experiments indicate that this model is significant for establishing cloud removal
systems in practical deployments and shows promise for superior performance in large-
scale and batch-processing tasks. Moreover, due to its effectiveness and lightweight nature,
we believe the introduced modules can be seamlessly adapted to other related problems,
such as image restoration (e.g., for rain, snow, fog, and noise removal) and other generative
tasks. In the course of the study, we only studied the Nyingchi region of Tibet, which lacks
a certain representativeness and does not indicate its full applicability in other regions. At
the same time, for the de-cloud algorithm, multi-source data, such as SAR data, can be
added in the follow-up research to achieve a better de-cloud reconstruction effect.
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