Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model
<p>Processing flow of PSO-LSSVM model.</p> "> Figure 2
<p>Model test layout diagram.</p> "> Figure 3
<p>Installation diagram of blast vibration meter.</p> "> Figure 4
<p>Fitness curve of PSO-LSSVM model.</p> "> Figure 5
<p>A comparison between the true value and the predicted value of the training sample of the PSO-LSSVM model.</p> "> Figure 6
<p>Comparison of prediction results of different models.</p> ">
Abstract
:1. Introduction
2. Establishment of LS-SVM Prediction Model Based on PSO
2.1. Basic Principles of PSO-LSSVM
2.2. The Process of the PSO-LSSVM Model
3. Gray Correlation Analysis of Factors Affecting Vibration Velocity of Buried Pipelines
3.1. Model Test Overview
3.2. Gray Correlation Analysis of Factors Affecting Pipeline Vibration Speed
4. Application and Analysis of PSO-LSSVM Prediction Model
4.1. Model Building
4.2. Comparative Analysis of Forecast Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Zhao, Q.; Lei, M.; Peng, M. Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel. Soils Found. 2019, 59, 2195–2205. [Google Scholar] [CrossRef]
- Wang, X.Q.; Liu, S.; Li, Q.Y.; Ma, K.B. SVM tunnel rock classification discrimination based on K-fold cross-validation. Min. Metall. Eng. 2021, 41, 126–128+133. [Google Scholar]
- Sun, J.S.; Yan, J.X.; Jiang, Y.F.; Zhang, Z.; Liu, T. Prediction model of vibration velocity of collapse touchdown for wide building demolition. J. Jianghan Univ. (Nat. Sci. Ed.) 2022, 50, 5–10. [Google Scholar]
- Li, J.; Tao, T.J.; Lei, Z.; Xie, C.J.; Tian, X.C.; He, J. Vibration velocity prediction model for step loosening blasting considering dense coefficient. Eng. Blasting 2023, 29, 48–54. [Google Scholar]
- He, L.; Zhong, D.W.; Li, P.; Song, K.; Si, J.F. Prediction and energy analysis of slope vibration under blasting load excitation in underpass tunnel. Explos. Shock Waves 2020, 40, 108–117. [Google Scholar]
- He, L.; Zhong, D.; Liu, Y.; Song, K. Prediction of Bench Blasting Vibration on Slope and Safety Threshold of Blasting Vibration Velocity to Undercrossing Tunnel. Shock Vib. 2021, 2021, 9939361. [Google Scholar] [CrossRef]
- Li, X.X.; Cheng, G.H.; Tan, C.C.; Liang, L.J. Research on blasting vibration velocity prediction model based on magnitude analysis. Ind. Miner. Process. 2022, 51, 36–40. [Google Scholar]
- Qin, C.Y.; Zhang, W.X. Slope stability prediction of open pit mine discharge site based on machine learning. Met. Min. 2021, 8, 164–169. [Google Scholar]
- Hu, Y.H.; He, M.; Zhou, S.J.; Ding, Z.H.; Cai, C.G.; Ma, X.Y.; Zhang, J.J. Research on millisecond delayed blasting vibration velocity prediction based on GA-BP neural network. China Min. Mag. 2022, 31, 72–77. [Google Scholar]
- Zhang, Y.; Wang, P.P. Blasting vibration velocity prediction model based on RVM. Blasting 2022, 39, 168–174. [Google Scholar]
- Yue, Z.W.; Wu, Y.X.; Wei, Z.; Wang, G.; Wang, Y.; Li, X.; Zhou, Y.S. Prediction of blasting vibration effect in open pit mines based on PSO-LSSVM model. Eng. Blasting 2020, 26, 1–8. [Google Scholar]
- Guo, J.; Zhang, C.; Xie, S.; Liu, Y. Research on the Prediction Model of Blasting Vibration Velocity in the Dahuangshan Mine. Appl. Sci. 2022, 12, 5849. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, H.; Qu, D.; Zhang, X.; Tao, Y.; Li, X. Vibration velocity and frequency characteristics of surrounding rock of adjacent tunnel under blasting excavation. Sci. Rep. 2022, 12, 8453. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jia, Y.; Zhang, Z.; Yao, Y. Study on blast-induced ground vibration velocity limits for slope rock masses. Front. Earth Sci. 2023, 10, 2296–6463. [Google Scholar] [CrossRef]
- Ke, B.; Nguyen, H.; Bui, X.-N.; Costache, R. Estimation of Ground Vibration Intensity Induced by Mine Blasting using a State-of-the-Art Hybrid Autoencoder Neural Network and Support Vector Regression Model. Nat. Resour. Res. 2021, 30, 3853–3864. [Google Scholar] [CrossRef]
- Wei, H.X.; Zhu, J. Study on Application of Support Vector Machine to Prediction of Blasting Vibration Velocity. Appl. Mech. Mater. 2011, 71–78, 4155–4159. [Google Scholar] [CrossRef]
- Peng, F.H.; Liu, J. SVM Model for Predicting the Peak Velocity of Blasting Vibration and its Application. Hunan Nonferrous Met. 2021, 37, 11–13+18. [Google Scholar]
- Zhang, P.F.; Yuan, Y.; He, Y.H.; Dai, S.J.; Li, J.Z.; Chi, X.H.; Li, W.; Sun, X.; Zhang, J.; Bai, R.C.; et al. Research on blasting vibration prediction of open pit mines based on GRA-EPSO-SVM model. Coal Sci. Technol. 2024, 1–17. [Google Scholar]
- Yue, Z.W.; Wu, Y.X.; Wei, Z.; Wang, G.; Wang, Y.; Li, X. Modeling of blasting vibration velocity prediction in open pit mines based on PCA-GA-SVM. Eng. Blasting 2021, 27, 22–28+39. [Google Scholar]
- Xu, S.; Li, Y.; Liu, J.; Zhang, F. Optimization of blasting parameters for an underground mine through prediction of blasting vibration. J. Vib. Control 2019, 25, 1585–1595. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.H.; Li, L.N.; Chen, J.W.; Yao, Y.K.; Liu, C.B. Vibration velocity prediction of mine blasting based on particle swarm-least squares support vector machine model. Met. Min. 2022, 7, 145–150. [Google Scholar]
- Zhang, Z.H.; Liu, X.S.; Wu, L.J.; Hu, G.Q. Prediction of Blast-induced Ground Vibration using Eight New Intelligent Models. IAENG Int. J. Comput. Sci. 2024, 51, 642–649. [Google Scholar]
- Zhong, D.W.; Huang, X.; Lu, Z.; Chen, C.; Si, J.F. Experimental study on dynamic response of buried steel pipe under blasting load. Blasting 2018, 35, 19–25. [Google Scholar]
- Gong, X.C.; Zhong, D.W.; Si, J.F.; He, L. Dynamic response of direct-buried steel pipe (empty pipe) under the action of blast wave in highly saturated clayey soil. Explos. Shock Waves 2020, 40, 13–25. [Google Scholar]
- Tu, S.; Zhong, D.; Li, L.; Gong, X.; Tao, H. Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data. Sensors 2023, 23, 6359. [Google Scholar] [CrossRef]
- Zhang, G.P.; Zhao, G.; Hu, Y.G.; Zheng, H.W.; Rao, Y.; Yang, Z.W. Peak velocity prediction of blasting vibration based on BFO-LSSVM algorithm. Yangtze River Tech. Econ. 2022, 6, 51–56. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
Test Parameters | Control Variable Scope |
---|---|
Amount of explosive (g) | 50, 75, 100, 125, 150, 175, 200 |
Explosion source burial depth (m) | 0.5, 1, 1.5, 2 |
Pipe internal pressure (MPa) | 0, 0.2, 0.4, 0.6, 0.8 |
Explosion center distance (m) | 2.2, 2.7, 3.2 |
Density ρs/(kg·m−3) | Young’s Modulus ES/GPa | Poisson’s Ratio μs | Strength Limit σsb/MPa | Yield Limit σss/MPa | Elongation ξs/% |
---|---|---|---|---|---|
7850 | 210 | 0.30 | 410 | 200 | 25 |
Pipe Number | Pipe Outer Diameter Ds/mm | Pipe Inner Diameter ds/mm | Pipe Wall Thickness δs/mm | Pipe Length Ls/m |
---|---|---|---|---|
P1 | 110 | 101.5 | 4.24 | 4.5 |
P2 | 160 | 149.6 | 4.7 | 4.5 |
P3 | 300 | 291.2 | 4.4 | 4.5 |
Number of Groups | /cm/s | Q/g | R/m | He/m | D/mm | /mm | H/m | P/MPa |
---|---|---|---|---|---|---|---|---|
1 | 20.25 | 100 | 2.2 | 1 | 110 | 4.24 | 0.5 | 0 |
2 | 29.54 | 150 | 2.2 | 0.5 | 160 | 4.7 | 1 | 0.4 |
3 | 29.32 | 200 | 2.7 | 1.5 | 300 | 4.4 | 1.5 | 0.6 |
4 | 15.18 | 175 | 3.2 | 2 | 160 | 4.7 | 1 | 0.4 |
5 | 35.33 | 200 | 2.2 | 1.5 | 110 | 4.24 | 0.5 | 0.2 |
6 | 25.62 | 150 | 2.7 | 1.5 | 300 | 4.4 | 1.5 | 0.6 |
7 | 20.25 | 100 | 2.2 | 1 | 300 | 4.4 | 1.5 | 0 |
8 | 15.89 | 125 | 3.2 | 1 | 160 | 4.7 | 1 | 0.8 |
9 | 23.40 | 200 | 2.7 | 1.5 | 160 | 4.7 | 1 | 0.4 |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
60 | 32.39 | 300 | 2.7 | 2 | 160 | 4.7 | 1 | 0.6 |
Q | R | P | D | He | H | |
---|---|---|---|---|---|---|
0.789 | 0.763 | 0.703 | 0.685 | 0.627 | 0.618 | 0.605 |
Formula Type | MRE | RMSE | ||
---|---|---|---|---|
PSO-LSSVM Model | 0.0869 | 0.9903 | 0.9151 | 0.2954 |
BP neural network model | 0.3476 | 0.8976 | 0.8848 | 0.7601 |
Sa’s empirical formula | 0.7849 | 0.2014 | 0.6286 | 2.8444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Tu, S.; Nie, S.; Ming, W. Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model. Sensors 2024, 24, 7437. https://doi.org/10.3390/s24237437
Zhang H, Tu S, Nie S, Ming W. Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model. Sensors. 2024; 24(23):7437. https://doi.org/10.3390/s24237437
Chicago/Turabian StyleZhang, Hongyu, Shengwu Tu, Senlin Nie, and Weihua Ming. 2024. "Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model" Sensors 24, no. 23: 7437. https://doi.org/10.3390/s24237437
APA StyleZhang, H., Tu, S., Nie, S., & Ming, W. (2024). Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model. Sensors, 24(23), 7437. https://doi.org/10.3390/s24237437