Fault-Tolerant Control for Quadcopters Under Actuator and Sensor Faults
<p>Quadcopter structure and variables.</p> "> Figure 2
<p>Initial configuration of the quadcopter’s control system.</p> "> Figure 3
<p>FDD and FTC systems implemented for the quadcopter.</p> "> Figure 4
<p>Innovation of the fault sub-filter using ATsUKF.</p> "> Figure 5
<p>Estimation of sensor faults using ATsUKF.</p> "> Figure 6
<p>Estimation of actuator faults using ATsUKF.</p> "> Figure 7
<p>Displacement of the quadcopter subjected to actuator and sensor faults.</p> "> Figure 8
<p>Control signals generated in systems with (<b>a</b>) and without (<b>b</b>) FTC.</p> "> Figure 9
<p>Quadcopter displacement in the <span class="html-italic">xy</span> plane.</p> "> Figure 10
<p>Behavior of systems in the presence of lock-up sensor faults.</p> "> Figure 11
<p>Estimation of sensor lock-up faults.</p> "> Figure 12
<p>Behavior of systems in the presence of wind-generated disturbances.</p> "> Figure 13
<p>Fault estimations in (<b>a</b>) sensors and (<b>b</b>) actuators.</p> ">
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Literature Review
1.3. Contributions and Organization
- -
- providing a comprehensive description of the actuator and sensor faults considered in the analysis;
- -
- implementing an adaptive version of the TsUKF, as proposed by [25], and assessing its application in quadrotors to address the main points highlighted in Section 1.2: the nonlinearities of the model, the lack of information regarding fault behavior, and the computational burden caused by the increase in system states due to the inclusion of fault estimations;
- -
- applying linear, extended, and unscented Kalman filter (KF) approaches, including three-stage and adaptive versions for fault estimation;
- -
- performance analysis in different flight scenarios, considering various fault behaviors and simultaneous fault occurrences;
- -
- development of an FTC system for a quadcopter, integrating the results from the FDD system;
- -
- performance comparison of the control structure with and without the FTC system under distinct scenarios, considering external disturbances, such as wind.
2. Dynamic Modeling of the Quadcopter
3. Controller and FTC System Design
3.1. Definitions for the Kalman Filter Algorithm
3.2. KF Approaches
3.3. FTC Structure
4. Results and Discussion
4.1. Scenario 1: ATsUKF
4.2. Scenario 2: Performance of Different FDD Approaches
4.3. Scenario 3: Performance of the FTC Architecture
4.4. Scenario 4: Performance of the FDD and FTC Architectures with Lock-Up Faults
4.5. Scenario 5: Performance of the FDD and FTC Architectures with Disturbances
5. Conclusions
- -
- transients in estimations generate disturbances in the control loop;
- -
- adaptive approaches enhance estimation accuracy;
- -
- nonlinear filters perform better than linear ones;
- -
- FTC systems effectively maintain quadcopter stability in the presence of faults;
- -
- FDD and FTC methods present some drawbacks when dealing with external disturbances.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osmani, K.; Schulz, D. Comprehensive investigation of unmanned aerial vehicles (UAVs): An in-depth analysis of avionics systems. Sensors 2024, 24, 3064. [Google Scholar] [CrossRef] [PubMed]
- SonugÜR, G. A review of quadrotor UAV: Control and SLAM methodologies ranging from conventional to innovative approaches. Robot. Auton. Syst. 2023, 161, 104342. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, C.; Bai, Y.; Du, W.; Wang, J. An actuator fault detection and reconstruction scheme for hex-rotor unmanned aerial vehicle. IEEE Access 2019, 7, 93937–93951. [Google Scholar] [CrossRef]
- Shraim, H.; Awada, A.; Youness, R. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerosp. Electron. Syst. Mag. 2018, 33, 14–33. [Google Scholar] [CrossRef]
- Melo, A.; Câmara, M.M.; Pinto, J.C. Data-driven process monitoring and fault diagnosis: A comprehensive survey. Processes 2024, 12, 251. [Google Scholar] [CrossRef]
- Shafiee, M.; Zhou, Z.; Mei, L.; Dinmohammadi, F.; Karama, J.; Flynn, D. Unmanned aerial drones for inspection of offshore wind turbines: A mission-critical failure analysis. Robotics 2021, 10, 26. [Google Scholar] [CrossRef]
- Khattab, A.; Mizrak, I.; Alwi, H. Fault tolerant control of an octorotor UAV using sliding mode for applications in challenging environments. Annu. Rev. Control 2024, 57, 100952. [Google Scholar] [CrossRef]
- Nawaz, M.; Maulud, A.S.; Zabiri, H.; Suleman, H. Review of multiscale methods for process monitoring, with an emphasis on applications in chemical process systems. IEEE Access 2022, 10, 49708–49724. [Google Scholar] [CrossRef]
- Rudin, K.; Ducard, G.J.J.; Siegwart, R.Y. Active fault-tolerant control with imperfect fault detection information: Applications to UAVs. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 2792–2805. [Google Scholar] [CrossRef]
- Aldrini, J.; Chihi, I.; Sidhom, L. Fault diagnosis and self-healing for smart manufacturing: A review. J. Intell. Manuf. 2024, 35, 2441–2473. [Google Scholar] [CrossRef]
- Zhong, M.; Xue, T.; Ding, S.X. A survey on model-based fault diagnosis for linear discrete time-varying systems. Neurocomputing 2018, 306, 51–60. [Google Scholar] [CrossRef]
- Benini, A.; Ferracuti, F.; Monteriù, A.; Radensleben, S. Fault detection of a VTOL UAV using acceleration measurements. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 3990–3995. [Google Scholar]
- Yu, Z.; Fu, J.; Liu, L.; Zhu, C. A fault detection method based on persistent excitation for a six-rotor UAV. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–5. [Google Scholar]
- Skliros, C.; Esperon Miguez, M.; Fakhre, A.; Jennions, I. A review of model based and data driven methods targeting hardware systems diagnostics. Diagnostyka 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Ghalamchi, B.; Jia, Z.; Mueller, M.W. Real-time vibration-based propeller fault diagnosis for multicopters. IEEE/ASME Trans. Mechatron. 2020, 25, 395–405. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Wang, Z.; Wang, X. Fault detection and identification method for quadcopter based on airframe vibration signals. Sensors 2021, 21, 581. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Yen, K.K.; Forouzannezhad, P.; Sargolzaei, A. A neural adaptive approach for active fault-tolerant control design in UAV. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3401–3411. [Google Scholar] [CrossRef]
- Zeghlache, S.; Mekki, H.; Bouguerra, A.; Djerioui, A. Actuator fault tolerant control using adaptive RBFNN fuzzy sliding mode controller for coaxial octorotor UAV. ISA Trans. 2018, 80, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; He, L.; Zhang, D.; Qian, J.; Fu, J. Neuroadaptive fault-tolerant control of quadrotor UAVs: A more affordable solution. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1975–1983. [Google Scholar] [CrossRef]
- Guo, D.; Zhong, M.; Ji, H.; Liu, Y.; Yang, R. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors. Neurocomputing 2018, 319, 155–163. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, D.; Liu, S.; Li, Y. Fault detection for linear discrete time-varying systems with multiplicative noise based on parity space method. ISA Trans. 2022, 121, 156–170. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Jaber, A.A.; Al-Haddad, S.A.; Al-Muslim, Y.M. Fault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning models. J. Supercomput. 2024, 80, 3005–3024. [Google Scholar] [CrossRef]
- Sahu, A.R.; Palei, S.K.; Mishra, A. Data-driven fault diagnosis approaches for industrial equipment: A review. Expert Syst. 2024, 41, e13360. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Zhang, W.; Zuo, J.; Zhan, H. Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances. IEEE Access 2018, 6, 48169–48180. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Y.; Fu, H. Three-stage unscented Kalman filter for state and fault estimation of nonlinear system with unknown input. J. Frankl. Inst. 2017, 354, 8421–8443. [Google Scholar] [CrossRef]
- Nejati, Z.; Abedi, M.; Faraji, A. Modified three stage Kalman filtering for stochastic non-linear systems with randomly occurring faults and intermittent measurements. IET Control Theory Appl. 2022, 16, 674–697. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Wang, Z.; Fu, H.; Wu, Y. Robust three-stage unscented Kalman filter for Mars entry phase navigation. Inf. Fusion 2019, 51, 67–75. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, L.; Zhao, J.; Zhu, Y. Fault detection and fault-tolerant control for discrete-time multi-agent systems with sensor faults: A data-driven method. IEEE Sens. J. 2024, 24, 22601–22609. [Google Scholar] [CrossRef]
- Zhong, M.; Zhu, X.; Xue, T.; Zhang, L. An overview of recent advances in model-based event-triggered fault detection and estimation. Int. J. Syst. Sci. 2023, 54, 929–943. [Google Scholar] [CrossRef]
- Hasan, A.; Tahavori, M.; Midtiby, H.S. Model-based fault diagnosis algorithms for robotic systems. IEEE Access 2023, 11, 2250–2258. [Google Scholar] [CrossRef]
- Abdelhay, S.; Zakriti, A. Modeling of a quadcopter trajectory tracking system using PID controller. Procedia Manuf. 2019, 32, 564–571. [Google Scholar] [CrossRef]
- Yoon, J.; Doh, J. Optimal PID control for hovering stabilization of quadcopter using long short term memory. Adv. Eng. Inform. 2022, 53, 101679. [Google Scholar] [CrossRef]
- Nguyen, L.A.; Kiet, P.T.; Lee, S.; Yeo, H.; Son, Y. Comprehensive survey of sensor data verification in internet of things. IEEE Access 2023, 11, 50560–50577. [Google Scholar] [CrossRef]
- Sun, M.; Davies, M.E.; Proudler, I.K.; Hopgood, J.R. Adaptive kernel Kalman filter. IEEE Trans. Signal Process. 2023, 71, 713–726. [Google Scholar] [CrossRef]
- Okada, K.F.Á.; Morais, A.S.d.; Oliveira-Lopes, L.C.; Ribeiro, L. Neuroadaptive observer-based fault-diagnosis and fault-tolerant control for quadrotor UAV. In Proceedings of the 2021 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 15–18 August 2021; pp. 285–292. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises, 4th ed.; John Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 4th ed.; John Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Xiao, M.; Zhang, Y.; Wang, Z.; Fu, H. An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs. ISA Trans. 2018, 75, 101–117. [Google Scholar] [CrossRef]
- Sierra, J.E.; Santos, M. Wind and payload disturbance rejection control based on adaptive neural estimators: Application on quadrotors. Complexity 2019, 2019, 6460156. [Google Scholar] [CrossRef]
Solutions | Characteristics |
---|---|
Signal-based methods | - Focus on fault detection for maintenance purposes only, without enabling diagnosis; - Additional sensors may be required; - Least recommended solution for the specific case of this work. |
Data-driven methods | - Diagnosis aimed at classifying faults, except in hybrid cases; - Historical fault data are required; - Application in artificial intelligence (AI) faces challenges due to the difficulty of knowing all possible faults. |
Model-based methods | - Diagnosis based on fault estimation, with the capacity to isolate and determine the magnitude, location, and time of occurrence; - Performance is affected by the model accuracy; - Mostly recommended for drones, as used in this work. |
All methods | - Problems in integrating sensor and actuator faults into the FTC; - Lack of results related to certain scenarios, such as simultaneous and multiple occurrences of faults and the presence of disturbances in the system. |
Version | Linear | Nonlinear | Application |
---|---|---|---|
Enhanced | KF | UKF [36] EKF [37] | - Incorporation of actuator and sensor faults into the system’s state space for estimating these signals. - Performance assessment of both versions in the presence of nonlinearities and unknown fault dynamics. |
Three-Stage | TsKF | TsUKF [25] TsEKF [38] | - Possible incorporation of three sub-filters, related to the quadcopter dynamics and faults in actuators and sensors. - Reduced computational burden. |
Adaptive | ATsKF | ATsEKF [24], ATsUKF | - The actual innovation covariance is weighted against the innovation covariance obtained analytically from the filter. - Improved accuracy in fault estimation. |
Controlled Variable | OS (%) | Ts,5% (s) | Third Pole | Kp | Ki | Kd |
---|---|---|---|---|---|---|
x | <1 | 2 | 6 | 2.11 | 1.66 | 9.17·10−1 |
y | <1 | 2 | 6 | −2.11 | −1.66 | −9.17·10−1 |
z | <1 | 2 | 6 | 1.31 | 1.03 | 0.57·10−1 |
Φ | <1 | 0.5 | 24 | 1.93·10−2 | 6.08·10−2 | 2.10·10−2 |
θ | <1 | 0.5 | 24 | 2.38·10−2 | 7.48·10−2 | 2.58·10−2 |
ψ | <1 | 2 | 6 | 2.10·10−3 | 2.58·10−3 | 9.00·10−4 |
Parameter | Description |
---|---|
Diagonal matrix: 2.5·[10−6 10−6 10−6 10−6 10−6 10−6 10−8 10−8 10−8 10−8 10−8 10−8] | |
Diagonal matrix: 3.0·[10−6 10−6 10−6 10−6] | |
Diagonal matrix: 3.0·[10−6 10−6 10−6 10−6 10−6 10−6] | |
Null matrices | |
Diagonal matrix: [10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4] | |
Diagonal matrix: [10−4 10−4 10−4 10−4]; | |
Diagonal matrix: [10−4 10−4 10−4 10−4 10−4 10−4] | |
Null matrices | |
Diagonal matrix: [10−3 10−3 5.0·10−4 10−1 10−1 5.0·10−4 10−4 10−4 10−2 10−2 10−2 10−2] | |
M | 50 samples |
Fault | Instant (s) | Behavior | Maximum Amplitude (%) |
---|---|---|---|
5 | Step | 50 | |
11 | Sawtooth | 50 | |
17 | Sinusoidal | 50 | |
23 | Inttermitent | 50 | |
8 | Step | 20 | |
12 | Step | 20 | |
16 | Step | 20 | |
20 | Step | 15 | |
24 | Step | 15 | |
28 | Step | 40 |
Variable | KF | EKF | UKF | TsKF | TsEKF | TsUKF | ATsKF | ATsEKF | ATsUKF |
---|---|---|---|---|---|---|---|---|---|
0.998 | 0.992 | 0.992 | 0.998 | 0.992 | 0.992 | 1.000 | 0.994 | 0.994 | |
0.999 | 0.998 | 1.000 | 0.999 | 0.998 | 0.998 | 1.000 | 0.999 | 0.999 | |
0.985 | 0.992 | 1.000 | 0.985 | 0.992 | 0.992 | 0.951 | 0.951 | 0.951 | |
1.000 | 0.974 | 0.974 | 1.000 | 0.974 | 0.974 | 0.990 | 0.968 | 0.968 | |
0.992 | 0.981 | 0.981 | 0.992 | 0.981 | 0.981 | 1.000 | 0.987 | 0.987 | |
0.976 | 0.973 | 0.969 | 0.976 | 0.973 | 0.973 | 1.000 | 1.000 | 1.000 | |
0.956 | 0.959 | 1.000 | 0.956 | 0.959 | 0.959 | 0.957 | 0.957 | 0.957 | |
0.985 | 0.980 | 1.000 | 0.985 | 0.980 | 0.980 | 0.980 | 0.976 | 0.976 | |
0.975 | 1.000 | 0.990 | 0.975 | 1.000 | 1.000 | 0.932 | 0.926 | 0.926 | |
0.998 | 1.000 | 0.998 | 0.998 | 1.000 | 1.000 | 0.994 | 0.996 | 0.997 | |
0.998 | 1.000 | 0.997 | 0.998 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | |
0.995 | 0.953 | 0.958 | 0.995 | 0.953 | 0.953 | 1.000 | 0.953 | 0.953 | |
1.000 | 0.933 | 0.938 | 1.000 | 0.933 | 0.933 | 0.990 | 0.931 | 0.931 | |
1.000 | 0.976 | 0.973 | 1.000 | 0.976 | 0.976 | 0.963 | 0.946 | 0.946 | |
0.924 | 0.965 | 1.000 | 0.924 | 0.965 | 0.965 | 0.695 | 0.709 | 0.709 | |
0.893 | 0.897 | 1.000 | 0.893 | 0.897 | 0.897 | 0.882 | 0.885 | 0.885 | |
0.948 | 0.948 | 1.000 | 0.948 | 0.948 | 0.948 | 0.940 | 0.938 | 0.938 | |
0.903 | 1.000 | 0.979 | 0.903 | 1.000 | 1.000 | 0.830 | 0.871 | 0.871 | |
0.990 | 0.582 | 0.579 | 0.990 | 0.582 | 0.582 | 1.000 | 0.583 | 0.583 | |
0.985 | 0.507 | 0.500 | 0.985 | 0.507 | 0.509 | 1.000 | 0.503 | 0.505 | |
0.991 | 0.598 | 0.600 | 0.991 | 0.598 | 0.597 | 1.000 | 0.600 | 0.600 | |
0.985 | 0.461 | 0.452 | 0.985 | 0.461 | 0.462 | 1.000 | 0.458 | 0.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, K.F.Á.; Morais, A.S.; Ribeiro, L.; Amaral da Luz, C.M.; Tofoli, F.L.; Lima, G.V.; Lopes, L.C.O. Fault-Tolerant Control for Quadcopters Under Actuator and Sensor Faults. Sensors 2024, 24, 7299. https://doi.org/10.3390/s24227299
Okada KFÁ, Morais AS, Ribeiro L, Amaral da Luz CM, Tofoli FL, Lima GV, Lopes LCO. Fault-Tolerant Control for Quadcopters Under Actuator and Sensor Faults. Sensors. 2024; 24(22):7299. https://doi.org/10.3390/s24227299
Chicago/Turabian StyleOkada, Kenji Fabiano Ávila, Aniel Silva Morais, Laura Ribeiro, Caio Meira Amaral da Luz, Fernando Lessa Tofoli, Gabriela Vieira Lima, and Luís Cláudio Oliveira Lopes. 2024. "Fault-Tolerant Control for Quadcopters Under Actuator and Sensor Faults" Sensors 24, no. 22: 7299. https://doi.org/10.3390/s24227299
APA StyleOkada, K. F. Á., Morais, A. S., Ribeiro, L., Amaral da Luz, C. M., Tofoli, F. L., Lima, G. V., & Lopes, L. C. O. (2024). Fault-Tolerant Control for Quadcopters Under Actuator and Sensor Faults. Sensors, 24(22), 7299. https://doi.org/10.3390/s24227299