Concurrent Validity and Relative Reliability of the RunScribe™ System for the Assessment of Spatiotemporal Gait Parameters During Walking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Materials and Testing
- -
- The OptoGait™ system (Optogait; Microgate, Bolzano, Italy) consists of photoelectric cells placed along two 1 m-long bars. This system detects any interruption in the light connection between the bars which are placed on the lateral edges of the treadmill and 3 mm above the ground level. Spatiotemporal gait parameters were measured for every step during the treadmill test. The data were collected and analyzed by the OptoGait software (version 1.6.4.0, Microgate, Bolzano, Italy).
- -
- The RunScribe™ system (Scribe Lab Inc., San Francisco, CA, USA) consists of a 9-axis inertial measurement unit (IMU), 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer, and was attached to the shoelace of the right leg. Once recorded, the data were downloaded from RunScribe’s website (https://dashboard.runscribe.com/runs accessed on 2 May 2024) into a csv file.
- -
- Step frequency (SF): the number of steps per minute.
- -
- Step time (ST): time between the initial contact of one foot and the subsequent initial contact of the opposite foot, in seconds.
- -
- Step length (SL): distance between the initial contact of one foot and the subsequent initial contact of the opposite foot, in meters.
- -
- Stride length (StL): distance between two consecutive initial contacts of the same foot, in meters.
- -
- Stride length % (StL%): stride length normalized with height, in percentage; dividing the stride length by the height of the subject.
- -
- Stride time (StT): time between two consecutive initial contacts of the same foot, in seconds.
- -
- Contact time (CT): time from initial contact to toe-off, in seconds.
- -
- Swing time (SwT): time from the toe-off to the initial contact, in seconds.
2.4. Statistical Analysis
3. Results
3.1. Agreement Between OptoGait™ and RunScribe™
3.2. Comparative Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marquez, D.X.; Aguiñaga, S.; Vásquez, P.M.; Conroy, D.E.; Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Sheppard, B.B.; Petruzzello, S.J.; et al. A Systematic Review of Physical Activity and Quality of Life and Well-Being. Transl. Behav. Med. 2020, 10, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Bredin, S.S.D. Health Benefits of Physical Activity. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Cicirelli, G.; Impedovo, D.; Dentamaro, V.; Marani, R.; Pirlo, G.; D’Orazio, T.R. Human Gait Analysis in Neurodegenerative Diseases: A Review. IEEE J. Biomed. Health Inform. 2022, 26, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Celik, Y.; Stuart, S.; Woo, W.L.; Godfrey, A. Gait Analysis in Neurological Populations: Progression in the Use of Wearables. Med. Eng. Phys. 2021, 87, 9–29. [Google Scholar] [CrossRef]
- Thaler-Kall, K.; Peters, A.; Thorand, B.; Grill, E.; Autenrieth, C.S.; Horsch, A.; Meisinger, C. Description of Spatio-Temporal Gait Parameters in Elderly People and Their Association with History of Falls: Results of the Population-Based Cross-Sectional KORA-Age Study. BMC Geriatr. 2015, 15, 32. [Google Scholar] [CrossRef]
- Lindemann, U. Spatiotemporal Gait Analysis of Older Persons in Clinical Practice and Research. Z. Gerontol. Geriatr. 2020, 53, 171–178. [Google Scholar] [CrossRef]
- Stanaway, F.F.; Gnjidic, D.; Blyth, F.M.; Couteur, D.G.L.; Naganathan, V.; Waite, L.; Seibel, M.J.; Handelsman, D.J.; Sambrook, P.N.; Cumming, R.G. How Fast Does the Grim Reaper Walk? Receiver Operating Characteristics Curve Analysis in Healthy Men Aged 70 and Over. BMJ 2011, 343, d7679. [Google Scholar] [CrossRef]
- DeLuca, P.A. Gait analysis in the treatment of the ambulatory child with cerebral palsy. Clin. Orthop. Relat. Res. 1991, 264, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.M.; Dennis, S.; Rethlefsen, S.; Reynolds, R.A.; Skaggs, D.L.; Tolo, V.T. The effect of preoperative gait analysis on orthopaedic decision making. Clin. Orthop. Relat. Res. 2000, 372, 217–222. [Google Scholar] [CrossRef]
- Lofterød, B.; Terjesen, T.; Skaaret, I.; Huse, A.B.; Jahnsen, R. Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: Comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop. 2007, 78, 74–80. [Google Scholar] [CrossRef]
- Mason, R.; Pearson, L.T.; Barry, G.; Young, F.; Lennon, O.; Godfrey, A.; Stuart, S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med. 2023, 53, 241–268. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-S.; Jang, S.-H.; Cho, J.-S.; Kim, M.-J.; Lee, H.D.; Lee, S.Y.; Moon, S.-B. Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems. Ann. Rehabil. Med. 2018, 42, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Gomez Bernal, A.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E. Reliability of the OptoGait Portable Photoelectric Cell System for the Quantification of Spatial-Temporal Parameters of Gait in Young Adults. Gait Posture 2016, 50, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Healy, A.; Linyard-Tough, K.; Chockalingam, N. Agreement Between the Spatiotemporal Gait Parameters of Healthy Adults From the OptoGait System and a Traditional Three-Dimensional Motion Capture System. J. Biomech. Eng. 2019, 141, 014501. [Google Scholar] [CrossRef]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait Photoelectric System for the Assessment of Spatiotemporal Gait Parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-Retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-Temporal Parameters of the Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. Agreement between the Spatio-Temporal Gait Parameters from Treadmill-Based Photoelectric Cell and the Instrumented Treadmill System in Healthy Young Adults and Stroke Patients. Med. Sci. Monit. 2014, 20, 1210–1219. [Google Scholar] [CrossRef]
- Weart, A.N.; Miller, E.M.; Freisinger, G.M.; Johnson, M.R.; Goss, D.L. Agreement Between the OptoGait and Instrumented Treadmill System for the Quantification of Spatiotemporal Treadmill Running Parameters. Front. Sports Act. Living 2020, 2, 571385. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Roche-Seruendo, L.E.; Marcén-Cinca, N.; Marco-Contreras, L.A.; Latorre-Román, P.A. Absolute Reliability and Concurrent Validity of the Stryd System for the Assessment of Running Stride Kinematics at Different Velocities. J. Strength. Cond. Res. 2021, 35, 78–84. [Google Scholar] [CrossRef]
- Norris, M.; Anderson, R.; Kenny, I.C. Method Analysis of Accelerometers and Gyroscopes in Running Gait: A Systematic Review. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2014, 228, 3–15. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and Reliability of Wearable Inertial Sensors in Healthy Adult Walking: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Latorre-Román, P.Á.; Soto-Hermoso, V.M.; Párraga-Montilla, J.A.; Pantoja-Vallejo, A.; Ramírez-Campillo, R.; Roche-Seruendo, L.E. Agreement between the Spatiotemporal Gait Parameters from Two Different Wearable Devices and High-Speed Video Analysis. PLoS ONE 2019, 14, e0222872. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Chicano-Gutiérrez, J.M.; Ruiz-Malagón, E.J.; Roche-Seruendo, L.E. Influence of RunScribeTM Placement on the Accuracy of Spatiotemporal Gait Characteristics during Running. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2020, 234, 11–18. [Google Scholar] [CrossRef]
- Lewin, M.; Price, C.; Nester, C. Validation of the RunScribe Inertial Measurement Unit for Walking Gait Measurement. PLoS ONE 2022, 17, e0273308. [Google Scholar] [CrossRef] [PubMed]
- Van de Putte, M.; Hagemeister, N.; St-Onge, N.; Parent, G.; de Guise, J.A. Habituation to Treadmill Walking. Biomed. Mater. Eng. 2006, 16, 43–52. [Google Scholar] [PubMed]
- Lavcanska, V.; Taylor, N.F.; Schache, A.G. Familiarization to Treadmill Running in Young Unimpaired Adults. Hum. Mov. Sci. 2005, 24, 544–557. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Comparing Methods of Measurement: Why Plotting Difference against Standard Method Is Misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A.; Ghaffari, R.; Sosnoff, J.J. Monitoring gait in multiple sclerosis with novel wearable motion sensors. PLoS ONE 2017, 12, e0171346. [Google Scholar] [CrossRef] [PubMed]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Park, E.J. Quasi real-time gait event detection using shank-attached gyroscopes. Med. Biol. Eng. Comput. 2011, 49, 707–712. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef]
- Pappas, I.P.I.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- González, R.C.; López, A.M.; Rodriguez-Uría, J.; Álvarez, D.; Alvarez, J.C. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31, 322–325. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev. Med. Devices 2016, 13, 455–462. [Google Scholar] [CrossRef]
- Moore, S.T.; MacDougall, H.G.; Gracies, J.M.; Cohen, H.S.; Ondo, W.G. Long-term monitoring of gait in Parkinson’s disease. Gait Posture 2007, 26, 200–207. [Google Scholar] [CrossRef]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert. Rev. Med. Devices 2016, 4440, 1198694. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J.-B. Reliability and Validity of the Myotest® for Measuring Running Stride Kinematics. J. Sports Sci. 2016, 34, 664–670. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Jaén-Carrillo, D.; Soto Hermoso, V.; Latorre Román, P.; Delgado, P.; Martinez, C.; Carton, A.; Roche Seruendo, L. Agreement Between Spatiotemporal Gait Parameters Measured by a Markerless Motion Capture System and Two Reference Systems—A Treadmill-Based Photoelectric Cell and High-Speed Video Analyses: Comparative Study. JMIR Mhealth Uhealth 2020, 8, e19498. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | |
---|---|---|
Age (years) | 36.32 ± 13.10 | |
Height (cm) | 173.47 ± 9.00 | |
Body Mass (kg) | 70.14 ± 13.14 | |
Sex | Male Female | 318 (69%) 142 (31%) |
Measures | Mean Diff. | SD of Diff. | LB | UB | % Within Limits of Agreement |
---|---|---|---|---|---|
SF (steps/min) | 0.07 | 2 | −3.85 | 3.98 | 94.8 |
ST (s) | 0.00 | 0.01 | −0.02 | 0.02 | 94.3 |
SL (m) | 0.01 | 0.02 | −0.04 | 0.06 | 92.6 |
StL (m) | 0.02 | 0.05 | −0.08 | 0.11 | 92.6 |
StL% (%) | 1.07 | 2.83 | −4.48 | 6.62 | 93.5 |
StT (s) | 0.00 | 0.02 | −0.05 | 0.04 | 94.3 |
CT (s) | 0.05 | 0.02 | 0.00 | 0.09 | 94.1 |
SwT (s) | −0.05 | 0.02 | −0.08 | −0.01 | 93.7 |
Measures | Mean ± SD (OptoGait) | Mean ± SD (RunScribe) | p-Value (t-Test) | Effect Size (Cohen’s d) | Pearson Corr. (r (p-Value)) | ICC (2,k) |
---|---|---|---|---|---|---|
SF (steps/min) | 111.30 ± 5.27 | 111.23 ± 5.53 | 0.849 | 0.013 | 0.93 (<0.001) | 0.965 [0.96–0.97] |
ST (s) | 0.54 ± 0.03 | 0.54 ± 0.03 | 0.28 | −0.071 | 0.92 (<0.001) | 0.957 [0.95–0.96] |
SL (m) | 0.75 ± 0.03 | 0.74 ± 0.04 | 0.001 | 0.22 | 0.79 (<0.001) | 0.868 [0.82–0.90] |
StL (m) | 1.50 ± 0.07 | 1.48 ± 0.08 | 0.001 | 0.218 | 0.79 (<0.001) | 0.868 [0.82–0.90] |
StL% (%) | 86.48 ± 4.16 | 85.42 ± 4.34 | <0.001 | 0.251 | 0.78 (<0.001) | 0.860 [0.80–0.90] |
StT (s) | 1.08 ± 0.05 | 1.08 ± 0.05 | 0.28 | −0.071 | 0.92 (<0.001) | 0.957 [0.95–0.96] |
CT (s) | 0.73 ± 0.04 | 0.69 ± 0.04 | <0.001 | 1.213 | 0.82 (<0.001) | 0.641 [−0.18–0.88] |
SwT (s) | 0.35 ± 0.02 | 0.39 ± 0.02 | <0.001 | −2.195 | 0.70 (<0.001) | 0.340 [−0.11–0.70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ráfales-Perucha, A.; Bravo-Viñuales, E.; Molina-Molina, A.; Cartón-Llorente, A.; Cardiel-Sánchez, S.; Roche-Seruendo, L.E. Concurrent Validity and Relative Reliability of the RunScribe™ System for the Assessment of Spatiotemporal Gait Parameters During Walking. Sensors 2024, 24, 7825. https://doi.org/10.3390/s24237825
Ráfales-Perucha A, Bravo-Viñuales E, Molina-Molina A, Cartón-Llorente A, Cardiel-Sánchez S, Roche-Seruendo LE. Concurrent Validity and Relative Reliability of the RunScribe™ System for the Assessment of Spatiotemporal Gait Parameters During Walking. Sensors. 2024; 24(23):7825. https://doi.org/10.3390/s24237825
Chicago/Turabian StyleRáfales-Perucha, Andrés, Elisa Bravo-Viñuales, Alejandro Molina-Molina, Antonio Cartón-Llorente, Silvia Cardiel-Sánchez, and Luis E. Roche-Seruendo. 2024. "Concurrent Validity and Relative Reliability of the RunScribe™ System for the Assessment of Spatiotemporal Gait Parameters During Walking" Sensors 24, no. 23: 7825. https://doi.org/10.3390/s24237825
APA StyleRáfales-Perucha, A., Bravo-Viñuales, E., Molina-Molina, A., Cartón-Llorente, A., Cardiel-Sánchez, S., & Roche-Seruendo, L. E. (2024). Concurrent Validity and Relative Reliability of the RunScribe™ System for the Assessment of Spatiotemporal Gait Parameters During Walking. Sensors, 24(23), 7825. https://doi.org/10.3390/s24237825