A Non-Contacted Height Measurement Method in Two-Dimensional Space
<p>System diagram.</p> "> Figure 2
<p>Tripod set up and camera.</p> "> Figure 3
<p>Height measurement in different postures; (<b>a</b>) standing-upright position; (<b>b</b>) 45-degree rotation position; (<b>c</b>) horizontal 90-degree rotation position; and (<b>d</b>) Kneeling position. Lines and points in each figure represent segments and joints determined from the OpenCV and the MediaPipe libraries.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Proposed Method
2.2. Predicting Result of Height Measurement
2.3. Data Collection
2.4. Data Processing
3. Results
3.1. Standing Upright Position
3.2. 45-Degree Rotation Position
3.3. Horizontal 90-Degree Rotation Position
3.4. Kneeling Position
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deaton, A. Height, health, and development. Proc. Natl. Acad. Sci. USA 2007, 104, 13232–13237. [Google Scholar] [CrossRef] [PubMed]
- Obese, H.J.O.R. Body mass index (BMI). Obes. Res. 1998, 6, 51S–209S. [Google Scholar]
- Nuttall, F.Q. Body mass index: Obesity, BMI, and health: A critical review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.N.; Anh, V.T.; Manh, H.P.; Thu, H.N.; Thuy, N.T.; Thi, H.N.; Thuy, A.N.; Trung, P.N. The Non-Contact Height Measurement Method Using MediaPipe and OpenCV in a 2D Space. In Proceedings of the 2023 1st International Conference on Health Science and Technology (ICHST), Hanoi, Vietnam, 28–29 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Dennis, D.M.; Hunt, E.E.; Budgeon, C.A. Measuring height in recumbent critical care patients. Am. J. Crit. Care 2015, 24, 41–47. [Google Scholar] [CrossRef] [PubMed]
- L’her, E.; Martin-Babau, J.; Lellouche, F. Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population. Ann. Intensive Care 2016, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Duc, T.T.; Phan, K.N.; Lan, P.N.; Mai PB, T.; Ngoc, D.C.; Manh, H.N.; Le Hoang, O.; Trung, P.N. Design and Development of Bedside Scale with Embedded Software to Calculate Treatment Parameters for Resuscitated Patients. In Proceedings of the 2023 1st International Conference on Health Science and Technology (ICHST), Hanoi, Vietnam, 28–29 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Nguyễn, P.K.; Đoàn, B.T.; Lê, H.O. Phần mềm hỗ trợ tính toán các thông số điều trị cho bệnh nhân hồi sức tích hợp với cân bệnh nhân. Tạp Chí Y Học Việt Nam 2023, 529, 179–183. [Google Scholar] [CrossRef]
- Digssie, A.; Argaw, A.; Belachew, T. Developing an equation for estimating body height from linear body measurements of Ethiopian adults. J. Physiol.-Thropology 2018, 37, 26. [Google Scholar] [CrossRef] [PubMed]
- Haritosh, A. A novel method to estimate Height, Weight and Body Mass Index from face images. In Proceedings of the Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019; IEEE: Piscataway, NJ, NSA, 2019. [Google Scholar]
- Lee, D.S.; Kim, J.S.; Jeong, S.C.; Kwon, S.K. Human height estimation by color deep learning and depth 3D conversion. Appl. Sci. 2010, 10, 5531. [Google Scholar] [CrossRef]
- Bradski, G. The opencv library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.L.; Yong, M.G.; Lee, J.; et al. Mediapipe: A framework for building perception pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.L.; Yong, M.; Lee, J.; et al. Mediapipe: A framework for perceiving and processing reality. In Proceedings of the Third workshop on computer vision for AR/VR at IEEE computer vision and pattern recognition (CVPR), Long Beach, CA, USA, 17 June 2019; Volume 2019. [Google Scholar]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumbhare, V.A.; Arthi, K. Real-time human pose detection and recognition using mediapipe. In Proceedings of the International Conference on Soft Computing and Signal Processing, Hyderabad, India, 18–19 June 2021; Springer Nature: Singapore, 2021; pp. 145–154. [Google Scholar]
- Tranmer, M.; Elliot, M. Multiple linear regression. Cathie Marsh Cent. Census Surv. Res. (CCSR) 2008, 5, 1–5. [Google Scholar]
- Eck, D.J. Bootstrapping for multivariate linear regression models. Stat. Probab. Lett. 2018, 134, 141–149. [Google Scholar] [CrossRef]
- Livingston, E.H. The mean and standard deviation: What does it all mean? J. Surg. Res. 2004, 119, 117–123. [Google Scholar] [CrossRef] [PubMed]
Samples | Actual Height (cm) | Predicted Height (cm) | Error (cm) | Error Rate (%) |
---|---|---|---|---|
1 | 174 | 170.9514 | 3.048575 | 1.752055 |
2 | 177 | 177.4226 | 0.422636 | 0.238778 |
3 | 162 | 167.6994 | 5.699382 | 3.518137 |
4 | 168 | 168.3282 | 0.328223 | 0.195371 |
5 | 172 | 169.1883 | 2.811732 | 1.634728 |
6 | 169 | 172.8558 | 3.855773 | 2.281522 |
7 | 170 | 169.2551 | 0.744909 | 0.438182 |
8 | 170 | 173.3402 | 3.340176 | 1.964809 |
9 | 180 | 180.4499 | 0.449862 | 0.249923 |
10 | 175 | 173.0343 | 1.965713 | 1.123264 |
11 | 169 | 171.7793 | 2.779289 | 1.64455 |
12 | 175 | 175.5055 | 0.505452 | 0.28883 |
13 | 173 | 175.8168 | 2.816793 | 1.628204 |
14 | 168 | 170.0952 | 2.095163 | 1.247121 |
15 | 171 | 170.7831 | 0.216859 | 0.126818 |
16 | 168 | 167.1057 | 0.894323 | 0.532335 |
17 | 163 | 163.9993 | 0.999287 | 0.613059 |
Average | 170.8 | 171.6241 | 1.939656 | 1.145746 |
Samples | Actual Height (cm) | Predicted Height (cm) | Error (cm) | Error Rate (%) |
---|---|---|---|---|
1 | 174 | 170.3426 | 3.657426 | 2.101969 |
2 | 177 | 178.7488 | 1.748834 | 0.988042 |
3 | 162 | 167.0036 | 5.003625 | 3.088657 |
4 | 168 | 167.3131 | 0.686861 | 0.408846 |
5 | 172 | 174.8213 | 2.821337 | 1.640312 |
6 | 169 | 166.2978 | 2.702194 | 1.598931 |
7 | 170 | 167.9283 | 2.071712 | 1.218654 |
8 | 170 | 168.6685 | 1.331542 | 0.78326 |
9 | 180 | 178.4254 | 1.574556 | 0.874753 |
10 | 175 | 174.1332 | 0.866795 | 0.495312 |
11 | 169 | 171.0258 | 2.025811 | 1.198705 |
12 | 175 | 175.7314 | 0.731434 | 0.417962 |
13 | 173 | 174.0368 | 1.03684 | 0.599329 |
14 | 168 | 164.0762 | 3.923809 | 2.335601 |
15 | 171 | 172.5887 | 1.588712 | 0.929071 |
16 | 168 | 167.4733 | 0.526727 | 0.313528 |
17 | 163 | 162.7955 | 0.20453 | 0.125479 |
Average | 170.8 | 170.6712 | 1.911926 | 1.124612 |
Samples | Actual Height (cm) | Predicted Height (cm) | Error (cm) | Error Rate (%) |
---|---|---|---|---|
1 | 177 | 177.8865 | 0.886495 | 0.500845 |
2 | 162 | 169.2808 | 7.2808 | 4.494321 |
3 | 168 | 168.0163 | 0.016319 | 0.009714 |
4 | 172 | 169.4318 | 2.568204 | 1.493142 |
5 | 169 | 168.173 | 0.826959 | 0.489325 |
6 | 170 | 176.0739 | 6.073928 | 3.572899 |
7 | 170 | 168.528 | 1.47199 | 0.865877 |
8 | 180 | 183.2167 | 3.216669 | 1.787039 |
9 | 175 | 171.7336 | 3.266446 | 1.86654 |
10 | 169 | 174.7692 | 5.769226 | 3.413743 |
11 | 169 | 168.7802 | 0.219849 | 0.130088 |
12 | 175 | 172.8844 | 2.115569 | 1.208896 |
13 | 173 | 175.1489 | 2.148942 | 1.242163 |
14 | 168 | 165.562 | 2.438041 | 1.451215 |
15 | 171 | 173.9013 | 2.901262 | 1.696644 |
16 | 168 | 167.8982 | 0.10178 | 0.060583 |
17 | 163 | 166.2274 | 3.22743 | 1.980018 |
Average | 170.5 | 171.6184 | 2.619406 | 1.544885 |
Samples | Actual Height (cm) | Predicted Height (cm) | Error (cm) | Error Rate (%) |
---|---|---|---|---|
1 | 174 | 169.3661 | 4.633906 | 2.663164 |
2 | 177 | 178.5004 | 1.50038 | 0.847672 |
3 | 162 | 163.4223 | 1.422282 | 0.877952 |
4 | 168 | 168.3369 | 0.336886 | 0.200527 |
5 | 172 | 170.5549 | 1.445134 | 0.840194 |
6 | 169 | 168.7444 | 0.255635 | 0.151263 |
7 | 170 | 176.0042 | 6.004188 | 3.531876 |
8 | 170 | 175.1093 | 5.109334 | 3.005491 |
9 | 180 | 182.6475 | 2.647498 | 1.470832 |
10 | 175 | 178.3741 | 3.374108 | 1.928062 |
11 | 169 | 172.6141 | 3.614117 | 2.138531 |
12 | 175 | 172.9836 | 2.01644 | 1.152252 |
13 | 173 | 175.8976 | 2.897555 | 1.674887 |
14 | 168 | 166.5528 | 1.44725 | 0.861458 |
15 | 171 | 169.4226 | 1.577427 | 0.922472 |
16 | 168 | 167.0025 | 0.997496 | 0.593748 |
17 | 163 | 165.3323 | 2.332332 | 1.430879 |
Average | 170.8 | 171.8156 | 2.447763 | 1.428898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen Trung, P.; Nguyen, N.B.; Nguyen Phan, K.; Pham Van, H.; Hoang Van, T.; Nguyen, T.; Gandjbakhche, A. A Non-Contacted Height Measurement Method in Two-Dimensional Space. Sensors 2024, 24, 6796. https://doi.org/10.3390/s24216796
Nguyen Trung P, Nguyen NB, Nguyen Phan K, Pham Van H, Hoang Van T, Nguyen T, Gandjbakhche A. A Non-Contacted Height Measurement Method in Two-Dimensional Space. Sensors. 2024; 24(21):6796. https://doi.org/10.3390/s24216796
Chicago/Turabian StyleNguyen Trung, Phu, Nghien Ba Nguyen, Kien Nguyen Phan, Ha Pham Van, Thao Hoang Van, Thien Nguyen, and Amir Gandjbakhche. 2024. "A Non-Contacted Height Measurement Method in Two-Dimensional Space" Sensors 24, no. 21: 6796. https://doi.org/10.3390/s24216796
APA StyleNguyen Trung, P., Nguyen, N. B., Nguyen Phan, K., Pham Van, H., Hoang Van, T., Nguyen, T., & Gandjbakhche, A. (2024). A Non-Contacted Height Measurement Method in Two-Dimensional Space. Sensors, 24(21), 6796. https://doi.org/10.3390/s24216796