Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques
<p>Field sampling of sugarcane stalks for spectral analysis.</p> "> Figure 2
<p>Experimental setup for Vis–SWNIR spectral data acquisition from sugarcane stalks: (1) spectrometer, (2) light source, and (3) probe.</p> "> Figure 3
<p>Schematic representation of the node/internode scanning angles for spectral data acquisition.</p> "> Figure 4
<p>Schematic representation of machine learning algorithms used in this study. (<b>a</b>) Linear Discriminant Analysis (LDA), (<b>b</b>) k-Nearest Neighbors (KNN) and (<b>c</b>) Artificial Neural Network (ANN). In these diagrams, rectangles represent datasets, calculations, and models. Arrows indicate the flow of data.</p> "> Figure 4 Cont.
<p>Schematic representation of machine learning algorithms used in this study. (<b>a</b>) Linear Discriminant Analysis (LDA), (<b>b</b>) k-Nearest Neighbors (KNN) and (<b>c</b>) Artificial Neural Network (ANN). In these diagrams, rectangles represent datasets, calculations, and models. Arrows indicate the flow of data.</p> "> Figure 5
<p>Overview of the node/internode classification model development process.</p> "> Figure 6
<p>Average Vis–SWNIR spectra of sugarcane nodes and internodes with ±1 standard deviation: (<b>a</b>) original, (<b>b</b>) MN, (<b>c</b>) Norm_L2, (<b>d</b>) Norm_inf, (<b>e</b>) MSC, (<b>f</b>) SNV, and (<b>g</b>) DL.</p> "> Figure 6 Cont.
<p>Average Vis–SWNIR spectra of sugarcane nodes and internodes with ±1 standard deviation: (<b>a</b>) original, (<b>b</b>) MN, (<b>c</b>) Norm_L2, (<b>d</b>) Norm_inf, (<b>e</b>) MSC, (<b>f</b>) SNV, and (<b>g</b>) DL.</p> "> Figure 7
<p>Comparison of performance metrics of calibration and validation models for different preprocessing methods and machine learning algorithms: (<b>a</b>) node F1-score (calibration), (<b>b</b>) internode F1-score (calibration), (<b>c</b>) node F1-score (validation), (<b>d</b>) internode F1-score (validation), (<b>e</b>) model accuracy (calibration), and (<b>f</b>) model accuracy (validation).</p> "> Figure 8
<p>Comparison of performance metrics of external validation models for different preprocessing methods and machine learning algorithms: (<b>a</b>) node F1-score, (<b>b</b>) internode F1-score, and (<b>c</b>) model accuracy.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sugarcane Sample Collection and Preparation
- Upper: fifth node from the top.
- Middle: Approximately the middle node based on stalk length.
- Bottom: fifth node from the bottom.
2.2. Vis–SWNIR Spectroscopy Data Acquisition
- Internode: Four scans were taken around the middle of the internode from four perpendicular directions. The scanning direction was adjusted by rotating the stalk and maintaining the contact between the stalk surface and the probe end.
- Node: Five scans were taken: (a) four scans around the selected node (excluding the bud) from four perpendicular directions and (b) one scan directly at the bud.
2.3. Data Preprocessing and Classification Modeling
2.3.1. Linear Discriminant Analysis (LDA)
2.3.2. K-Nearest Neighbors (KNN)
2.3.3. Artificial Neural Network (ANN)
2.3.4. Hyperparameter Tuning
2.4. Model Evaluation
3. Results
3.1. NIR Spectra of Sugarcane Samples
3.2. Classification Model Performance
3.3. External Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Crop Prospects and Food Situation. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 16 April 2024).
- Tangwongkit, B.; Tangwongkit, R.; Khawprateep, S.; Chainarong, N.; Chontanaswat, P. Improvement of sugarcane chopper harvester for sugarcane seed cutting. In Proceedings of the 47th Kasetsart University Annual Conference: Plants, The Thailand Research Fund, Bangkok, Thailand, 17–20 March 2009; pp. 55–61. [Google Scholar]
- Usaborisut, P. Progress in Mechanization of Sugarcane Farms in Thailand. Sugar Tech 2018, 20, 116–121. [Google Scholar] [CrossRef]
- Begum, M.; Ojha, N.J.; Sarmah, B.; Paul, S. Bud Chip Seedling-A New Propagating Technique in Sugarcane Production: An Overview. Agric. Rev. 2022, 45, 448. [Google Scholar] [CrossRef]
- Mohanty, M.; Das, P.P.; Nanda, S.S. Introducing SSI (Sustainable Sugarcane Initiative) Technology for Enhanced Cane Production and Economic Returns in Real Farming Situations Under East Coast Climatic Conditions of India. Sugar Tech 2015, 17, 116–120. [Google Scholar] [CrossRef]
- Patnaik, J.R.; Singh, S.N.; Sarangi, D.; Nayak, P.K. Assessing Potentiality of Bud Chip Technology on Sugarcane Productivity, Profitability and Sustainability in Real Farming Situations Under South East Coastal Plain Zone of Odisha, India. Sugar Tech 2017, 19, 373–377. [Google Scholar] [CrossRef]
- Srathongtiw, T.; Choedkiatphon, S. Development of Sugarcane Seedling Transplanter. Rajamangala Univ. Technol. Srivijaya Res. J. 2022, 14, 62–77. Available online: https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/246281 (accessed on 16 April 2024).
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Feng, Y.-Z.; Sun, D.-W. Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef]
- Vignati, S.; Tugnolo, A.; Giovenzana, V.; Pampuri, A.; Casson, A.; Guidetti, R.; Beghi, R. Hyperspectral Imaging for Fresh-Cut Fruit and Vegetable Quality Assessment: Basic Concepts and Applications. Appl. Sci. 2023, 13, 9740. [Google Scholar] [CrossRef]
- Singh, V.; Misra, A.K. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Srivastava, S.; Vani, B.; Sadistap, S. Handheld, smartphone based spectrometer for rapid and nondestructive testing of citrus cultivars. J. Food Meas. Charact. 2021, 15, 892–904. [Google Scholar] [CrossRef]
- Botero-Valencia, J.; Reyes-Vera, E.; Ospina-Rojas, E.; Prieto-Ortiz, F. A Portable Tool for Spectral Analysis of Plant Leaves That Incorporates a Multichannel Detector to Enable Faster Data Capture. Instruments 2024, 8, 24. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef]
- Prasanth, P.; Viswan, G.; Bennaceur, K. Development of a low-cost portable spectrophotometer for milk quality analysis. Mater. Today Proc. 2021, 46, 4863–4868. [Google Scholar] [CrossRef]
- Phetpan, K.; Udompetaikul, V.; Sirisomboon, P. An online visible and near-infrared spectroscopic technique for the real-time evaluation of the soluble solids content of sugarcane billets on an elevator conveyor. Comput. Electron. Agric. 2018, 154, 460–466. [Google Scholar] [CrossRef]
- Phuphaphud, A.; Saengprachatanarug, K.; Posom, J.; Maraphum, K.; Taira, E. Prediction of the fibre content of sugarcane stalk by direct scanning using visible-shortwave near infrared spectroscopy. Vib. Spectrosc. 2019, 101, 71–80. [Google Scholar] [CrossRef]
- Ong, P.; Jian, J.; Li, X.; Zou, C.; Yin, J.; Ma, G. New approach for sugarcane disease recognition through visible and near-infrared spectroscopy and a modified wavelength selection method using machine learning models. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123037. [Google Scholar] [CrossRef] [PubMed]
- Kaewsorn, K.; Phanomsophon, T.; Maichoon, P.; Pokhrel, D.R.; Pornchaloempong, P.; Krusong, W.; Sirisomboon, P.; Tanaka, M.; Kojima, T. Modeling Textural Properties of Cooked Germinated Brown Rice Using the near-Infrared Spectra of Whole Grain. Foods 2023, 12, 4516. [Google Scholar] [CrossRef]
- Henríquez, P.A.; Ruz, G.A. Noise reduction for near-infrared spectroscopy data using extreme learning machines. Eng. Appl. Artif. Intell. 2019, 79, 13–22. [Google Scholar] [CrossRef]
- Robert, G.; Gosselin, R. Evaluating the impact of NIR pre-processing methods via multiblock partial least-squares. Anal. Chim. Acta 2022, 1189, 339255. [Google Scholar] [CrossRef]
- Vaibhaw; Sarraf, J.; Pattnaik, P.K. Chapter 2—Brain–computer interfaces and their applications. In An Industrial IoT Approach for Pharmaceutical Industry Growth; Balas, V.E., Solanki, V.K., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 31–54. [Google Scholar]
- Benhar, H.; Idri, A.; Fernández-Alemán, J.L. Data preprocessing for heart disease classification: A systematic literature review. Comput. Methods Programs Biomed. 2020, 195, 105635. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, K.; Yang, Z.; Zhou, Y. (Eds.) Chapter Two—Primer on Artificial Intelligence. In Mobile Edge Artificial Intelligence; Academic Press: Cambridge, MA, USA, 2022; pp. 7–36. [Google Scholar] [CrossRef]
- Haghighat, E.; Juanes, R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput. Methods Appl. Mech. Eng. 2021, 373, 113552. [Google Scholar] [CrossRef]
- Sandeep, M.S.; Tiprak, K.; Kaewunruen, S.; Pheinsusom, P.; Pansuk, W. Shear strength prediction of reinforced concrete beams using machine learning. Structures 2023, 47, 1196–1211. [Google Scholar] [CrossRef]
- Lawan, A.A.; Cavus, N.; Yunusa, R.i.; Abdulrazak, U.I.; Tahir, S. Chapter 12—Fundamentals of machine-learning modeling for behavioral screening and diagnosis of autism spectrum disorder. In Neural Engineering Techniques for Autism Spectrum Disorder; El-Baz, A.S., Suri, J.S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 253–268. [Google Scholar]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Mancini, M.; Taavitsainen, V.-M.; Rinnan, Å. Comparison of classification methods performance for defining the best reuse of waste wood material using NIR spectroscopy. Waste Manag. 2024, 178, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Hong, S.-J.; Kim, E.; Lee, C.-H.; Kim, G. Neural network based prediction of soluble solids concentrationin oriental melon using VIS/NIR spectroscopy. Appl. Eng. Agric. 2021, 37, 653–663. [Google Scholar] [CrossRef]
- Mitku, A.A.; Titshall, L.; Zewotir, T.; North, D. Application of Support Vector Machine Regression and Partial Least-Square Regression Models for Predicting Sugarcane Leaf Nutrients Content Using Near Infra-Red Spectroscopy. Commun. Soil Sci. Plant Anal. 2024, 55, 196–207. [Google Scholar] [CrossRef]
- Corrêdo, L.P.; Wei, M.C.F.; Ferraz, M.N.; Molin, J.P. Near-infrared spectroscopy as a tool for monitoring the spatial variability of sugarcane quality in the fields. Biosyst. Eng. 2021, 206, 150–161. [Google Scholar] [CrossRef]
- Ma, F.; Wang, M.; Yan, N.; Adnan, M.; Jiang, F.; Hu, Q.; He, G.; Shen, Y.; Wan, Y.; Yang, Y.; et al. A fast and efficient phenotyping method to estimate sugarcane stalk bending properties using near-infrared spectroscopy. Eur. J. Agron. 2024, 154, 127107. [Google Scholar] [CrossRef]
- Chiatrakul, J.; Terdwongworakul, A.; Phuangsombut, K.; Phuangsombut, A. Improved evaluation of commercial cane sugar content in sugarcane stalk using near infrared hyperspectral imaging and stalk axis rotation technique. Biosyst. Eng. 2022, 223, 161–173. [Google Scholar] [CrossRef]
- Ong, P.; Jian, J.; Li, X.; Yin, J.; Ma, G. Visible and near-infrared spectroscopic determination of sugarcane chlorophyll content using a modified wavelength selection method for multivariate calibration. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123477. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, J.; Cheng, S.; Du, D. Cutting Characteristics of Sugarcane in Terms of Physical and Chemical Properties. Trans. ASABE 2020, 63, 1007–1017. [Google Scholar] [CrossRef]
- Jongyingcharoen, J.S.; Howimanporn, S.; Sitorus, A.; Phanomsophon, T.; Posom, J.; Salubsi, T.; Kongwaree, A.; Lim, C.H.; Phetpan, K.; Sirisomboon, P.; et al. Classification of the Crosslink Density Level of Para Rubber Thick Film of Medical Glove by Using Near-Infrared Spectral Data. Polymers 2024, 16, 184. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Hyperparameter | Tuning Range |
---|---|---|
LDA | Number of components | 1–20 |
KNN | Number of neighbors | 1–20 |
ANN | Hidden layer sizes | (4), (4, 4), (4, 4, 4), (8), (8, 8), (8, 8, 8), (16), (16, 16), (16, 16, 16), (32), (32, 32), (32, 32, 32), (64), (64, 64), (64, 64, 64), (128), (128, 128), (128, 128, 128), (256), (256, 256), (256, 256, 256) |
Activation function | identity, logistic, tanh, relu |
Parameter | Meaning | Formula |
---|---|---|
Accuracy | The overall proportion of correct predictions. | |
Precision | The proportion of positive predictions that were actually correct. | |
Recall | The proportion of actual positives that were correctly identified. | |
F1-score | The harmonic means between precision and recall. |
Dataset | Model | Preprocessing | Internode | Node | Accuracy | ||||
---|---|---|---|---|---|---|---|---|---|
Recall | Precision | F1-Score | Recall | Precision | F1-Score | ||||
Calibration | LDA | Original | 1.000 | 0.994 | 0.997 | 0.995 | 1.000 | 0.997 | 0.997 |
Calibration | LDA | MN | 1.000 | 0.987 | 0.994 | 0.990 | 1.000 | 0.995 | 0.994 |
Calibration | LDA | Norm_L2 | 1.000 | 0.987 | 0.994 | 0.990 | 1.000 | 0.995 | 0.994 |
Calibration | LDA | Norm_inf | 1.000 | 0.987 | 0.994 | 0.990 | 1.000 | 0.995 | 0.994 |
Calibration | LDA | SNV | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Calibration | LDA | MSC | 0.987 | 0.975 | 0.981 | 0.980 | 0.990 | 0.985 | 0.983 |
Calibration | LDA | DL | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Calibration | KNN | Original | 0.936 | 0.816 | 0.872 | 0.835 | 0.944 | 0.886 | 0.879 |
Calibration | KNN | MN | 0.955 | 0.866 | 0.909 | 0.885 | 0.962 | 0.922 | 0.916 |
Calibration | KNN | Norm_L2 | 0.955 | 0.866 | 0.909 | 0.885 | 0.962 | 0.922 | 0.916 |
Calibration | KNN | Norm_inf | 0.955 | 0.866 | 0.909 | 0.885 | 0.962 | 0.922 | 0.916 |
Calibration | KNN | SNV | 0.955 | 0.828 | 0.887 | 0.845 | 0.960 | 0.899 | 0.893 |
Calibration | KNN | MSC | 0.981 | 0.832 | 0.900 | 0.845 | 0.983 | 0.909 | 0.904 |
Calibration | KNN | DL | 0.981 | 0.836 | 0.903 | 0.850 | 0.983 | 0.912 | 0.907 |
Calibration | ANN | Original | 0.942 | 0.850 | 0.894 | 0.870 | 0.951 | 0.909 | 0.902 |
Calibration | ANN | MN | 1.000 | 0.821 | 0.902 | 0.830 | 1.000 | 0.907 | 0.904 |
Calibration | ANN | Norm_L2 | 0.936 | 0.864 | 0.898 | 0.885 | 0.947 | 0.915 | 0.907 |
Calibration | ANN | Norm_inf | 0.962 | 0.872 | 0.915 | 0.890 | 0.967 | 0.927 | 0.921 |
Calibration | ANN | SNV | 0.974 | 0.859 | 0.913 | 0.875 | 0.978 | 0.923 | 0.919 |
Calibration | ANN | MSC | 0.974 | 0.869 | 0.918 | 0.885 | 0.978 | 0.929 | 0.924 |
Calibration | ANN | DL | 1.000 | 0.872 | 0.931 | 0.885 | 1.000 | 0.939 | 0.935 |
Validation | LDA | Original | 0.837 | 0.783 | 0.809 | 0.783 | 0.837 | 0.809 | 0.809 |
Validation | LDA | MN | 0.791 | 0.829 | 0.810 | 0.848 | 0.813 | 0.830 | 0.820 |
Validation | LDA | Norm_L2 | 0.791 | 0.829 | 0.810 | 0.848 | 0.813 | 0.830 | 0.820 |
Validation | LDA | Norm_inf | 0.791 | 0.829 | 0.810 | 0.848 | 0.813 | 0.830 | 0.820 |
Validation | LDA | SNV | 0.837 | 0.800 | 0.818 | 0.804 | 0.841 | 0.822 | 0.820 |
Validation | LDA | MSC | 0.791 | 0.723 | 0.756 | 0.717 | 0.786 | 0.750 | 0.753 |
Validation | LDA | DL | 0.884 | 0.826 | 0.854 | 0.826 | 0.884 | 0.854 | 0.854 |
Validation | KNN | Original | 0.907 | 0.765 | 0.830 | 0.739 | 0.895 | 0.810 | 0.820 |
Validation | KNN | MN | 0.884 | 0.792 | 0.835 | 0.783 | 0.878 | 0.828 | 0.831 |
Validation | KNN | Norm_L2 | 0.884 | 0.792 | 0.835 | 0.783 | 0.878 | 0.828 | 0.831 |
Validation | KNN | Norm_inf | 0.884 | 0.792 | 0.835 | 0.783 | 0.878 | 0.828 | 0.831 |
Validation | KNN | SNV | 0.884 | 0.745 | 0.809 | 0.717 | 0.868 | 0.786 | 0.798 |
Validation | KNN | MSC | 0.977 | 0.808 | 0.884 | 0.783 | 0.973 | 0.867 | 0.876 |
Validation | KNN | DL | 0.953 | 0.804 | 0.872 | 0.783 | 0.947 | 0.857 | 0.865 |
Validation | ANN | Original | 0.907 | 0.796 | 0.848 | 0.783 | 0.900 | 0.837 | 0.843 |
Validation | ANN | MN | 0.977 | 0.808 | 0.884 | 0.783 | 0.973 | 0.867 | 0.876 |
Validation | ANN | Norm_L2 | 0.907 | 0.796 | 0.848 | 0.783 | 0.900 | 0.837 | 0.843 |
validation | ANN | Norm_inf | 0.907 | 0.796 | 0.848 | 0.783 | 0.900 | 0.837 | 0.843 |
validation | ANN | SNV | 0.930 | 0.800 | 0.860 | 0.783 | 0.923 | 0.847 | 0.854 |
validation | ANN | MSC | 0.930 | 0.800 | 0.860 | 0.783 | 0.923 | 0.847 | 0.854 |
validation | ANN | DL | 0.953 | 0.804 | 0.872 | 0.783 | 0.947 | 0.857 | 0.865 |
Model | Preprocessing | Internode | Node | Accuracy | ||||
---|---|---|---|---|---|---|---|---|
Recall | Precision | F1-Score | Recall | Precision | F1-Score | |||
LDA | Original | 0.833 | 0.952 | 0.880 | 0.962 | 0.862 | 0.900 | 0.900 |
LDA | MN | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
LDA | Norm_L2 | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
LDA | Norm_inf | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
LDA | SNV | 0.800 | 0.952 | 0.870 | 0.960 | 0.828 | 0.889 | 0.880 |
LDA | MSC | 0.741 | 0.952 | 0.833 | 0.957 | 0.759 | 0.846 | 0.840 |
LDA | DL | 0.833 | 0.952 | 0.889 | 0.962 | 0.862 | 0.909 | 0.900 |
KNN | Original | 0.808 | 1.000 | 0.860 | 1.000 | 0.828 | 0.906 | 0.900 |
KNN | MN | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
KNN | Norm_L2 | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
KNN | Norm_inf | 0.760 | 0.905 | 0.826 | 0.920 | 0.793 | 0.852 | 0.840 |
KNN | SNV | 0.800 | 0.952 | 0.870 | 0.960 | 0.828 | 0.889 | 0.880 |
KNN | MSC | 0.741 | 0.952 | 0.833 | 0.957 | 0.759 | 0.846 | 0.840 |
KNN | DL | 0.833 | 0.952 | 0.889 | 0.962 | 0.862 | 0.909 | 0.900 |
ANN | Original | 0.808 | 1.000 | 0.894 | 1.000 | 0.828 | 0.906 | 0.900 |
ANN | MN | 0.840 | 1.000 | 0.913 | 1.000 | 0.862 | 0.926 | 0.920 |
ANN | Norm_L2 | 0.808 | 1.000 | 0.894 | 1.000 | 0.828 | 0.906 | 0.900 |
ANN | Norm_inf | 0.840 | 1.000 | 0.913 | 1.000 | 0.862 | 0.926 | 0.920 |
ANN | SNV | 0.840 | 1.000 | 0.913 | 1.000 | 0.862 | 0.926 | 0.920 |
ANN | MSC | 0.826 | 0.905 | 0.864 | 0.926 | 0.862 | 0.893 | 0.880 |
ANN | DL | 0.913 | 1.000 | 0.955 | 1.000 | 0.931 | 0.964 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veerasakulwat, S.; Sitorus, A.; Udompetaikul, V. Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques. Sensors 2024, 24, 7102. https://doi.org/10.3390/s24227102
Veerasakulwat S, Sitorus A, Udompetaikul V. Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques. Sensors. 2024; 24(22):7102. https://doi.org/10.3390/s24227102
Chicago/Turabian StyleVeerasakulwat, Siramet, Agustami Sitorus, and Vasu Udompetaikul. 2024. "Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques" Sensors 24, no. 22: 7102. https://doi.org/10.3390/s24227102
APA StyleVeerasakulwat, S., Sitorus, A., & Udompetaikul, V. (2024). Rapid Classification of Sugarcane Nodes and Internodes Using Near-Infrared Spectroscopy and Machine Learning Techniques. Sensors, 24(22), 7102. https://doi.org/10.3390/s24227102