Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques
<p><span class="html-italic">Cff</span> strains grown on naturalised media, based on Cannellino (<b>left</b>) and on Borlotto bean flour (<b>right</b>).</p> "> Figure 2
<p>HPLC chromatograms of the methanolic extracts of <span class="html-italic">Cff</span> P990 (<b>a</b>), <span class="html-italic">Cff</span> 50R (<b>b</b>), and <span class="html-italic">Cff</span> C7 (<b>c</b>) pigments, after 14 days of growth on Cannellino naturalised medium. Different symbols mark the peak with different absorbance spectra corresponding to C.p. 450 (*), C.p. 473 (+), and C.p. 496 (∧) compounds. Spectra of the main peaks, acquired during elution in methanol, are reported in (<b>d</b>–<b>f</b>) for <span class="html-italic">Cff</span> P990, <span class="html-italic">Cff</span> 50R, and <span class="html-italic">Cff</span> C7, respectively.</p> "> Figure 3
<p>(<b>a</b>) Total transmittance spectra from the Cannellino- (black line) and the Borlotto-based media (red line). Comparison of the overall transmittance signal at 485 nm (<b>b</b>) and at 800 nm (<b>c</b>) between Cannellino- (black line) and Borlotto-based (red line) media. (<b>d</b>) Comparison of the PA amplitude between Cannellino- (black line) and Borlotto-based (red line) media excited by the whole laser white emission.</p> "> Figure 4
<p>PA signal vs. time of arrival to the transducer from the Cannellino naturalised medium, after the excitation with the full laser emission (red lines), and with the laser emission filtered by the KG3 filter (black lines) at four different sample zones: (<b>a</b>) uninoculated point, (<b>b</b>) <span class="html-italic">Cff</span> P990 strain spot, (<b>c</b>) <span class="html-italic">Cff</span> 50R strain spot, and (<b>d</b>) <span class="html-italic">Cff</span> C7 strain spot.</p> "> Figure 5
<p>PA signal vs. time of arrival to the transducer from the Borlotto naturalised medium, after the excitation with the full laser emission (red lines), and with the laser emission filtered by the KG3 filter (black lines) at four different sample zones: (<b>a</b>) uninoculated point, (<b>b</b>) <span class="html-italic">Cff</span> P990 strain spot, (<b>c</b>) <span class="html-italic">Cff</span> 50R strain spot, and (<b>d</b>) <span class="html-italic">Cff</span> C7 strain spot.</p> "> Figure 6
<p>PA signal vs. time of arrival at different excitation wavebands defined by the laser emission spectrum combined with long-pass (LP) filters (at cut-on wavelengths of 475, 515, 550, and 590 nm) from spots of the P990 (<b>a</b>,<b>d</b>), 50R (<b>b</b>,<b>e</b>), and C7 (<b>c</b>,<b>f</b>) <span class="html-italic">Cff</span> strain grown in the Cannellino (<b>a</b>–<b>c</b>) or Borlotto naturalised media.</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) Amplitude of the bacterial PA signal (red circles) and the <math display="inline"><semantics> <msub> <mi>A</mi> <mi>eff</mi> </msub> </semantics></math> (black squares) of <span class="html-italic">Cff</span> pigments as a function of the excitation waveband. Wavebands are identified by the cut-on wavelengths of the long-pass filters from 475 nm to 630 nm. Each set of data is normalised to the first point at 440 nm corresponding to the measurement with the whole laser emission excitation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Chemical Extraction
2.3. Pigment Determination
2.4. Photoacoustic Setup
2.5. Optical Measurements
3. Results
3.1. Cff Colony Colour and Pigments Analysis
3.2. Optical Characterisation of Naturalised Media
3.3. Photoacoustic Characterisation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebeyaw, M. Review on: Impact of Seed-Borne Pathogens on Seed Quality. Am. J. Plant Biol. 2020, 5, 77–81. [Google Scholar] [CrossRef]
- Pagán, I. Transmission through seeds: The unknown life of plant viruses. PLoS Pathog. 2022, 18, e1010707. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olmo, E.; Tiberini, A.; Sigillo, L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. Plants 2023, 12, 2040. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.R.; Jo, M.S.; Kim, G.E.; Park, C.H.; Lee, D.J.; Che, S.H.; Na, C.S. Non-Destructive Seed Viability Assessment via Multispectral Imaging and Stacking Ensemble Learning. Agriculture 2024, 14, 1679. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (EFSA PLH Panel); Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Grégoire, J.C.; Jaques Miret, J.A.; et al. Pest categorisation of Curtobacterium flaccumfaciens pv. flaccumfaciens. EFSA J. 2018, 16, e05299. [Google Scholar] [CrossRef]
- EPPO. Curtobacterium flaccumfaciens pv. flaccumfaciens. In EPPO Datasheets on Pests Recommended for Regulation; 2024; Available online: https://gd.eppo.int/taxon/CORBFL/datasheet (accessed on 28 October 2024).
- Harveson, R.M.; Schwartz, H.F.; Urrea, C.A.; Yonts, C.D. Bacterial Wilt of Dry-Edible Beans in the Central High Plains of the U.S.: Past, Present, and Future. Plant Dis. 2015, 99, 1665–1677. [Google Scholar] [CrossRef]
- Osdaghi, E.; Young, A.J.; Harveson, R.M. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: A new threat from an old enemy. Mol. Plant Pathol. 2020, 21, 605–621. [Google Scholar] [CrossRef]
- Kouris-Blazos, A.; Belski, R. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac. J. Clin. Nutr. 2016, 25, 1–17. [Google Scholar]
- Abdel-Aal, E.S.M. Legumes and Cereals: Physicochemical Characterization, Technical Innovation and Nutritional Challenges. Foods 2024, 13, 5. [Google Scholar] [CrossRef]
- Guimaraés, P.M.; Palmano, S.; Smith, J.J.; Grossi de Sá, M.F.; Saddler, G.S. Development of a PCR test for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens. Antonie Van Leeuwenhoek 2011, 80, 1–10. [Google Scholar] [CrossRef]
- Tegli, S.; Sereni, A.; Surico, G. PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Lett. Appl. Microbiol. 2002, 35, 331–337. [Google Scholar] [CrossRef]
- Tegli, S.; Biancalani, C.; Ignatov, A.N.; Osdaghi, E. A Powerful LAMP Weapon against the Threat of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms 2020, 8, 1705. [Google Scholar] [CrossRef] [PubMed]
- Tegli, S.; Gaudioso, D.; Stefanucci, D. Innovative Detection of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens, Causal Agent of Bacterial Wilt of Leguminous Plants. Methods Mol. Biol. 2022, 2536, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Cellini, A.; Buriani, G.; Rocchi, L.; Rondelli, E.; Savioli, S.; Rodriguez Estrada, M.T.; Cristescu, S.M.; Costa, G.; Spinelli, F. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol. Plant Pathol. 2018, 19, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Brilli, F.; Luchi, N.; Michelozzi, M.; Calamai, L.; Cencetti, G.; Pecori, F.; Nigrone, E.; Santini, A. Volatile organic compounds (VOC) as biomarkers for detection of Ceratocystis platani. For. Pathol. 2020, 50, e12618. [Google Scholar] [CrossRef]
- Nordström, I.; Sherwood, P.; Bohman, B.; Woodward, S.; Peterson, D.L.; Niño-Sánchez, J.; Sánchez-Gómez, T.; Díez, J.J.; Cleary, M. Utilizing volatile organic compounds for early detection of Fusarium circinatum. Sci. Rep. 2022, 12, 21661. [Google Scholar] [CrossRef]
- ElMasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef]
- Michelon, T.B.; Serra Negra Vieira, E.; Panobianco, M. Spectral imaging and chemometrics applied at phenotyping in seed science studies: A systematic review. Seed Sci. Res. 2023, 33, 9–22. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.S.; Lim, H.S.; Park, E.; Lee, W.H.; Cho, B.K. Detection of cucumber green mottle mosaic virus-infected watermelon seeds using a near-infrared (NIR) hyperspectral imaging system: Application to seeds of the “Sambok Honey” cultivar. Biosyst. Eng. 2016, 148, 138–147. [Google Scholar] [CrossRef]
- Vrešak, M.; Halkjaer Olesen, M.; Gislum, R.; Bavec, F.; Ravn Jørgensen, J. The Use of Image-Spectroscopy Technology as a Diagnostic Method for Seed Health Testing and Variety Identification. PLoS ONE 2016, 11, e0152011. [Google Scholar] [CrossRef]
- Esteve Agelet, L.; Hurburgh, C.R. Limitations and current applications of Near Infrared Spectroscopy for single seed analysis. Talanta 2014, 121, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Butler, H.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.; Gardner, B.; Martin-Hirsch, P.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Al-Qadiri, H.M.; Lin, M.; Rasco, B.A. Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria. Food Bioprocess Technol. 2011, 4, 919–935. [Google Scholar] [CrossRef]
- Payne, W.Z.; Kurouski, D. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. Front. Plant Sci. 2021, 11, 616672. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381–431. [Google Scholar] [CrossRef]
- Thakur, S.N. Chapter 1—Photoacoustic and photothermal spectroscopy: Fundamentals and recent advances. In Photoacoustic and Photothermal Spectroscopy; Thakur, S.N., Rai, V.N., Singh, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–19. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Ivanov, R. Photoacoustic Spectroscopy in the Optical Characterization of Foodstuff: A Review. J. Spectrosc. 2019, 2019, 5920948. [Google Scholar] [CrossRef]
- Fiorani, L.; Artuso, F.; Giardina, I.; Lai, A.; Mannori, S.; Puiu, A. Photoacoustic Laser System for Food Fraud Detection. Sensors 2021, 21, 4178. [Google Scholar] [CrossRef]
- Rai, N.K.; Singh, J.P.; Rai, A.K. Chapter 23—Photoacoustic spectroscopy: A novel optical characterization technique in agricultural science. In Photoacoustic and Photothermal Spectroscopy; Thakur, S.N., Rai, V.N., Singh, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 491–509. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, A.; Garg, G.K.; Rai, A.K. Photoacoustic Spectroscopy for Identification and Differential Diagnosis of T. indica with Other Seed-Borne Pathogens of Wheat and Rice. Instrum. Sci. Technol. 2001, 29, 283–293. [Google Scholar] [CrossRef]
- Rezende, D.V.; Nunes, O.; Oliveira, A. Photoacoustic study of fungal disease of Acai (Euterpe oleracea) seeds. Int. J. Thermophys. 2009, 30, 1616–1625. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Das, D.; Sharma, A.; Rajendran, P.; Pramanik, M. Another decade of photoacoustic imaging. Phys. Med. Biol. 2021, 66, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Zou, E.; Fang, C.; Song, D. A Low-Cost Handheld Photoacoustic (PA) Probe for Rapid and Non-Destructive Detection of Watermelon Ripeness. IEEE Sens. J. 2023, 23, 26636–26642. [Google Scholar] [CrossRef]
- Harveson, R.M. The Multicolored Bacterium. APS Feature Stories 2013. Available online: https://www.apsnet.org/edcenter/apsnetfeatures/pages/bacterium.aspx (accessed on 28 October 2024).
- Vidaver, A.K. Synthetic and Complex Media for the Rapid Detection of Fluorescence of Phytopathogenic Pseudomonads: Effect of the Carbon Source. Appl. Microbiol. 1967, 15, 1523–1524. [Google Scholar] [CrossRef]
- Low, K.B. Experiments in Molecular Genetics. Jeffrey H. Miller. Q. Rev. Biol. 1974, 49, 151. [Google Scholar] [CrossRef]
- Grammbitter, G.L.C.; Schmalhofer, M.; Karimi, K.; Shi, Y.M.; Schöner, T.A.; Tobias, N.J.; Morgner, N.; Groll, M.; Bode, H.B. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J. Am. Chem. Soc. 2019, 141, 16615–16623. [Google Scholar] [CrossRef]
- Van Heukelem, L.; Thomas, C.S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 2001, 910, 31–49. [Google Scholar] [CrossRef]
- Norgård, S.; Aasen, A.J.; Liaaen-Jensen, S. Bacterial Carotenoids. XXXII. C50-Carotenoids 6. Carotenoids from Corynebacterium poinsettiae Including Four New C50-Diols. Acta Chem. Scand. 1970, 24, 2183–2197. [Google Scholar] [CrossRef]
- Häberli, A.; Bircher, C.; Pfander, H. Isolation of a New Carotenoid and Two New Carotenoid Glycosides from Curtobacterium flaccumfaciens pvar poinsettiae. Helv. Chim. Acta 2000, 83, 328–335. [Google Scholar] [CrossRef]
- Ratto, F.; Cavigli, L.; Borri, C.; Centi, S.; Magni, G.; Mazzoni, M.; Pini, R. Hybrid organosilicon/polyol phantom for photoacoustic imaging. Biomed. Opt. Express 2019, 10, 3719–3730. [Google Scholar] [CrossRef]
- Bilaniuk, N.; Wong, G.S.K. Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 1993, 93, 1609–1612. [Google Scholar] [CrossRef]
- Hysi, E.; Moore, M.J.; Strohm, E.M.; Kolios, M.C. A tutorial in photoacoustic microscopy and tomography signal processing methods. J. Appl. Phys. 2021, 129, 141102. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on Protective Measures Against Pests of Plants, Amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and Repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC. Available online: https://eur-lex.europa.eu/eli/reg/2016/2031/oj (accessed on 28 October 2024).
- Collins, M.D.; Jones, D. Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacterium flaccumfaciens comb. nov. Microbiology 1983, 129, 3545–3548. [Google Scholar] [CrossRef]
- Krubasik, P.; Takaichi, S.; Maoka, T.; Kobayashi, M.; Masamoto, K.; Sandmann, G. Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch. Microbiol. 2001, 176, 217–223. [Google Scholar] [CrossRef]
- Osawa, A.; Ishii, Y.; Sasamura, N.; Morita, M.; Kasai, H.; Maoka, T.; Shindo, K. Characterization and Antioxidative Activities of Rare C50 Carotenoids-Sarcinaxanthin, Sarcinaxanthin Monoglucoside, and Sarcinaxanthin Diglucoside-Obtained from Micrococcus yunnanensis. J. Oleo Sci. 2010, 59, 653–659. [Google Scholar] [CrossRef]
- Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.; Beekwilder, J.; Brautaset, T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl. Microbiol. Biotechnol. 2014, 98, 4355–4368. [Google Scholar] [CrossRef]
- Takano, H.; Asker, D.; Beppu, T.; Ueda, K. Genetic control for light-induced carotenoid production in non-phototrophic bacteria. J. Ind. Microbiol. Biotech. 2006, 33, 88–93. [Google Scholar] [CrossRef]
- Polyakov, N.E.; Focsan, A.L.; Gao, Y.; Kispert, L.D. The Endless World of Carotenoids—Structural, Chemical and Biological Aspects of Some Rare Carotenoids. Int. J. Mol. Sci. 2023, 24, 9885. [Google Scholar] [CrossRef]
- Flegler, A.; Lipski, A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch. Microbiol. 2021, 204, 70. [Google Scholar] [CrossRef]
- Andreeva, A.; Popova, A. Integration of β-carotene molecules in small liposomes. J. Phys. Conf. Ser. 2010, 253, 012066. [Google Scholar] [CrossRef]
- Ishigaki, M.; Meksiarun, P.; Kitahama, Y.; Zhang, L.; Hashimoto, H.; Genkawa, T.; Ozaki, Y. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV–Vis, Resonance Raman, and Raman Imaging Studies. J. Phys. Chem. B 2017, 121, 8046–8057. [Google Scholar] [CrossRef] [PubMed]
- Hachlica, N.; Stefańska, M.; Mach, M.; Kowalska, M.; Wydro, P.; Domagała, A.; Kessler, J.; Zając, G.; Kaczor, A. Organization of Carotenoid Aggregates in Membranes Studied Selectively using Resonance Raman Optical Activity. Small 2024, 20, 2306707. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
Strain | Synonym | Pigmentation | Year and Country | Host |
---|---|---|---|---|
Cff P990 | CFBP8820 ICMP22053 | Yellow-fluidal | 2015, Iran | Capsicum annuum |
Cff 50R | CFBP8819 ICMP22071 | Red-fluidal | 2014, Iran | Phaseolus vulgaris |
Cff C7 | J24 | Orange-fluidal | 2004, USA | Phaseolus vulgaris |
Strain | LB | LBsac10 | Cannellino | Borlotto |
---|---|---|---|---|
P990 | ||||
50R | ||||
C7 |
Car. Class | P990 | P990 | P990 | 50R | 50R | 50R | C7 | C7 | C7 |
---|---|---|---|---|---|---|---|---|---|
LB | LBsac10 | Cann | LB | LBsac10 | Cann | LB | LBsac10 | Cann | |
C.p. 450 | 80.1 | 90.3 | 92.6 | 38.2 | 25.3 | 36.0 | 45.6 | 35.5 | 47.0 |
C.p. 473 | 36.9 | 59.9 | 53.3 | 47.7 | 57.0 | 42.2 | |||
C.p. 496 | 4 | 4.8 | 2.7 | 1.7 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavigli, L.; Gaudioso, D.; Faraloni, C.; Agati, G.; Tegli, S. Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques. Sensors 2024, 24, 7616. https://doi.org/10.3390/s24237616
Cavigli L, Gaudioso D, Faraloni C, Agati G, Tegli S. Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques. Sensors. 2024; 24(23):7616. https://doi.org/10.3390/s24237616
Chicago/Turabian StyleCavigli, Lucia, Dario Gaudioso, Cecilia Faraloni, Giovanni Agati, and Stefania Tegli. 2024. "Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques" Sensors 24, no. 23: 7616. https://doi.org/10.3390/s24237616
APA StyleCavigli, L., Gaudioso, D., Faraloni, C., Agati, G., & Tegli, S. (2024). Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques. Sensors, 24(23), 7616. https://doi.org/10.3390/s24237616