Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm
<p>UR5 robotic arm. (<b>a</b>) Robotic arm physical model; (<b>b</b>) robotic arm D-H model.</p> "> Figure 2
<p>RRT* algorithm reselects parent node process. (<b>a</b>) Reselecting the parent node process; (<b>b</b>) reselect parent node result. The red dots indicate path nodes.</p> "> Figure 3
<p>RRT* algorithm rewires the random tree process. (<b>a</b>) Rewire the random tree process; (<b>b</b>) rewiring the random tree result. The red dots indicate path nodes.</p> "> Figure 4
<p>Random point sampling process. The red dots indicate path nodes, triangles indicate random sampling points, red circles denote collisions, and ‘X’ marks indicate discarded sampling points.</p> "> Figure 5
<p>Diagram of dynamic step length adjustment mechanism after collision detection. (<b>a</b>) Process diagram; (<b>b</b>) schematic diagram.</p> "> Figure 6
<p>Schematic diagram of redundant node removal. (<b>a</b>) From start point to target point; (<b>b</b>) from target point to start point. The red dots represent path nodes, and the dashed lines indicate discarded connections due to collisions.</p> "> Figure 7
<p>Schematic diagram of local smoothing. (<b>a</b>) Cubic B-spline smoothing; (<b>b</b>) add control points for smoothing. The blue lines represent the original path, and the green lines represent the smoothed path.</p> "> Figure 8
<p>ACC threshold selection. (<b>a</b>) Test Environment I; (<b>b</b>) Test Environment II.</p> "> Figure 9
<p>Boxplot of the number of iterations to find a path.</p> "> Figure 10
<p>Three-dimensional environmental path planning results map: (<b>a</b>) Test Environment I: AS-RRT*; (<b>b</b>) Test Environment I: RRT*; (<b>c</b>) Test Environment II: AS-RRT*; (<b>d</b>) Test Environment II: RRT*. The blue point represents the starting point (1, 1, 1), the yellow point represents the endpoint (100, 100, 100), green points are random sampling points, spheres represent obstacles, the yellow curve shows the randomly expanded path, and the red curve depicts the final path.</p> "> Figure 11
<p>Three-dimensional environmental path optimization results map: (<b>a</b>) Test Environment I removal of redundant nodes; (<b>b</b>) Test Environment I local path smoothing; (<b>c</b>) Test Environment II removal of redundant nodes; (<b>d</b>) Test Environment II local path smoothing. The blue point represents the starting point (1, 1, 1), the yellow point represents the endpoint (100, 100, 100), blue lines show paths before optimization, red lines indicate paths after removing redundant nodes, and green lines represent the final optimized paths.</p> "> Figure 12
<p>Distribution of tea buds in the picking area: (<b>a</b>) images captured by depth camera sensor; (<b>b</b>) 3D distribution of tea bud-picking points.</p> "> Figure 13
<p>AS-RRT* path planning results in different tea plantation environments, where the number in parentheses indicates the number of picking points in each environment: (<b>a</b>) Tea Garden Environment I (4 picking points); (<b>b</b>) Tea Garden Environment II (5 picking points); (<b>c</b>) Tea Garden Environment III (5 picking points); (<b>d</b>) Tea Garden Environment IV (6 picking points). The red points represent tea-picking locations, green lines show the planned paths, and the blue grid displays the tea plantation’s 3D information.</p> "> Figure 14
<p>Random point sampling process.</p> "> Figure 15
<p>Robotic arm motion process: (<b>a</b>) initial position; (<b>b</b>) movement process; (<b>c</b>) Target Position 1; (<b>d</b>) Target Position 2.</p> "> Figure 16
<p>Position of each joint.</p> ">
Abstract
:1. Introduction
2. Tea Plantation Environment and Path Planning Methods
2.1. Characteristics of Tea Plantation Environment for Picking
2.2. Robotic Arm Kinematics Modeling
2.3. RRT* Algorithm
3. AS-RRT* Algorithm
3.1. Accumulator-Based Sampling Point Selection Strategy
3.2. Fast Connectivity and Pruning Optimization Methods
Algorithm 1: Fast connectivity and pruning optimization method pseudo-code |
|
3.3. Dynamic Step Length Adjustment Mechanism After Collision Detection
3.4. Redundant Node Removal and Curve Smoothing
4. Experiments and Results
4.1. Experiment and Analysis of Sampling Point Selection Strategies
4.1.1. ACC Threshold Selection
4.1.2. Stability Analysis of Dynamic Step Adjustment
4.1.3. Convergence Analysis of Dynamic Step Size Adjustment
4.2. Target Sampling Experiment and Analysis
4.3. Path Smoothing Experiment and Analysis
4.4. Experiment in Tea Plantation Environment
4.5. Tea-Picking Robotic Arm Motion Planning Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Guan, S.X. Trajectory planning and control for SCARA manipulator of tea picking robot. Inf. Technol. Netw. Secur. 2020, 39, 73–80. [Google Scholar]
- Wang, X.W.; Wu, M.H.; Zhou, J.; Liu, S. Research on Tea Picking Robot’s Navigation, Barrier Avoidance and Path Planning. Agric. Equip. Veh. Eng. 2019, 57, 121–124. [Google Scholar]
- Li, J.; Wang, Z.X. Route Optimization of Agricultural Robots Based on Avoidance Rules of Stochastic Obstacle. J. Agric. Mech. Res. 2021, 43, 219–222+268. [Google Scholar]
- Zheng, H.; Fu, T.; Xue, X.L.; Yue, Y.; Yu, G. Research status and prospect of tea mechanized picking technology. J. Chin. Agric. Mech. 2023, 44, 28–35. [Google Scholar]
- Han, Y.; Xiao, H.G.; Qin, G.M.; Song, Z.Y.; Ding, W.Q.; Mei, S. Studies on develop situations of tea-leaf picker both at home and abroad. J. Chin. Agric. Mech. 2014, 35, 20–24. [Google Scholar]
- Yi, W.; Cheng, F.; Qiu, Y.; Lu, Y.; Wang, P.; Chen, C. Research status and development trend of single tea picking machine. J. Chin. Agric. Mech. 2020, 41, 33–38. [Google Scholar]
- Wang, X.Y.; Tang, D.D. Research Progress on Mechanical Tea Plucking. Acta Tea Sin. 2022, 56, 275–282. [Google Scholar]
- Yang, J.; Li, X.; Wang, X.; Fu, L.; Li, S. Vision-Based Localization Method for Picking Points in Tea-Harvesting Robots. Sensors 2024, 24, 6777. [Google Scholar] [CrossRef]
- Liu, B.; Yang, C.H.; Xiong, L.Y.; Wang, K.; Wang, Y. Path recognition method of picking robot based on orchard natural environment. Jiangsu J. Agric. Sci. 2019, 35, 1222–1231. [Google Scholar]
- Gou, Y.M.; Yan, J.W.; Zhang, F.G.; Sun, C.Y.; Xu, Y. Research Progress on Vision System and Manipulator of Fruit Picking Robot. Comput. Eng. Appl. J. 2023, 59, 13–26. [Google Scholar]
- Xiong, J.T.; Zou, X.J.; Zou, H.X.; Chen, Y.L.; Lu, J. Study of picking manipulator location simulation based on machine vision. Comput. Eng. Appl. J. 2011, 47, 139–142. [Google Scholar]
- Li, Y.; Xu, D. Cooperative Path Planning of Dual-arm Robot Based on Attractive Force Self-adaptive Step Size RRT. Robot 2020, 42, 606–616. [Google Scholar]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 2010, 29, 485–501. [Google Scholar] [CrossRef]
- Li, X.; Cao, Q.X.; Sun, M.J.J.; Yang, G. Fast Motion Planning via Free-Space Estimation Based on Deep Neural Network. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2019, Macau, China, 3–8 November 2019; pp. 3542–3548. [Google Scholar]
- LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [Google Scholar] [CrossRef]
- Yang, M.L.; Li, N. Study on mobile robot path planning based on improved A* algorithm. Mech. Sci. Technol. Aerosp. Eng. 2022, 41, 795–800. [Google Scholar]
- Chen, Z.M.; Li, M.; Shao, X.J.; Zhao, Z. Obstacle avoidance path planning of bridge crane based on improved RRT algorithm. J. Syst. Simul. 2021, 33, 1832–1838. [Google Scholar]
- Hsu, D.; Latombe, J.-C.; Kurniawati, H. On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robot. Res. 2006, 25, 83–97. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhao, H.C.; Liu, X.; Yan, X. An improved RRT-based obstacle avoidance path planning algorithm for industrial robot. Inf. Control. 2021, 50, 235–246. [Google Scholar]
- Ruan, X.G.; Zhou, J.; Zhang, J.J.; Zhu, X. Robot goal guide RRT path planning based on sub-target search. Control. Decis. 2020, 35, 2543–2548. [Google Scholar]
- Yu, M.; Luo, J.J.; Wang, M.M.; Gao, D. Coordinated Path Planning by Integrating Improved RRT* and Quartic Spline. Chin. J. Theor. Appl. Mech. 2020, 52, 1024–1034. [Google Scholar]
- Kavraki, L.; Latombe, J.-C. Randomized preprocessing of configuration space for fast path planning. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 2138–2145. [Google Scholar]
- Kang, J.-G.; Lim, D.-W.; Choi, Y.-S.; Jang, W.-J.; Jung, J.-W. Improved RRT-Connect Algorithm Based on Triangular Inequality for Robot Path Planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm. Sensors 2018, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Du, M.B.; Mei, T.; Chen, J.J.; Zhao, P.; Liang, H.; Huang, R.; Tao, X. RRT-based Motion Planning Algorithm for Intelligent Vehicle in Complex Environments. Robot 2015, 37, 443–450. [Google Scholar]
- Denny, J.; Greco, E.; Thomas, S.; Namato, N.M. MARRT: Medial axis biased rapidly-exploring random trees. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 90–97. [Google Scholar]
- Li, Y.; Shao, J. A revised Gaussian distribution sampling scheme based on RRT* algorithms in robot motion planning. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR 2017), Nagoya, Japan, 22–24 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 22–26. [Google Scholar]
- Zhou, F.; Zhu, Q.; Zhao, G.L. Path Optimization of Manipulator Based on the Improved Rapidly-exploring Random Tree Algorithm. Chin. J. Mech. Eng. 2011, 47, 30–35. [Google Scholar] [CrossRef]
- Blin, N.; Taix, M.; Fillatreau, P.; Fourquet, J.-Y. I-RRT-C: Interactive motion planning with contact. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Daejeon, Republic of Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4244–4249. [Google Scholar]
- Sun, Y.; Zhang, C.; Sun, P.; Liu, C. Safe and smooth motion planning for Mecanum-wheeled robot using improved RRT and cubic spline. Arab. J. Sci. Eng. 2020, 45, 3075–3090. [Google Scholar] [CrossRef]
- Janjos, F.; Reichart, R.; Niermeyer, P. Smooth path-generation around obstacles using quartic splines and RRTs. IFAC-PapersOnLine 2017, 50, 9108–9113. [Google Scholar] [CrossRef]
- Cao, X.; Zou, X.; Jia, C.; Chen, M.; Zeng, Z. RRT-based Path Planning for an Intelligent Litchi-Picking Manipulator. Comput. Electron. Agric. 2019, 156, 105–118. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT Connect: An Efficient Approach to Single-query Path Planning. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Karaman, S.; Frazzoli, E. Sampling-based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Jeong, I.B.; Lee, S.J.; Kim, J.H. Quick RRT*: Triangular Inequality-based Implementation of RRT* with Improved Initial Solution and Convergence Rate. Expert Syst. Appl. 2019, 123, 82–90. [Google Scholar] [CrossRef]
- Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ RRT*: An Improved Path Planning Algorithm for Mobile Robots. Expert Syst. Appl. 2020, 152, 113425. [Google Scholar] [CrossRef]
- Tahir, Z.; Qureshi, A.H.; Ayaz, Y.; Nawaz, R. Potentially Guided Bidirectionalized RRT* for Fast Optimal Path Planning in Cluttered Environments. Robot. Auton. Syst. 2018, 108, 13–27. [Google Scholar] [CrossRef]
- Yang, X.H.; Zhou, W.H.; Li, Y.F.; Qi, X.; Zhang, Q. Review of Path Planning Algorithms for Picking Manipulator. J. Chin. Agric. Mech. 2023, 44, 161–169. [Google Scholar]
- Lin, G.; Zhu, L.; Li, J.; Zou, Z.; Tang, Y. Collision-free Path Planning for a Guava-Harvesting Robot Based on Recurrent Deep Reinforcement Learning. Comput. Electron. Agric. 2021, 188, 106350. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, F.P.; Jiang, X.P.; Zheng, Z.; Can, X. Motion Planning Method and Experiments of Tomato Bunch Harvesting Manipulator. Trans. Chin. Soc. Agric. Eng. 2021, 37, 149–156. [Google Scholar]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An Autonomous Strawberry-Harvesting Robot: Design, Development, Integration, and Field Evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Yin, J.J.; Wu, C.Y.; Yang, S.X.; Mittal, G.S.; Mao, H.P. Obstacle-avoidance Path Planning of Robot Arm for Tomato-picking Robot. Trans. Chin. Soc. Agric. Mach. 2012, 43, 171–175+157. [Google Scholar]
- Zhao, D.-A.; Lv, J.; Ji, W.; Zhang, Y.; Chen, Y. Design and control of an apple harvesting robot. Biosyst. Eng. 2011, 110, 112–122. [Google Scholar]
- Li, X. Research on Path Planning of Tea Picking Robot Based on RRT Algorithm Homme. J. Agric. Mech. Res. 2023, 45, 180–183. [Google Scholar]
- Zhang, Q.; Yue, X.L.; Li, B. Motion Planning of Picking Manipulator Based on CTB-RRT* Algorithm. Trans. Chin. Soc. Agric. Mach. 2021, 52, 129–136. [Google Scholar]
- Liu, D.; Wang, Y. Motion Path Planning of Citrus Picking Robot Arm Based on Improved Informed-RRT* Algorithm. J. Chongqing Univ. Technol. 2021, 35, 158–165. [Google Scholar]
- Zhou, Y.B.; Zhang, L.Z.; Xu, H.M. Path Planning of Manipulator Based on Improved Two-way RRT* Algorithm. J. Comput. Appl. 2022, 42 (Suppl. S1), 342–346. [Google Scholar]
Joint i | αi−1/rad | ai−1/m | θi−1/rad | di/m |
---|---|---|---|---|
Joint 1 | π/2 | 0 | 0 | 0.089159 |
Joint 2 | 0 | −0.425 | 0 | 0 |
Joint 3 | 0 | −0.39225 | 0 | 0 |
Joint 4 | π/2 | 0 | 0 | 0.10915 |
Joint 5 | −π/2 | 0 | 0 | 0.09465 |
Joint 6 | 0 | 0 | 0 | 0.0823 |
Environments | Step Size Mean/mm | Step Size Variance/s |
---|---|---|
Test Environment I | 5.73 | 0.52 |
Test Environment II | 4.92 | 0.498 |
Algorithm | Path Length/mm | Number of Nodes/pc | Number of Sampling Nodes/pc | Number of Effective Sampling Nodes/pc | Planning Time/s |
---|---|---|---|---|---|
RRT* | 206.29 | 29.90 | 328.61 | 215.95 | 0.93 |
AS-RRT* | 193.00 | 19.61 | 278.02 | 159.58 | 0.51 |
Algorithm | Path Length/mm | Number of Nodes/pc | Number of Sampling Nodes/pc | Number of Effective Sampling Nodes/pc | Planning Time/s |
---|---|---|---|---|---|
RRT* | 203.50 | 31.17 | 257.07 | 188.39 | 1.25 |
AS-RRT* | 187.77 | 15.23 | 171.37 | 110.71 | 0.55 |
Test Environment | Original Path/mm | Original Path Nodes/pc | Path Length After Redundant Nodes Removal/mm | Nodes After Removal/pc | Smoothed Path Length/mm |
---|---|---|---|---|---|
Test Environment I | 203.44 | 28.73 | 193.00 | 19.61 | 199.67 |
Test Environment II | 192.62 | 22.25 | 187.77 | 15.23 | 193.75 |
Test Environment | Original Path/mm | Original Path Nodes/pc | Path Length After Redundant Nodes Removal/mm | Nodes After Removal/pc | Smoothed Path Length/mm | Planning Time/s | Smoothing Time/s |
---|---|---|---|---|---|---|---|
Env I (No Redundancy) | 206.62 | 28.44 | / | / | 207.37 | 0.74 | 9.96 × 10⁻⁴ |
Env I (Redundancy Removed) | 206.06 | 28 | 194.45 | 16.96 | 204.74 | 0.73 | 5.98 × 10⁻⁴ |
Env II (No Redundancy Removed) | 192.91 | 20.04 | / | / | 196.04 | 0.72 | 1.321 × 10⁻3 |
Env II (Redundancy Removed) | 191.70 | 19.74 | 187.22 | 11.54 | 194.82 | 0.71 | 6.64 × 10⁻⁴ |
Test Environment | European Distance/mm | Algorithm | Average Path Length/mm | Planning Time/s |
---|---|---|---|---|
Tea Garden Environment I (4) | 378.52 | RRT* | 442.72 | 8.30 |
AS-RRT* | 399.88 | 0.71 | ||
Tea Garden Environment II (5) | 250.89 | RRT* | 268.70 | 1.69 |
AS-RRT* | 252.15 | 0.30 | ||
Tea Garden Environment III (5) | 396.11 | RRT* | 436.41 | 3.52 |
AS-RRT* | 405.73 | 0.63 | ||
Tea Garden Environment IV (6) | 429.65 | RRT* | 495.71 | 3.31 |
AS-RRT* | 434.32 | 0.78 |
Algorithm | Path Cost/mm | Running Time/s | Success Rate of Robotic Arm Movement/percent |
---|---|---|---|
RRT* | 1.14 | 103.66 | 0.86 |
AS-RRT* | 0.73 | 89.03 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, J.; Wang, X.; Fu, L.; Li, S. Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm. Sensors 2024, 24, 7759. https://doi.org/10.3390/s24237759
Li X, Yang J, Wang X, Fu L, Li S. Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm. Sensors. 2024; 24(23):7759. https://doi.org/10.3390/s24237759
Chicago/Turabian StyleLi, Xin, Jingwen Yang, Xin Wang, Leiyang Fu, and Shaowen Li. 2024. "Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm" Sensors 24, no. 23: 7759. https://doi.org/10.3390/s24237759
APA StyleLi, X., Yang, J., Wang, X., Fu, L., & Li, S. (2024). Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm. Sensors, 24(23), 7759. https://doi.org/10.3390/s24237759