Using a Webcam to Assess Upper Extremity Proprioception: Experimental Validation and Application to Persons Post Stroke
<p>The visual display of the OpenPoint proprioception assessment, as implemented with a webcam. (<b>A</b>): The start position for the pointing task. Note that the image displayed to the participant is mirrored, so the user’s left hand appears on the left side of the screen. The assessment requires users to touch the fingertip of one hand with the fingertip of the other hand. The hand on the torso is the “target hand”, which is normally obscured using a graphically overlaid polygon, as shown on the left. (<b>B</b>): We removed the polygon to illustrate the accuracy of the finger tracking algorithm. The user is instructed to raise their pointing finger to a start target indicated by the green circle. The software then shows a target on the tip of one of the fingers of the cartoon hand (red circle). Following a three second countdown, the user is given an instruction to point and tries to touch the fingertip on their target hand, which is hidden by the polygon. Participants were instructed to refrain from directly looking at their own target hand. The tracking algorithm robustly tracks both fingertips and determines when the pointing finger stops moving, measuring the pointing error to assess proprioceptive ability.</p> "> Figure 2
<p>Pointing error calculation. (<b>A</b>) Example output from MediaPipe. The orange lines connect the landmarks returned by MediaPipe when the fingers are fully extended. We defined pointing error as the distance between the fingertips in the frontal plane (blue line). (<b>B</b>) Results from a simple experiment where the participants kept the distance between their fingers constant but moved their hands away from the camera by sliding backward on a rolling chair. The pixel-based pointing error (blue) decreased as the individual rolled back from the camera, as did apparent hand size, measured in pixels (orange line). The pixel-based pointing error (blue) has been multiplied by six to better show the decrease in distance. Dividing pixel-based pointing error by <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>a</mi> <mi>n</mi> <msub> <mrow> <mi>d</mi> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> <mrow> <mi>p</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> produced a constant pointing error (green) that can be scaled to centimeters based on the calibration photos in (<b>C</b>). (<b>C</b>) An example calibration photo of participant’s hand lying on top of graph paper in order to calculate <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>a</mi> <mi>n</mi> <msub> <mrow> <mi>d</mi> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> <mrow> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>Graphical summary of the different tasks tested in Experiment 1.</p> "> Figure 4
<p>Examples of persons post stroke performing the pointing task. In Experiment 2, participants who had had a stroke sometimes could not extend the fingers of their target (hemiparetic) hand and were instructed to point to different landmarks on their hand depending on their capability. (<b>A</b>) Participant pointing to the fingertips while holding a foam pillow against the chest. (<b>B</b>) Participant pointing to the PIP joint while using an arm sling to hold his arm in a fixed position during the duration of the experiment. (<b>C</b>) Participant pointing to the MCP joint and using an arm sling.</p> "> Figure 5
<p>(<b>A</b>) Experimental setup for measuring finger proprioceptive error using the Crisscross assessments. For Crisscross, the FINGER robot moved the index and middle fingers in a crossing movement and participants were instructed to press a button with their other hand when they perceived them to be overlapped. The gray rectangle indicates the location of the opaque plastic divider used during the assessment to block the hand from view. (<b>B</b>) Example trajectories for the metacarpophalangeal (MCP) joint of the index (blue) and middle (black) fingers during Crisscross.</p> "> Figure 6
<p>Experiment 1 results. In this experiment we evaluated the pointing error of unimpaired young (<span class="html-italic">n</span> = 22) and older (<span class="html-italic">n</span> = 18) individuals in different tasks. (<b>A</b>) Two-dimensional representation of the target hand (in black) showing the mean and standard deviation across participants of the pointing endpoint (in colors). The plotted data are from the young group. (<b>B</b>) Pointing error for each task (black: mean and SD for younger participants, dark red: mean and SD for older participants). Colored points show the pointing error for individual users.</p> "> Figure 7
<p>Pointing error as a function of different factors in Experiment 1. (<b>A</b>) Visual condition (ANOVA, <span class="html-italic">p</span> < 0.001). (<b>B</b>) Real or fake target hand (<span class="html-italic">p</span> < 0.001). (<b>C</b>) Age (<span class="html-italic">p</span> = 0.005). (<b>D</b>) Distance from the target hand to the body (<span class="html-italic">p</span> < 0.001). The error bars represent the standard deviation (SD) of the pointing errors.</p> "> Figure 8
<p>Further Analysis of Pointing Error from Experiment 1. (<b>A</b>) The effect of target hand conditions (real and fake) and visual condition (full, partial, and blindfolded), <span class="html-italic">p</span> < 0.001 (<b>B</b>) The effect of visual condition (full, partial, and blindfolded) and age (young and older), <span class="html-italic">p</span> = 0.05. (<b>C</b>) The effect of target hand (real and fake) and age (young and older), <span class="html-italic">p</span> = 0.002. (<b>D</b>) The effect of visual condition (full, partial, and blindfolded) and age (young and older) for the real hand, <span class="html-italic">p</span> = 0.59. (<b>E</b>) The effect of visual condition (full, partial, and blindfolded) and age (young and older) for the fake hand, <span class="html-italic">p</span> = 0.09, with additional lines showing the effects of task order. (<b>F</b>) The effect of distance (target hand close to the body vs. target hand extended out from the body) and age (older and young), <span class="html-italic">p</span> < 0.001. The error bars represent the standard deviation (SD) of the pointing errors.</p> "> Figure 9
<p>Results from Experiment 2. Proprioceptive pointing error was higher in persons who had experienced a stroke and was correlated with an independent, robot-based measure of their finger proprioception. (<b>A</b>) The pointing errors from Task 2 comparing the older and stroke groups. The stroke group had a significantly larger pointing error compared to the older group (<span class="html-italic">p</span> < 0.001). The error bars represent the standard deviation (SD) of the pointing errors. (<b>B</b>) OpenPoint pointing error was moderately correlated with the Crisscross finger proprioception error angular error. Each scatter point represents a participant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Overview
2.2. Experimental Protocol
- 1.
- Experiment 1—Unimpaired subjects:
- 2.
- Experiment 2—stroke survivors:
2.3. Data Processing
2.4. Robotic Validation
2.5. Data Analysis
3. Results
3.1. Experiment 1: Effects of Various Levels of Visual and Proprioceptive Information on Pointing Error
3.1.1. Reducing Proprioceptive Information Increased Pointing Error
3.1.2. Reducing Visual Information Increased Pointing Error
3.1.3. Effect of Task Order and Age
3.1.4. Moving the Target Hand Farther from the Body Increased Proprioception Error
3.2. Experiment 2: Proprioceptive Pointing Error Was Increased After Stroke and Correlated with an Independent Assessment
4. Discussion
4.1. Validating OpenPoint as a Proprioceptive Assessment
4.2. Validating the Partial Vision Testing Condition
4.3. Effect of Age on Pointing Error
4.4. Making OpenPoint Feasible for Assessment of Proprioception in Stroke
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, J.L. Proprioception; Elsevier: New York, NY, USA, 2009; ISBN 0-444-81612-7. [Google Scholar]
- Tuthill, J.C.; Azim, E. Proprioception. Curr. Biol. 2018, 28, R194–R203. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.; Immink, M.; Thewlis, D. Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil. Neural Repair. 2015, 29, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Gandevia, S.C. The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Wong, J.D.; Kistemaker, D.A.; Chin, A.; Gribble, P.L. Can proprioceptive training improve motor learning? J. Neurophysiol. 2012, 108, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, A. Proprioception: Bottom-up directive for motor recovery after spinal cord injury. Neurosci. Res. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Seo, H.G.; Yun, S.J.; Farrens, A.J.; Johnson, C.A.; Reinkensmeyer, D.J. A Systematic Review of the Learning Dynamics of Proprioception Training: Specificity, Acquisition, Retention, and Transfer. Neurorehabil. Neural Repair. 2023, 37, 744–757. [Google Scholar] [CrossRef]
- Ljubojević, A.; Bijelić, S.; Zagorc, M.; Radisavljević, L.; Uzunović, S.; Pantelić, K. Effects of proprioceptive training on balance skills among sport dance dancers. Facta Univ. Ser. Phys. Educ. Sport. 2012, 10, 257–266. [Google Scholar]
- Kiefer, A.W.; Riley, M.A.; Shockley, K.; Sitton, C.A.; Hewett, T.E.; Cummins-Sebree, S.; Haas, J.G. Lower-limb Proprioceptive Awareness in Professional Ballet Dancers. J. Danc. Med. Sci. 2013, 17, 126–132. [Google Scholar] [CrossRef]
- Muaidi, Q.I.; Nicholson, L.L.; Refshauge, K.M. Do elite athletes exhibit enhanced proprioceptive acuity, range and strength of knee rotation compared with non-athletes? Scand. J. Med. Sci. Sports 2009, 19, 103–112. [Google Scholar] [CrossRef]
- Tseng, Y.-T.; Tsai, C.-L.; Chen, F.-C. Wrist proprioceptive acuity is linked to fine motor function in children undergoing piano training. J. Neurophysiol. 2020, 124, 2052–2059. [Google Scholar] [CrossRef]
- Hirano, M.; Kimoto, Y.; Furuya, S. Specialized Somatosensory–Motor Integration Functions in Musicians. Cereb. Cortex 2020, 30, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Chesler, A.T.; Szczot, M.; Bharucha-Goebel, D.; Čeko, M.; Donkervoort, S.; Laubacher, C.; Hayes, L.H.; Alter, K.; Zampieri, C.; Stanley, C.; et al. The Role of PIEZO2 in Human Mechanosensation. N. Engl. J. Med. 2016, 375, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Dukelow, S.P.; Herter, T.M.; Moore, K.D.; Demers, M.J.; Glasgow, J.I.; Bagg, S.D.; Norman, K.E.; Scott, S.H. Quantitative Assessment of Limb Position Sense Following Stroke. Neurorehabil. Neural Repair. 2010, 24, 178–187. [Google Scholar] [CrossRef]
- Carey, L.M.; Oke, L.E.; Matyas, T.A. Impaired Touch Discrimination After Stroke: A Quantiative Test. J. Neurol. Rehabil. 1997, 11, 219–232. [Google Scholar] [CrossRef]
- Connell, L.; Lincoln, N.; Radford, K. Somatosensory impairment after stroke: Frequency of different deficits and their recovery. Clin. Rehabil. 2008, 22, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Wirz, M.; van Hedel, H.J.A. Chapter 24—Balance, gait, and falls in spinal cord injury. In Handbook of Clinical Neurology; Day, B.L., Lord, S.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 367–384. [Google Scholar]
- Vaugoyeau, M.; Hakam, H.; Azulay, J.-P. Proprioceptive impairment and postural orientation control in Parkinson’s disease. Hum. Mov. Sci. 2011, 30, 405–414. [Google Scholar] [CrossRef]
- Konczak, J.; Corcos, D.M.; Horak, F.; Poizner, H.; Shapiro, M.; Tuite, P.; Volkmann, J.; Maschke, M. Proprioception and Motor Control in Parkinson’s Disease. J. Mot. Behav. 2009, 41, 543–552. [Google Scholar] [CrossRef]
- Mahmud, A.A.; Nahid, N.A.; Nassif, C.; Sayeed MS, B.; Ahmed, M.U.; Parveen, M.; Khalil, M.I.; Islam, M.M.; Nahar, Z.; Rypens, F.; et al. Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures. Clin. Genet. 2017, 91, 470–475. [Google Scholar] [CrossRef]
- Sharma, L. Proprioceptive impairment in knee osteoarthritis. Rheum. Dis. Clin. 1999, 25, 299–314. [Google Scholar] [CrossRef]
- Nardone, A.; Grasso, M.; Schieppati, M. Balance control in peripheral neuropathy: Are patients equally unstable under static and dynamic conditions? Gait Posture 2006, 23, 364–373. [Google Scholar] [CrossRef]
- Song, C.H.; Petrofsky, J.S.; Lee, S.W.; Lee, K.J.; Yim, J.E. Effects of an Exercise Program on Balance and Trunk Proprioception in Older Adults with Diabetic Neuropathies. Diabetes Technol. Ther. 2011, 13, 803–811. [Google Scholar] [CrossRef] [PubMed]
- van Deursen, R.W.M.; Simoneau, G.G. Foot and Ankle Sensory Neuropathy, Proprioception, and Postural Stability. J. Orthop. Sports Phys. Ther. 1999, 29, 718–726. [Google Scholar] [CrossRef]
- Ingemanson, M.L.; Rowe, J.R.; Chan, V.; Riley, J.; Wolbrecht, E.T.; Reinkensmeyer, D.J.; Cramer, S.C. Neural Correlates of Passive Position Finger Sense After Stroke. Neurorehabil. Neural Repair. 2019, 33, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.E.; Borich, M.R.; Kesar, T.M.; Reisman, D.S.; Semrau, J.A. Limitations in utilization and prioritization of standardized somatosensory assessments after stroke: A cross-sectional survey of neurorehabilitation clinicians. Top. Stroke Rehabil. 2024, 31, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Ingemanson, M.L.; Rowe, J.R.; Chan, V.; Wolbrecht, E.T.; Reinkensmeyer, D.J.; Cramer, S.C. Somatosensory system integrity explains differences in treatment response after stroke. Neurology 2019, 92, e1098–e1108. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.B.; Chan, V.; Ingemanson, M.L.; Cramer, S.C.; Wolbrecht, E.T.; Reinkensmeyer, D.J. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial. Neurorehabil. Neural Repair. 2017, 31, 769–780. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.J.; Guigon, E.; Maier, M.A. A computational model of use-dependent motor recovery following a stroke: Optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics. Neural Netw. 2012, 29–30, 60–69. [Google Scholar] [CrossRef]
- Norman, S.L.; Wolpaw, J.R.; Reinkensmeyer, D.J. Targeting neuroplasticity to improve motor recovery after stroke: An artificial neural network model. Brain Commun. 2022, 4, fcac264. [Google Scholar] [CrossRef]
- Bo, K. Finger nose proprioception test (case study). Clin. Med. 2019, 19, 20. [Google Scholar] [CrossRef]
- Waxman, S.G. The Neurologic Examination. In Clinical Neuroanatomy; McGraw Hill: New York, NY, USA, 2024. [Google Scholar]
- Benton, A.; Cohen, B. Right-Left Discrimination and Finger-Localization in Normal and Brain Injured Subjects. Proc. Iowa Acad. Sci. 1955, 62, 447–451. [Google Scholar]
- Trotter, J.S.; Davis, A.S. Finger Localization. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 1049–1050. ISBN 978-0-387-79948-3. [Google Scholar]
- Hirayama, K.; Fukutake, T.; Kawamura, M. ‘Thumb localizing test’ for detecting a lesion in the posterior column–medial lemniscal system. J. Neurol. Sci. 1999, 167, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Darling, W.G.; Wall, B.M.; Coffman, C.R.; Capaday, C. Pointing to One’s Moving Hand: Putative Internal Models Do Not Contribute to Proprioceptive Acuity. Front. Hum. Neurosci. 2018, 12, 177. Available online: https://www.frontiersin.org/articles/10.3389/fnhum.2018.00177 (accessed on 29 January 2024). [CrossRef]
- Coffman, C.R.; Capaday, C.; Darling, W.G. Proprioceptive Acuity is Enhanced During Arm Movements Compared to When the Arm is Stationary: A Study of Young and Older Adults. Neuroscience 2021, 466, 222–234. [Google Scholar] [CrossRef]
- Horváth, Á.; Ferentzi, E.; Schwartz, K.; Jacobs, N.; Meyns, P.; Köteles, F. The measurement of proprioceptive accuracy: A systematic literature review. J. Sport. Health Sci. 2023, 12, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Bickley, L.; Szilagyi, P.G. Bates’ Guide to Physical Examination and History-Taking; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; ISBN 978-1-60913-762-5. [Google Scholar]
- Leibowitz, N.; Levy, N.; Weingarten, S.; Grinberg, Y.; Karniel, A.; Sacher, Y.; Serfaty, C.; Soroker, N. Automated measurement of proprioception following stroke. Disabil. Rehabil. 2008, 30, 1829–1836. [Google Scholar] [CrossRef]
- Reid, S.; Egan, B. The validity and reliability of DrGoniometer, a smartphone application, for measuring forearm supination. J. Hand Ther. 2019, 32, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; González-Hernández, J.M.; Fernández-Domínguez, J.C. Assessing the concurrent validity and reliability of an iPhone application for the measurement of range of motion and joint position sense in knee and ankle joints of young adults. Phys. Ther. Sport. 2020, 44, 136–142. [Google Scholar] [CrossRef]
- Lam, W.W.T.; Tang, Y.M.; Fong, K.N.K. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. J. NeuroEngineering Rehabil. 2023, 20, 57. [Google Scholar] [CrossRef]
- Ingemanson, M.L.; Rowe, J.B.; Chan, V.; Wolbrecht, E.T.; Cramer, S.C.; Reinkensmeyer, D.J. Use of a robotic device to measure age-related decline in finger proprioception. Exp. Brain Res. 2016, 234, 83–93. [Google Scholar] [CrossRef]
- Taheri, H.; Rowe, J.B.; Gardner, D.; Chan, V.; Reinkensmeyer, D.J.; Wolbrecht, E.T. Robot-assisted Guitar Hero for finger rehabilitation after stroke. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 3911–3917. [Google Scholar] [CrossRef]
- Reinsdorf, D.S.; Mahan, E.E.; Reinkensmeyer, D.J. Proprioceptive Gaming: Making Finger Sensation Training Intense and Engaging with the P-Pong Game and PINKIE Robot. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; IEEE: Toulouse, France, 2021; pp. 6715–6720. [Google Scholar]
- Mourcou, Q.; Fleury, A.; Diot, B.; Franco, C.; Vuillerme, N. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception. Biomed. Res. Int. 2015, 2015, 328142. [Google Scholar] [CrossRef] [PubMed]
- Milani, P.; Coccetta, C.A.; Rabini, A.; Sciarra, T.; Massazza, G.; Ferriero, G. Mobile smartphone applications for body position measurement in rehabilitation: A review of goniometric tools. PM R 2014, 6, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Mourcou, Q.; Fleury, A.; Diot, B.; Vuillerme, N. iProprio: A smartphone-based system to measure and improve proprioceptive function. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Toulouse, France, 2016; pp. 2622–2625. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.-L.; Grundmann, M. MediaPipe Hands: On-device Real-time Hand Tracking. arXiv 2020, arXiv:2006.10214. [Google Scholar] [CrossRef]
- Maji, D.; Nagori, S.; Mathew, M.; Poddar, D. YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss. arXiv 2022, arXiv:2204.06806. [Google Scholar] [CrossRef]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: Human movement dynamics from smartphone videos. PLoS Comput. Biol. 2023, 19, e1011462. [Google Scholar] [CrossRef]
- Fanton, M.; Harari, Y.; Giffhorn, M.; Lynott, A.; Alshan, E.; Mendley, J.; Czerwiec, M.; Macaluso, R.; Ideses, I.; Oks, E.; et al. Validation of Amazon Halo Movement: A smartphone camera-based assessment of movement health. Npj Digit. Med. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Biebl, J.T.; Rykala, M.; Strobel, M.; Kaur Bollinger, P.; Ulm, B.; Kraft, E.; Huber, S.; Lorenz, A. App-Based Feedback for Rehabilitation Exercise Correction in Patients With Knee or Hip Osteoarthritis: Prospective Cohort Study. J. Med. Internet Res. 2021, 23, e26658. [Google Scholar] [CrossRef]
- Wilson, E.T.; Wong, J.; Gribble, P.L. Mapping Proprioception across a 2D Horizontal Workspace. PLoS ONE 2010, 5, e11851. [Google Scholar] [CrossRef]
- See, J.; Dodakian, L.; Chou, C.; Chan, V.; McKenzie, A.; Reinkensmeyer, D.J.; Cramer, S.C. A Standardized Approach to the Fugl-Meyer Assessment and Its Implications for Clinical Trials. Neurorehabil. Neural Repair. 2013, 27, 732–741. [Google Scholar] [CrossRef]
- Khan, F.; Salahuddin, S.; Javidnia, H. Deep Learning-Based Monocular Depth Estimation Methods—A State-of-the-Art Review. Sensors 2020, 20, 2272. [Google Scholar] [CrossRef] [PubMed]
- Xiaogang, R.; Wenjing, Y.; Jing, H.; Peiyuan, G.; Wei, G. Monocular Depth Estimation Based on Deep Learning: A Survey. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 2436–2440. [Google Scholar]
- Taheri, H.; Rowe, J.B.; Gardner, D.; Chan, V.; Gray, K.; Bower, C.; Reinkensmeyer, D.J.; Wolbrecht, E.T. Design and preliminary evaluation of the FINGER rehabilitation robot: Controlling challenge and quantifying finger individuation during musical computer game play. J. Neuroeng. Rehabil. 2014, 11, 10. [Google Scholar] [CrossRef]
- Neurologic History & Examination | Clinical Neurology, 11e | AccessNeurology | McGraw Hill Medical. Available online: https://neurology.mhmedical.com/content.aspx?bookid=2975§ionid=251836370#251836537 (accessed on 30 August 2024).
- Moore, R.T.; Piitz, M.A.; Singh, N.; Dukelow, S.P.; Cluff, T. The independence of impairments in proprioception and visuomotor adaptation after stroke. J. NeuroEngineering Rehabil. 2024, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- van Ravestyn, C.; Gerardin, E.; Térémetz, M.; Hamdoun, S.; Baron, J.-C.; Calvet, D.; Vandermeeren, Y.; Turc, G.; Maier, M.A.; Rosso, C.; et al. Post-Stroke Impairments of Manual Dexterity and Finger Proprioception: Their Contribution to Upper Limb Activity Capacity. Neurorehabil. Neural Repair. 2024, 38, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice; Pearson/Prentice Hall: Boston, MA, USA, 2009; ISBN 978-0-13-171640-7. [Google Scholar]
- Ferlinc, A.; Fabiani, E.; Velnar, T.; Gradisnik, L. The Importance and Role of Proprioception in the Elderly: A Short Review. Mater. Socio Medica 2019, 31, 219. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Oliveira, J. Aging effects on joint proprioception: The role of physical activity in proprioception preservation. Eur. Rev. Aging Phys. Act. 2007, 4, 71–76. [Google Scholar] [CrossRef]
- Lovelace, E.A.; Aikens, J.E. Vision, Kinesthesis, and Control of Hand Movement by Young and Old Adults. Percept. Mot. Ski. 1990, 70, 1131–1137. [Google Scholar] [CrossRef]
- Kitchen, N.M. The Contribution of Proprioceptive Acuity to Upper Limb Motor Performance in Older and Younger Adults. d_ph, University of Birmingham. 2018. Available online: https://etheses.bham.ac.uk/id/eprint/8190/ (accessed on 8 August 2024).
- Teramoto, W. Age-related changes in visuo-proprioceptive processing in perceived body position. Sci. Rep. 2022, 12, 8330. [Google Scholar] [CrossRef]
- Swanson, V.A.; Johnson, C.; Zondervan, D.K.; Bayus, N.; McCoy, P.; Ng, Y.F.J.; Schindele Bs, J.; Reinkensmeyer, D.J.; Shaw, S. Optimized Home Rehabilitation Technology Reduces Upper Extremity Impairment Compared to a Conventional Home Exercise Program: A Randomized, Controlled, Single-Blind Trial in Subacute Stroke. Neurorehabil. Neural Repair. 2023, 37, 53–65. [Google Scholar] [CrossRef]
- Capaday, C.; Darling, W.G.; Stanek, K.; Van Vreeswijk, C. Pointing to oneself: Active versus passive proprioception revisited and implications for internal models of motor system function. Exp. Brain Res. 2013, 229, 171–180. [Google Scholar] [CrossRef]
- Ingram, L.A.; Butler, A.A.; Gandevia, S.C.; Walsh, L.D. Proprioceptive measurements of perceived hand position using pointing and verbal localisation tasks. PLoS ONE 2019, 14, e0210911. [Google Scholar] [CrossRef] [PubMed]
- Darling, W.G.; Zuck, B.I.; Mikhail, L.; Adhikari, J. Proprioceptive acuity for landmarks on the hand and digits. Exp. Brain Res. 2024, 242, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Darling, W.G.; Yem, J. Acuity of Proprioceptive Localization Varies with Body Region. Neuroscience 2023, 516, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Amprimo, G.; Masi, G.; Pettiti, G.; Olmo, G.; Priano, L.; Ferraris, C. Hand tracking for clinical applications: Validation of the Google MediaPipe Hand (GMH) and the depth-enhanced GMH-D frameworks. Biomed. Signal Process. Control 2024, 96, 106508. [Google Scholar] [CrossRef]
- Wagh, V.P.; Scott, M.W.; Kraeutner, S.N. Quantifying similarities between MediaPipe and a known standard for tracking 2D hand trajectories. bioRxiv 2023, 2023-11. [Google Scholar] [CrossRef]
- Hamilton, R.I.; Glavcheva-Laleva, Z.; Haque Milon, M.I.; Anil, Y.; Williams, J.; Bishop, P.; Holt, C. Comparison of computational pose estimation models for joint angles with 3D motion capture. J. Bodyw. Mov. Ther. 2024, 40, 315–319. [Google Scholar] [CrossRef]
- Zimmer, C.S. Proprio: A Computer-Vision-Based App for Upper Extremity Proprioception Training, UC Irvine. 2024. Available online: https://escholarship.org/uc/item/9pw7v4s0 (accessed on 30 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornella-Barba, G.; Farrens, A.J.; Johnson, C.A.; Garcia-Fernandez, L.; Chan, V.; Reinkensmeyer, D.J. Using a Webcam to Assess Upper Extremity Proprioception: Experimental Validation and Application to Persons Post Stroke. Sensors 2024, 24, 7434. https://doi.org/10.3390/s24237434
Cornella-Barba G, Farrens AJ, Johnson CA, Garcia-Fernandez L, Chan V, Reinkensmeyer DJ. Using a Webcam to Assess Upper Extremity Proprioception: Experimental Validation and Application to Persons Post Stroke. Sensors. 2024; 24(23):7434. https://doi.org/10.3390/s24237434
Chicago/Turabian StyleCornella-Barba, Guillem, Andria J. Farrens, Christopher A. Johnson, Luis Garcia-Fernandez, Vicky Chan, and David J. Reinkensmeyer. 2024. "Using a Webcam to Assess Upper Extremity Proprioception: Experimental Validation and Application to Persons Post Stroke" Sensors 24, no. 23: 7434. https://doi.org/10.3390/s24237434
APA StyleCornella-Barba, G., Farrens, A. J., Johnson, C. A., Garcia-Fernandez, L., Chan, V., & Reinkensmeyer, D. J. (2024). Using a Webcam to Assess Upper Extremity Proprioception: Experimental Validation and Application to Persons Post Stroke. Sensors, 24(23), 7434. https://doi.org/10.3390/s24237434