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Abstract: Road roughness significantly impacts vehicle safety and dynamic responses. For nonlinear
suspension systems, the nonlinear characteristics often make it challenging for estimators to identify
the actual road roughness accurately. This paper proposes a hybrid road roughness identification
algorithm based on nonlinear auto-regressive with exogenous inputs (NARX) and a process noise
adaptive square root cubature Kalman filter (PASCKF) to address this issue. Driven by vehicle
acceleration data, an NARX-based road roughness identification system is constructed to mitigate
the model uncertainties. Furthermore, a hybrid strategy is proposed. On the one hand, the accurate
road roughness estimated by the NARX is converted into process noise covariance, enhancing the
estimator’s accuracy and convergence rate. Another switching strategy is proposed to optimize
the non-convergence issues of the PASCKF. Finally, simulation and actual vehicle experiment data
demonstrate that this approach offers superior identification accuracy and adaptability compared to
the standalone SCKF algorithm.

Keywords: road roughness identification; square root cubature Kalman filter; nonlinear auto-regressive
with exogenous; adaptive Kalman filtering; nonlinear suspension

1. Introduction

With the widespread adoption of intelligent vehicles, automotive comfort and safety
have garnered significant attention. Among the factors affecting these aspects, driving
comfort is closely linked to road roughness. Road roughness refers to the degree of
irregularity of the road, which serves as the primary source of excitation that induces vehicle
body vibrations during driving [1]. The ability to quickly and accurately identify road
surface roughness is essential for enhancing vehicle handling stability, improving comfort,
and prolonging the lifespan of components. Currently, the methods for determining road
surface roughness can be broadly categorized into three types: contact measurement
methods, non-contact measurement methods [2], and road roughness identification based
on vehicle responses [3–5].

The contact measurement method offers high accuracy at low to medium speeds.
However, the requirement for specialized road surface measurement equipment incurs
high costs and results in low measurement efficiency, which limits its applicability on a large
scale [6]. In contrast, non-contact measurement methods that utilize onboard sensors such
as LiDAR, ultrasonic radar, or cameras provide the advantages of minimal identification
errors and robust real-time performance. Despite these benefits, such systems are complex
and costly, necessitating regular maintenance and calibration. Furthermore, non-contact
methods are sensitive to environmental conditions; adverse weather or poor lighting can
significantly impact the measurement accuracy, thereby hindering their effectiveness in
large-scale road surface detection [7]. To address these limitations, this paper investigates a
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method for estimating road roughness based on the vehicle dynamic responses obtained
from sensor data.

Road roughness estimation methods based on vehicle dynamic responses can be cat-
egorized into two primary approaches: data-driven methods and model-based methods.
Data-driven approaches establish a mapping between road roughness and vehicle dynamic
responses without relying on a specific physical model. For instance, Qin et al. [8] pro-
posed an adaptive neuro-fuzzy inference system (ANFIS) for road roughness identification,
comparing its performance to recursive least squares (RLS) and the group method of data
handling (GMDH) under various vehicle speeds and road excitations. Farshad et al. [9]
introduced a road roughness estimation method based on artificial neural networks, utiliz-
ing data collected from multiple smartphones. In this approach, the vertical acceleration,
position, and speed features were extracted to train the network, which outputs the In-
ternational Roughness Index (IRI) for road grade classification. Similarly, Lee et al. [10]
developed an artificial intelligence-based road grade recognition method by combining
continuous wavelet transform with convolutional neural networks.

While these studies utilized traditional artificial neural networks, such models often
feature simplistic architectures and fail to account for the temporal dependencies inher-
ent in sequential data. As a result, their efficiency and accuracy are limited. Recurrent
neural networks (RNNs), particularly those based on long short-term memory (LSTM)
architectures, have shown superior performance in time series forecasting, making them
more suitable for road profile estimation by leveraging long-term dependencies in the
data. Li et al. [11] proposed a road roughness estimation framework using advanced RNN
architectures, while Jiang et al. [12] trained an LSTM network with sprung and unsprung
mass acceleration data, applying the model to identify road grades through the recog-
nition of unsprung mass acceleration patterns. Furthermore, Guanqun Liang et al. [13]
collected acceleration data from real-world roads to train an LSTM network, which was
subsequently employed for road excitation identification, yielding promising results in
real-vehicle experiments.

Similarly, model-based identification methods do not require external measuring
devices, offering low cost and broad applicability. For example, Kattar et al. [14,15] pro-
posed a closed-loop estimator for unknown input road classification, which estimates road
roughness by analyzing the frequency characteristics of the transfer function and utiliz-
ing vehicle response data obtained from simulations, test benches, and real roads. Jiang
et al. [16] employed a transfer function linking tire forces to road elevation to identify road
roughness. Liu et al. [17] designed a road roughness observer based on suspension charac-
teristics, using the sprung mass acceleration as the input for roughness identification and
road classification through power spectral density analysis. Rana and Asaduzzaman [18]
introduced an inverse road reconstruction method, collecting vertical acceleration data
from the actual vehicle to formulate a new suspension dynamics state-space equation.
Tan et al. [19] proposed a road classification method utilizing a Bayesian regression-based
self-measurement algorithm, which employed the non-DC gain in the transfer function for
road classification estimation. Zhang et al. [20] estimated road surface roughness using the
actual full-vehicle response, deriving their method from the vehicle’s frequency response
function (FRF) based on motion equations, and validated their road roughness estimation
through real-vehicle experiments.

In the above research, many scholars focused on linear passive suspension systems,
assuming constant stiffness and damping. However, with the ongoing development of
semi-active and active suspensions, the parameters of these systems may vary. Furthermore,
estimators based on passive suspensions are linear; when applied to nonlinear suspensions
with variable stiffness and damping, these linear estimators face challenges in capturing
nonlinear dynamic responses, leading to reduced estimation accuracy and, in some cases,
divergence. Thus, there is a lack of road estimation techniques that account for variable
spring stiffness and damping parameters.



Sensors 2024, 24, 6938 3 of 20

To address the aforementioned issues, this paper proposes a road roughness estimation
method that combines the nonlinear auto-regressive neural network with exogenous inputs
(NARX) and the process noise adaptive square root cubature Kalman filter estimator
(PASCKF). Firstly, this study utilizes the NARX to establish the relationship between vehicle
acceleration time series and road roughness. Unlike traditional static neural networks,
the NARX employs feedback and memory, allowing it to retain data from previous time
steps and incorporate it into subsequent calculations. This dynamic characteristic enables
the NARX neural network to capture more comprehensive system information, thereby
improving the accuracy of the road roughness identification and prediction. Additionally,
to effectively filter out noise and accurately estimate the dynamic response of nonlinear
suspension systems, this paper introduces a process noise adaptive PASCKF. Finally, a
fusion strategy is proposed: on the one hand, the accurate road roughness estimated by the
NARX is converted into process noise covariance to enhance the accuracy and convergence
speed of the PASCKF estimator; on the other hand, a switching strategy is introduced to
address the non-convergence issues of the PASCKF.

This paper is dedicated to investigating the identification of road roughness across
different surface levels while also considering a nonlinear suspension system with variable
spring stiffness and damping coefficients. The rest of this paper is organized as follows.
Section 2 establishes the random road model and nonlinear suspension model. Section 3
introduces the construction of the NARX network to apply vehicle response signal identifi-
cation and designs the NARX network for road roughness. Section 4 designs the PASCKF
estimator and proposes a hybrid strategy to estimate the road classification and road level.
Section 5 conducts simulation experiments for single road surfaces and joint road sur-
faces. Section 6 conducts validation of the real-vehicle experiments. Section 7 presents the
general conclusion.

2. System Model Establishment
2.1. Random Road Model

Under normal driving conditions, road roughness is the primary influencing factor of
vehicle body vibration. To describe the impact of road roughness on vehicle vibration, the
time-domain signal is constructed using the random filtering white noise method. Based
on the power spectral density function, the time-domain signal of road unevenness is
constructed below [21]:

.
zr(t) = −2πncvzr(t) + 2πn0

√
Gq(n0)vw(t) (1)

where, zr(t) represents the time-domain road unevenness, v denotes the vehicle speed, nc
is the lower cutoff frequency of the road spatial frequency, taken as nc = 0.01 m−1, w(t)
represents the random unit white noise, Gq(n0) is the power spectral density of the road
unevenness at the reference spatial frequency, with partial road classification levels shown
in Table 1.

Table 1. Classification standards of road roughness.

Road Roughness
Level

Gq(n0)/10−6 m3

Lower Limit Geometric Mean Upper Limit

A 8 16 32
B 32 64 128
C 128 256 512
D 512 1024 2048
E 2048 4096 8192

2.2. Description of Road Unevenness

To establish a connection between road grade and road roughness, this paper utilizes
the International Roughness Index (IRI) for a description. The IRI is an internationally
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recognized metric for evaluating road quality, as proposed by the World Bank. It represents
the cumulative absolute value of the suspension dynamic deflection per unit distance at a
speed of 80 km/h. The calculation formula is as follows:

IRI =
1
L

∫ t

0

∣∣ .
zs −

.
zu
∣∣dt (2)

where L and t represent the total distance traveled by the vehicle and the total time,
respectively.

2.3. Nonlinear Suspension Model

Considering that this paper investigates a nonlinear suspension system, a nonlinear
spring and damping model has been established. In this context, the nonlinear characteris-
tics of damping are considered, primarily because the damping force is asymmetric during
compression and extension strokes. To analyze these nonlinear characteristics, this paper
employs a polynomial fitting method to represent the velocity-damping force characteristic
curve of the damper:

Fc = cl
s
( .
zs −

.
zu
)
+ ca

s
∣∣ .
zs −

.
zu
∣∣+ cn

s

√∣∣ .
zs −

.
zu
∣∣sgn

( .
zs −

.
zu
)

(3)

where cl
s represents the linear damping coefficient, cn

s denotes the nonlinear damping
coefficient, and ca

s is the coefficient associated with the asymmetry of the damper.
Similarly, the nonlinearity of the spring is also taken into account:

Fk = kl
s(zs − zu) + kn

s (zs − zu)
3 (4)

where kl
s represents the linear stiffness coefficient of the spring while kn

s denotes the nonlin-
ear stiffness coefficient.

Therefore, the dynamic equations of the nonlinear vehicle model can be expressed as
follows and the schematic diagram of suspension is illustrated in Figure 1.

Figure 1. One-fourth nonlinear suspension model.

According to Newton’s laws of motion, the one-fourth suspension function can be
written as follows: {

ms
..
zs + Fk + Fc = 0

mu
..
zu − Fk − Fc + kt(zu − zr) = 0

(5)

where ms is the sprung mass, mu is the unsprung mass, ks is the equivalent stiffness of the
spring, kt is the equivalent stiffness of the tire, cs is the equivalent damping coefficient of
the suspension, zs, zu is the displacement of the sprung mass, and zr is the road elevation.

Substituting Equations (3) and (4) into Equation (5), the dynamic equations of the
nonlinear suspension system can be summarized as follows:
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ms

..
zs + kl

s(zs − zu) + kn
s (zs − zu)

3

+cl
s
( .
zs −

.
zu
)
+ ca

s
∣∣ .
zs −

.
zu
∣∣+ cn

s

√∣∣ .
zs −

.
zu
∣∣sgn

( .
zs −

.
zu
)
= 0

mu
..
zu − kl

s(zs − zu)− kn
s (zs − zu)

3 − cl
s
( .
zs −

.
zu
)

+ca
s
∣∣ .
zs −

.
zu
∣∣+ cn

s

√∣∣ .
zs −

.
zu
∣∣sgn

( .
zs −

.
zu
)
+ kt(zu − zr) = 0

(6)

The Table 2 below presents the key parameters of the nonlinear suspension system.

Table 2. Parameters of the nonlinear model.

Parameters Symbol Value

Sprung mass ms 400 kg
Unsprung mass mu 70 kg

Spring stiffness linear coefficient kl
s 15,680 N/m

Spring stiffness nonlinear coefficient kn
s 1568 N/m3

Linear damping coefficient cl
s 1780 N·s/m

Nonlinear damping coefficient cn
s 100 N·(s/m)2

Damping asymmetry correlation coefficient ca
s 1000 N·s/m

3. Road Roughness Identification Based on NARX Neural Network
3.1. NARX Network Construction

The vibration acceleration signal of a vehicle is a typical sequential signal. Traditional
classification methods often involve manual feature extraction from these sequential signals,
utilizing various features as input data. While an increased number of features can enhance
the classification accuracy, it also significantly elevates the computational complexity and
may lead to the curse of dimensionality. The time series acceleration signals inherently
contain different features.

However, traditional static neural networks, such as BP, cannot effectively handle
sequential signals with interdependent relationships. In contrast, NARX neural networks
are particularly adept at processing these types of data. Therefore, this paper selects the
NARX neural network as the preferred model for this analysis. The training network and
the main structure are illustrated in Figure 2.

Figure 2. NARX network with an open-loop structure.

The TDL represents the delay processing, which applies delays to both the inputs x(t)
and outputs y(t), feeding them back into the input layer. The input layer can set weights
and thresholds for the inputs and relay this information to the hidden layer, with the
number of neurons in the input layer denoted as n. The output layer computes the output
values y(t) based on feedback from the hidden layer, compares them with the desired
output values o(t) to calculate the error, and feeds this information back to both the input
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and hidden layers to adjust and update the weights and thresholds; the number of neurons
in the output layer is also n.

The NARX neural network has two structures [22]: one is the closed-loop structure,
where the actual output of the neural network is fed back to the input, as shown in Figure 3;
the other is the open-loop structure, where the desired output (rather than the actual output
of the neural network) is fed back to the input, significantly improving the network’s
prediction performance, as shown in Figure 3. When output data are available, the neural
network is trained in the open-loop form and then switched to the closed-loop form,
providing only external inputs for multi-step prediction.

Figure 3. NARX network with a closed-loop structure.

3.2. Design of Road Roughness Identification Based on NARX

This paper utilizes the dynamic response values of a nonlinear suspension system
as training targets. The number of neurons in the time delay layer, input layer, and
output layer of the NARX neural network is determined based on the specific inputs and
outputs of the problem at hand. Generally, the output is delayed only once. To reduce the
computational complexity for practical implementation, the number of hidden layers mmm
is set to one. Additionally, the number of neurons in the hidden layer can be calculated
using the following Equation (7) [23]:

l =
√

m + n + a (7)

where a is a constant factor in the range of numbers 1–10.
The transfer function f of the hidden layer is set as logsig, and the transfer function g

of the output layer is set as purelin: {
f (x) = 1

1+e−x

g(x) = x
(8)

The weights and thresholds of the neural network are adjusted by the training algo-
rithm, where the default training algorithm is trainlm, which has a fast training speed and
high identification accuracy [23].

The response quantities correlated with road roughness in a quarter vehicle model
are the sprung mass acceleration

..
zs, unsprung mass acceleration

..
zu, suspension dynamic

deflection zs − zu, and wheel dynamic load kt(zu − zr). As the wheel dynamic load is
challenging to obtain directly from the vehicle and the dynamic deflection primarily reflects
the deformation of the suspension which does not directly indicate changes in the road
conditions, the sprung and unsprung mass acceleration are selected as the training inputs.
At the same time, road roughness serves as the output.

Considering that the typical speed on normal urban roads ranges from 25 to 50 km/h,
this paper selects a speed of 30 km/h for the dataset creation, and 5000 sets of vehicle
response data are obtained under randomly generated road conditions ranging from Class
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A to E. For the open-loop NARX network training process, the model is configured with
two NARX layers. The input delay is 1:2, and the feedback delay is 1:2. The hidden layer
consists of 15 neurons, with one fully connected layer. The training goal is set to 1 × 10−8,
and the minimum gradient is 1 × 10−5. The training process uses the ADAM optimizer
and runs for 250 epochs. The training function is trainlm. Finally, the neural network is
trained using 70% of the dataset as the training set, 15% as the validation set, and 15% as
the test set.

4. Road Roughness Identification Based on NARX-PASCKF
4.1. The SCKF Estimator for Road Roughness Identification

In practical engineering applications, a series of Kalman filtering algorithms, including
KF, EKF, UKF, and particle filtering, are widely used for state and parameter estimation
in dynamic systems. KF is particularly suited to linear systems but lacks applicability for
nonlinear systems. In contrast, EKF addresses this limitation by linearizing the system
through the computation of the Jacobian matrix, thereby extending its applicability to
nonlinear systems. However, when the system is highly nonlinear, linearization can lead to
significant truncation errors, and the computation of the Jacobian matrices for the state and
observation equations can be challenging, severely affecting the estimation accuracy [24].

UKF employs the unscented transformation to handle the nonlinear propagation
of the means and covariances, approximating the probability density distribution of the
nonlinear functions. It offers higher accuracy than EKF; however, in high-dimensional and
strongly nonlinear systems, the negative weights of the central sampling points can lead to
significant biases, posing challenges to ensuring the stability of the estimation results [25].

CKF approximates the Gaussian-weighted integrals in strongly nonlinear systems
using a third-order spherical simplex rule. It accurately models the system dynamics and
measurement noise and provides advantages such as lower computational complexity,
faster convergence, and stronger robustness [26].

SCKF is a novel filtering method based on CKF, founded on the principle of square
root filtering. Compared to CKF, SCKF reduces the computational complexity and enhances
the filtering efficiency and convergence speed [27].

Consider the following nonlinear system:{ .
x(t) = f [x(t)] + W(t)
z(t) = h[x(t)] + V(t)

(9)

where z(t) indicates the observation variables, and V(t) = [v1(t), v2(t)]
T represents the

measurement noise, also vi(t) follows a zero-mean Gaussian distribution v(t) ∼ (0, R), x(t)

represents the state variables, W(t) = [θ1(t), θ2(t), θ3(t), θ4(t), 2πn0

√
Gq(n0)vw(t)]

T
de-

notes the process noise, and θ(t) follows a zero-mean Gaussian distribution θi(t) ∼ (0, Q).
In this paper, the state variables are selected as x(t) = [zs,

.
zs, zu,

.
zu, zr]

T , and the observation
variables are chosen as z(t) = [

..
zs,

..
zu]

T.
The above continuous equations can be discretized as Equation (10).{ .

xk = f (xk−1) + Wk−1
zk = h(xk) + Vk

(10)

From Equation (10), it follows that the system can be described by the following state
update Equation (11) and measurement Equation (12).

f (xk−1) =


x2,k−1

− Fk,k−1
ms

− Fc,k−1
ms

x4,k−1
Fk,k−1

mu
+

Fc,k−1
mu

− kt
mu

(x3,k−1 − x5,k−1)

−2πncvx5,k−1

 (11)
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h(xk) =

(
− Fk,k

ms
− Fc,k

ms
Fk,k−1

mu
+

Fc,k−1
mu

− kt
mu

(x3,k − x5,k)

)
(12)

where Fk,k−1 and Fc,k−1 are expressed by the following equations:

Fk,k−1 = kl
s(zs,k−1 − zu,k−1) + kn

s (zs,k−1 − zu,k−1)
3

= kl
s(x1,k−1 − z3,k−1) + kn

s (z1,k−1 − z3,k−1)
3

Fc,k−1 = cl
s
( .
zs,k−1 −

.
zu,k−1

)
+ ca

s
∣∣ .
zs,k−1 −

.
zu,k−1

∣∣
+cn

s

√∣∣ .
zs,k−1 −

.
zu,k−1

∣∣sgn
( .
zs,k−1 −

.
zu,k−1

)
= cl

s(x2,k−1 − x4,k−1) + ca
s
∣∣x2,k−1 − x4,k−1

∣∣
+cn

s

√∣∣x2,k−1 −
.
z4,k−1

∣∣sgn
(
x2,k−1 −

.
z4,k−1

)
(13)

In the discrete nonlinear system, the process noise Wk−1 and the measurement noise
Vk are uncorrelated zero-mean Gaussian white noise, with their uncorrelated covariances
described as:  E

(
Wk−1, WT

j−1

)
= Qk−1

E
(

Vk, vT
j

)
= Rkδkj

(14)

where Qk−1 is the non-negative definite matrix of process noise, Rk is the positive definite
measurement covariance matrix, and δkj is the Kronecker delta function.

Thus, the standard SCKF algorithm can be summarized as follows:
(1) Initialization
Assume the initial state at time t0 is x̂0|0 and the corresponding square root factor of

the error covariance matrix is S0|0, where the expression for S0|0 is:

S0|0 =
[
Chol(P0|0)

]T
(15)

where Chol is the Cholesky decomposition, and P0|0 is the error covariance matrix.
(2) Time update
Calculate the sigma points and propagate them based on the state transition equation:{

xi
k−1|k−1 = x̂k−1|k−1 + Sk−1|k−1ξi i = 1, 2, · · · , 2n

xi∗
k−1|k−1 = f (xi

k−1|k−1)
(16)

where ξi is the i-th column of the weight matrix
[√

nIn,−
√

nIn
]

for the sigma points, In is
the identity matrix of n × n, and n is the dimension of the state variables.

Calculate the predicted state values and the square root factor of the error covariance
matrix:  x̂k|k−1 = 1

2n

2n
∑

i=1
xi∗

k|k−1

Sk|k−1 = Tria(
[

Xi∗
k|k−1, Chol(Qk−1)

]
)

(17)

The weighted central matrix Xi∗
k|k−1 is defined as:

Xi∗
k|k−1 =

1√
2n

[
x1∗

k|k−1 − x̂k|k−1, x2∗
k|k−1 − x̂k|k−1, · · · , x2n∗

k|k−1 − x̂k|k−1

]
(18)

where the operation of Tria(·) is defined as follows: let R be the upper triangular matrix
of the QR decomposition of matrix AT, then the QR decomposition algorithm of matrix A
can be expressed as S = Tria(·) = RT, and S is the lower triangular matrix.

(3) Measurement update
Update the sigma points and propagate them based on the measurement equation:
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{
xi

k|k−1 = x̂k|k−1 + Sk|k−1ξi

zi
k|k−1 = h(xi

k|k−1)
(19)

Calculate the predicted measurement values and the square root factor of the innova-
tion covariance matrix:  ẑk|k−1 = 1

2n

2n
∑

i=1
zi

k|k−1

Szz
k|k−1 = Tria(

[
Zk|k−1, Chol(Rk)

]
)

(20)

Similarly, the weighted central matrix Zk|k−1 is defined as:

Zk|k−1 =
1√
2n

[
z1

k|k−1 − ẑk|k−1, z2
k|k−1 − ẑk|k−1, · · · , z2n

k|k−1 − ẑk|k−1

]
(21)

Calculate the measurement covariance matrix and the cross-covariance matrix:{
Pzz

k|k−1 = Szz
k|k−1(S

zz
k|k−1)

T

Pxz
k|k−1 = Xk|k−1ZT

k|k−1
(22)

The weighted central matrix is defined as follows:

Xk|k−1 =
1√
2n

[
x1

k|k−1 − x̂k|k−1, x2
k|k−1 − x̂k|k−1, · · · , x2n

k|k−1 − x̂k|k−1

]
(23)

(4) Calculation of the Kalman gain matrix
After the above steps, the final expression for the Kalman gain matrix is the following:

Kk = Pxz
k|k−1(Pzz

k|k−1)
−1 (24)

Finally, the updated state variables and the error covariance matrix are as follows:{
x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Sk|k = Tria
([

Xk|k − KkZk|k−1, KkChol(Rk)
]) (25)

The SCKF road roughness identification method, based on the nonlinear suspension
model, requires that the vehicle states satisfy the dynamic equations to achieve high
estimation accuracy. The process of road roughness identification is illustrated in Figure 4.
Observations obtained from sensors, including the sprung and unsprung mass acceleration,
are input into the SCKF estimator. Finally, the output is the estimated road roughness.

Figure 4. Estimation of road roughness based on SCKF.
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4.2. Design of NARX-PASCKF Algorithm for Road Roughness Identification

Although the road roughness identification based on dynamic models achieves good
estimation accuracy, this approach is susceptible to varying operating conditions. For
instance, during continuous road surface changes, the continuous variation of the process
covariance can lead to a decline in the estimation accuracy of the SCKF model. Additionally,
the SCKF state estimator based on dynamic models is affected by the initial states and
constant noise parameters, resulting in longer convergence times. To address these issues,
this paper proposes a process noise adaptive square root cubature Kalman filter (PASCKF)
and designs a fusion estimation strategy by combining it with the NARX network to
estimate the road classification. The basic framework is illustrated in Figure 5.
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The suspension response is obtained from sensors, and the vehicle speed is obtained
by integrating the x-axis signal of the IMU. In Kalman filtering, the noise covariance matrix
Q represents the covariance of the process noise, describing the level of uncertainty or
model error within the system model. The size of this matrix reflects the intensity of the
process noise introduced for each state variable. A larger matrix indicates a more significant
uncertainty in the system’s state changes. In comparison, a smaller matrix suggests that the
state changes are more specific and the model is more reliable.

As the vehicle travels on different grades of road surfaces, the noise generated can
vary significantly. Therefore, it is essential to consider the variations in the noise covariance
matrix Q caused by other road surfaces, introducing adjustments to better account for
these effects.

Qk = γQk−1 (26)

where, Qk represents the process covariance matrix updated for the next time step, and γ
denotes the updated covariance factor matrix. This study conducts simulation experiments
at a vehicle speed of 30 km/h over road surfaces graded A to E. Using the covariance
formula, the relationship can be expressed as follows:

Cov(X) =
1
N

N

∑
i=1

(Xi − µ)(Xi − µ)T (27)

where, X represents the vehicle response values, µ is the mean of the vehicle response
values, and N is the number of sample data points. After calculating the covariance, the
vehicle response covariance values for each grade of the road surface are shown in Table 3.
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Table 3. Vehicle response process covariance.

Vehicle Response
Covariance Variable zs

.
zs zu

.
zu

A-class 2.19 × 10−7 1.89 × 10−4 1.98 × 10−5 0.0021
B-class 8.89 × 10−7 7.76 × 10−4 7.79 × 10−5 0.0087
C-class 3.58 × 10−6 3.2 × 10−3 3.18 × 10−4 0.036
D-class 8.78 × 10−6 0.0129 1.3 × 10−3 0.1447
E-class 5.8 × 10−5 0.0522 5.1 × 10−3 0.6026

Considering that the measurement covariance matrix is primarily related to the actual
sensor accuracy, this study employs automotive-grade sensors with an error magnitude
of approximately 0.1%. Therefore, the error covariance Rk is set to 0.0012. The above
adjustments represent the correction of the process noise and measurement noise for the
PASCKF estimator. The following section proposes a strategy based on the fusion of NARX
and PASCKF.

(1) To address the issue of slow convergence of the PASCKF at the initial moment, dur-
ing the first 5s, the NARX neural network is used for estimation. Simultaneously, it outputs
γ to the PASCKF estimator to correct the process noise Qk for the next time step, thereby
improving the estimation accuracy and convergence speed of the PASCKF estimator.

(2) To address the accuracy issue of the PASCKF estimator, a variable η is introduced,
defined by the Equation (28).

η =

∣∣..zs_cal −
..
zs_sen

∣∣∣∣..zs_sen
∣∣ (28)

where,
..
zs_cal represents the acceleration value obtained by differentiating the sprung mass

velocity estimated by the PASCKF.
..
zs_sen is the sprung mass acceleration value obtained

from the sensor. Set a threshold ηk = 0.1. If η < ηk, it indicates that the values calculated
by the PASCKF are accurate. In this case, the NARX-PASCKF will directly output the
values from the PASCKF. Additionally, if t > 5s && η > ηk, considering the possibility of
estimation inaccuracies in the volume Kalman filter, the NARX will be used for the output.

(3) Considering the issue where the PASCKF fails to converge and correctly identify
the road surface, if it does not converge within 10 s and the NARX is able to identify the
road surface stably, the NARX-PASCKF will then directly output the values from the NARX.

5. Simulation Experiments
5.1. Road Roughness Identification Results Based on the NARX Algorithm

The NARX road roughness estimator provides process noise correction factors and
the estimated values for the first 5 s to the NARX-PASCKF, which is critical for improving
the estimation accuracy and convergence speed of the PASCKF. Therefore, this section will
validate the estimation accuracy of the NARX model. The test was conducted by selecting
a vehicle speed of 36 km/h on C grade road. The testing durations were set to 10 s for
each grade. The test datasets were input into both the NARX and BP neural networks for
comparative validation.

Additionally, the root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R-square) were compared with Equations (29)–(31).

RMSE =

√√√√√ N
∑

i=1
(qi − oi)

2

N
(29)

MAE =
1
N

N

∑
i=1

|qi − oi| (30)
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R2 = 1 −

n
∑

i=1
(oi − q̂i)

2

n
∑

i=1
(oi − o)2

(31)

where, qi represents the estimated road roughness, oi is the actual road roughness, q and o
represent the identified road roughness mean and the actual road roughness mean, N is the
total number of sampling points.

The experimental results are shown in Figure 6 and Table 4.

Figure 6. Neural network recognition results. (a) Road elevation results. (b) Power spectral den-
sity comparison.

Table 4. The RMSE, MAE, and R-square comparison on a C-class road.

Methods RMSE MAE R-Square

BP network 0.0056 0.0053 0.7628
NARX network 0.0030 0.0030 0.9658
Optimal ratio 46.42% 43.39% 26.61%

Figure 6a,b show the road roughness estimated by the NARX network and the BP
network. It can be seen that the BP neural network can identify the basic profile of the
road roughness, but due to its inability to capture the temporal relationships in acceleration
signals, its estimation accuracy is significantly lower than that of the NARX neural network.

Table 4 compares the RMSE, MAE, and the coefficient R-square between the NARX
network and the BP network. The NARX network achieves smaller root mean square
values and mean absolute error values compared to the BP network, with the estimation
accuracy improving by 46.42% and 43.39%, respectively. Additionally, the determination
coefficient R-square has also increased by 26.61%. The above results demonstrate that
the NARX neural network can estimate road roughness more accurately compared to the
BP neural network, providing a solid foundation for improving the subsequent NARX-
PASCKF algorithm.

5.2. Single Random Road Surface Experiment

To validate the identification accuracy of the proposed NARX-PASCKF hybrid estima-
tion algorithm, simulation tests were conducted on a single random road surface and on
connecting road surfaces A–B–D–C. The test results were compared with the actual road
surfaces and the results from the single SCKF estimator.

Using a 36 km/h speed on a C-grade road surface, random road roughness signals
were generated using Equation (1), and simulation tests were conducted under steady-state
conditions. The test results were compared with the actual road surface and the results
from the standalone SCKF estimator. The final experimental results are shown in Figure 7
and Table 5.



Sensors 2024, 24, 6938 13 of 20

Sensors 2024, 24, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) (b) 

Figure 7. C-class road recognition results. (a) Road elevation results. (b) Power spectral density com-
parison. 

Table 5. The RMSE, MAE, and R-square comparison on a C-class road. 

Methods RMSE MAE R-Square 
SCKF 0.0062 0.0074 0.8563 

NARX-PASCKF 0.0043 0.0056 0.9108 
Optimal ratio 30.64% 24.7% 6.3% 

Figure 7a shows the road roughness results of the SCKF and the NARX-PASCKF es-
timator and their corresponding PSD, which are shown in Figure 7b. The results show 
that the SCKF estimator can estimate the general profile and the trend of the strengthened 
road roughness. However, there is a discrepancy between the estimated and measured 
results at the initial moment. In the frequency plot, the PSD estimation results from the 
SCKF exhibit discrepancies compared to the actual results, particularly in the frequency 
range of 1.5–11 Hz (0.15–1.1 m−1), where the PSD values of the road roughness estimated 
by the SCKF are significantly higher than the actual road roughness PSD values. These 
estimation errors may be due to the neglect of the appropriate noise covariance, and the 
issue can be addressed by the proposed NARX-PASCKF estimator. 

It can be seen in Figure 7a,b that the road roughness estimated by the NARX-PASCKF 
estimator is closer to the actual road roughness. In comparison with the SCFK estimator, 
the NARX-PASCKF estimator exhibits a smaller convergence amplitude, leading to more 
stable and accurate estimations. In the frequency plot, the estimated PSD value of the 
NARX-PASCKF estimator is more consistent with the actual PSD value in the spatial fre-
quency range of 1.5–11 Hz (0.15–1.1 m−1). 

Furthermore, Table 5 shows the RMSE, MAE, and the coefficient R-square between 
the SCKF estimator and the NARX-PASCKF estimator, which provide a quantitative ref-
erence for evaluating the validity of the estimation. The results show that the NARX-
PASCKF algorithm achieves lower root mean square values and mean absolute error val-
ues compared to the standalone SCKF estimator, with estimation accuracy improvements 
of 30.64% and 24.7%, respectively. In terms of the coefficient R-square, the NARX-SCKF 
algorithm also outperforms the standalone SCKF algorithm, showing an accuracy im-
provement of 6.3%. The results show that the hybrid model of the NARX-PASCKF can 
effectively improve the road roughness estimation accuracy compared with the single 
SCKF. 

5.3. Joint Road Surface Experiment 
To verify the adaptability of the NARX-SCKF hybrid estimation algorithm, variable-

grade joint road surfaces (A–B–D–C–E) were selected for the simulation testing. The sim-
ulation time for each grade of road surface was set to 10 s, with a vehicle speed of 36 km/h, 
resulting in a total duration of 50 s. The results are shown in Figure 8 and Table 6. 
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Table 5. The RMSE, MAE, and R-square comparison on a C-class road.

Methods RMSE MAE R-Square

SCKF 0.0062 0.0074 0.8563
NARX-PASCKF 0.0043 0.0056 0.9108

Optimal ratio 30.64% 24.7% 6.3%

Figure 7a shows the road roughness results of the SCKF and the NARX-PASCKF
estimator and their corresponding PSD, which are shown in Figure 7b. The results show
that the SCKF estimator can estimate the general profile and the trend of the strengthened
road roughness. However, there is a discrepancy between the estimated and measured
results at the initial moment. In the frequency plot, the PSD estimation results from the
SCKF exhibit discrepancies compared to the actual results, particularly in the frequency
range of 1.5–11 Hz (0.15–1.1 m−1), where the PSD values of the road roughness estimated
by the SCKF are significantly higher than the actual road roughness PSD values. These
estimation errors may be due to the neglect of the appropriate noise covariance, and the
issue can be addressed by the proposed NARX-PASCKF estimator.

It can be seen in Figure 7a,b that the road roughness estimated by the NARX-PASCKF
estimator is closer to the actual road roughness. In comparison with the SCFK estimator, the
NARX-PASCKF estimator exhibits a smaller convergence amplitude, leading to more stable
and accurate estimations. In the frequency plot, the estimated PSD value of the NARX-
PASCKF estimator is more consistent with the actual PSD value in the spatial frequency
range of 1.5–11 Hz (0.15–1.1 m−1).

Furthermore, Table 5 shows the RMSE, MAE, and the coefficient R-square between the
SCKF estimator and the NARX-PASCKF estimator, which provide a quantitative reference
for evaluating the validity of the estimation. The results show that the NARX-PASCKF al-
gorithm achieves lower root mean square values and mean absolute error values compared
to the standalone SCKF estimator, with estimation accuracy improvements of 30.64% and
24.7%, respectively. In terms of the coefficient R-square, the NARX-SCKF algorithm also
outperforms the standalone SCKF algorithm, showing an accuracy improvement of 6.3%.
The results show that the hybrid model of the NARX-PASCKF can effectively improve the
road roughness estimation accuracy compared with the single SCKF.

5.3. Joint Road Surface Experiment

To verify the adaptability of the NARX-SCKF hybrid estimation algorithm, variable-
grade joint road surfaces (A–B–D–C–E) were selected for the simulation testing. The
simulation time for each grade of road surface was set to 10 s, with a vehicle speed of
36 km/h, resulting in a total duration of 50 s. The results are shown in Figure 8 and Table 6.
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Figure 8. Joint road recognition results. (a) Data on sprung acceleration. (b) Data of unsprung
acceleration. (c) Road elevation results. (d) Power spectral density results on A class. (e) Power
spectral density results on B class. (f) Power spectral density results on D class. (g) power spectral
density results on C class. (h) Power spectral density results on E class.

Table 6. The RMSE, MAE, and R-square comparison on a joint road.

Methods RMSE MAE R-Square

SCKF 0.0041 0.0053 0.8935
NARX-SCKF 0.0028 0.0031 0.9743
Optimal ratio 31.7% 41.5% 9.04%
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Figure 8a,b show the sprung and unsprung mass acceleration responses under different
road surfaces. The acceleration response values have a specific amplitude range for different
road grades. Figure 8c shows the road roughness results of the SCKF and the NARX-
PASCKF estimator and their corresponding PSD, which are shown in Figure 8b–h. Similar
to the single road surface experiment, the result of the joint road experiment shows that
the SCKF estimator can estimate the general profile and the trend of the strengthened
road roughness. However, the detailed estimation of road roughness still requires further
improvement. In the frequency plot, the SCKF estimator performs reasonably well on
D-grade and E-grade roads. However, when the road surface changes to B grade, its PSD
values remain below the actual road PSD values in the frequency range of 100–102 Hz
(0.1–10 m−1). Conversely, when the road changes to C grade, its PSD values are consistently
higher than the actual road PSD values in the frequency range of 100–101 Hz (0.1–1 m−1).

Figure 8c–h show that the road roughness estimated by the NARX-PASCKF estimator
is closer to the actual road roughness than the SCFK estimator. Due to the introduction of
process noise factors and the hybrid strategy, the results in Figure 8e,g indicate that the
estimated PSD values of road roughness in the frequency ranges of 100–102 Hz (0.1–10 m−1)
and 100–101 Hz (0.1–1 m−1) have been corrected.

Table 6 compares the RMSE, MAE, and the coefficient R-square between the SCKF es-
timator and the NARX-PASCKF estimator. The NARX-PASCKF hybrid algorithm achieves
smaller root mean square values and mean absolute error values compared to the single
SCKF estimator, with the estimation accuracy improving by 31.7% and 41.5%, respectively.
Additionally, the determination coefficient R-square has also increased by 9.04%.

The above results indicate that the NARX-PASCKF estimator can effectively iden-
tify road roughness under various road conditions, and its identification performance is
superior to that of the single SCKF estimator. Therefore, the NARX-PASCKF algorithm
proposed in this paper demonstrates good adaptability.

6. Actual Car Experiments
6.1. Experimental Platform Setup

This paper conducted actual vehicle experiments to verify the effectiveness of the NARX-
PASCKF estimation of road roughness. On the right side of Figure 9 is the test vehicle
(Chevrolet Cruze) and the installation positions of the sensors. The IMU is mounted at the
vehicle’s center of mass, which is a six-axis sensor with a frequency of 100 Hz. The sprung mass
accelerometer is installed on the chassis, and the angular displacement sensor has one end on
the chassis and the other on the wheel. This setup can calculate the unsprung mass acceleration
signal. Finally, the road information for the test was collected by a laser rangefinder (provided
by Arctic Technology, Guangdong, China), with a frequency range of 1–20 Hz.

Figure 9. Communication structure diagram.
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The communication process of the signals is shown on the right side of Figure 9. The
sensor signals are transmitted via CAN communication from the sensors to the suspension
controller, and finally, through serial communication, they are transmitted in real time to
the host computer. The data signals are then observed and read using Freemaster (NXP).

6.2. Real Vehicle Validation

The experiment uses a section of smooth asphalt road and a bumpy road for validation.
The roughness level of the asphalt road is near grade B, while the rough road is around
grade D. The road images are shown in Figure 10. The vehicle drives over both types of
roads at a speed of 20 km/h, collecting data for 4 s on each road, with a sampling time of
0.01 s, resulting in 800 data samples.

Figure 10. Test road.

After collecting real-time road–vehicle responses, the actual road conditions and the
road results identified from the SCKF and NARX-PASCKF are compared. The vehicle
response data and road recognition results are shown in Figure 11.

Figure 11a,b show the spring upper acceleration response values and spring lower
acceleration response values under different road surfaces. It is evident that three distinct
road grades are present: B grade in the first segment, D grade in the second segment, and
gaps consisting of C-grade brick surfaces.

Figure 11c shows the road roughness results of the SCKF and the NARX-PASCKF
estimator and their corresponding PSD, which are shown in Figure 11d–g. Similar to
the simulation, the result shows that the SCKF estimator can estimate the general profile
and the trend of the strengthened road roughness. However, further corrections are still
needed in the detailed estimation of the roughness variations. In the frequency plot, the
PSD estimation results from the SCKF exhibit discrepancies compared to the actual results,
particularly in the frequency range of 101–102 Hz (1–10 m−1), where the PSD values of
the road roughness estimated by the SCKF are significantly higher than the actual road
roughness PSD values.

Figure 11c–g show that the road roughness estimated by the NARX-PASCKF estimator
is closer to the actual road roughness than the SCFK estimator. Due to the introduction of
process noise factors and the hybrid strategy, the results in Figure 11d–g indicate that the
estimated PSD values of road roughness in the frequency ranges of 101–102 Hz (1–10 m−1)
have been corrected.

Table 7 compares the RMSE, MAE, and the coefficient R-square between the SCKF
estimator and the NARX-PASCKF estimator. The RMSE of the NARX-PASCKF algorithm
is reduced by 20.75%, the RMSE of the NARX-PASCKF algorithm is reduced by 26.56% and
the coefficient R-square of the NARX-PASCKF algorithm is improved by 2.4%.

The real-vehicle experimental data indicate that the proposed NARX-PASCKF hy-
brid algorithm is an effective method for identifying road roughness. In particular, the
NARX-PASCKF algorithm improves the covariance matrix of the PASCKF by integrating
the estimates from the NARX neural network, thereby enhancing the estimation accuracy
compared to the SCKF. However, as shown in Figure 11e–g, there are still certain discrepan-
cies between the NARX-PASCKF estimation algorithm and the actual road conditions in the
frequency range of 1–10 Hz (0.1–1 m−1). These discrepancies may be attributed to either the
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vehicle model or the overfitting issue of the NARX when predicting unknown road surfaces.
In this paper, the nonlinearity of the vehicle model parameters is approximated, and the
training of the NARX neural network is conducted using simulation data. This approach
may lead to overfitting issues when faced with unknown road surfaces. Therefore, further
research is needed to address the challenges of accurate vehicle modeling and to mitigate
the overfitting problem in neural network predictions.

Figure 11. Actual joint road recognition results. (a) Data on sprung acceleration. (b) Data of unsprung
acceleration. (c) Road elevation results. (d) Power spectral density results on B class. (e) Power
spetral density results on D class 1. (f) Power spectral density results on C class. (g) Power spectral
density results on D class 2.
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Table 7. The RMSE, MAE, and R-square comparison on a joint road.

Methods RMSE MAE R-Square

SCKF 0.0053 0.0064 0.8689
NARX-PASCKF 0.0042 0.0047 0.9133

Optimal ratio 20.75% 26.56% 5.1%

7. Conclusions

To address the challenge of accurately identifying road roughness due to the strong
nonlinearity of the suspension system, this paper proposes an NARX-PASCKF hybrid iden-
tification method. The proposed method is based on both the NARX neural network and
the SCKF. First, nonlinear suspension road roughness estimation models are constructed
using the NARX neural network and SCKF estimators. Next, to account for the impact of
changes in the process noise covariance during road surface variations, a process noise
factor correction is introduced, resulting in the process noise adaptive square root cubature
Kalman filter (PASCKF). Finally, considering the convergence and estimation accuracy
issues of the PASCKF, the method proposes to use the road roughness estimated by the
NARX to convert the road type into a process noise factor for real-time correction, along
with a corresponding fusion strategy to ensure the accuracy of the estimation.

The effectiveness and adaptability of the process are validated through simulation
and real-vehicle experiments. The actual vehicle experiments demonstrate that under the
condition of the joint road, the root mean square error (RMSE) of the NARX-PASCKF
estimator is reduced by 20.75%, the mean absolute error (MAE) is decreased by 26.56%,
and the determination coefficient R-square is improved by 5.1% compared to the single
SCKF estimator. These results indicate that the proposed NARX-PASCKF algorithm can
accurately estimate road roughness.

In practice, compared to direct contact measurements and measurements, the estima-
tion method proposed in this paper is more economical and versatile. The NARX-PASCKF
estimator based on the nonlinear suspension model proposed in this paper can accurately
estimate road roughness using only two vehicle response quantities: the sprung mass accel-
eration and the unsprung mass acceleration. Additionally, it can provide a feedforward
method for subsequent active suspension control.

However, this paper still has some limitations. The nonlinear suspension model
considered is relatively simplistic, and in reality, the damping and stiffness of nonlinear
suspensions exhibit more complex mathematical relationships, which may introduce some
estimation errors. Future work should focus on improving this by adopting more accurate
mathematical models. Additionally, the NARX neural network in this study was trained
using simulation data, which can lead to overfitting issues when dealing with unknown
road surfaces; thus, researchers should consider using actual vehicle response data for
training in future efforts. Finally, in the modeling of nonlinear suspensions, a more com-
prehensive multi-degree-of-freedom vehicle model could be considered to enhance the
estimation capability of the NARX-PASCKF under non-stationary conditions.
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