An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array
<p>Geometry of a single moving platform and emitters.</p> "> Figure 2
<p>Coprime array configuration.</p> "> Figure 3
<p>Schematic example of array structure with M = 3 and N = 5. (<b>a</b>) Physical coprime array. (<b>b</b>) The DCA of coprime array <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math>. (<b>c</b>) The SCA of coprime array <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> </semantics></math>. (<b>d</b>) The interpolated array of (<b>b</b>) <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">D</mi> <mi>I</mi> </msub> </semantics></math>. (<b>e</b>) The interpolated array of (<b>c</b>), <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">S</mi> <mi>I</mi> </msub> </semantics></math>.</p> "> Figure 4
<p>Moving platform scene related to two closed targets.</p> "> Figure 5
<p>Resolution comparison in terms of the DPD spatial spectrum with the batch number L = 6 and SNR = 10 dB. (<b>a</b>) ULA-SDF algorithm. (<b>b</b>) SDCA-SDF algorithm. (<b>c</b>) SSR-SDF algorithm. (<b>d</b>) NNM-SDF algorithm. (<b>e</b>) Proposed algorithm.</p> "> Figure 5 Cont.
<p>Resolution comparison in terms of the DPD spatial spectrum with the batch number L = 6 and SNR = 10 dB. (<b>a</b>) ULA-SDF algorithm. (<b>b</b>) SDCA-SDF algorithm. (<b>c</b>) SSR-SDF algorithm. (<b>d</b>) NNM-SDF algorithm. (<b>e</b>) Proposed algorithm.</p> "> Figure 6
<p>Resolution comparison in terms of the DPD spatial spectrum with the batch number L = 6 and SNR = 5 dB. (<b>a</b>) ULA-SDF algorithm. (<b>b</b>) SDCA-SDF algorithm. (<b>c</b>) SSR-SDF algorithm. (<b>d</b>) NNM-SDF algorithm. (<b>e</b>) Proposed algorithm.</p> "> Figure 6 Cont.
<p>Resolution comparison in terms of the DPD spatial spectrum with the batch number L = 6 and SNR = 5 dB. (<b>a</b>) ULA-SDF algorithm. (<b>b</b>) SDCA-SDF algorithm. (<b>c</b>) SSR-SDF algorithm. (<b>d</b>) NNM-SDF algorithm. (<b>e</b>) Proposed algorithm.</p> "> Figure 7
<p>Moving platform scene related to seven targets.</p> "> Figure 8
<p>RMSE performance comparison with seven sources in SNR and snapshots. (<b>a</b>) K = 200. (<b>b</b>) SNR = <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Moving platform scene related to 15 targets.</p> "> Figure 10
<p>Localization performance with different batch number L, where SNR = 20 dB and K = 200. (<b>a</b>) Batch number = 99. (<b>b</b>) Batch number = 50. (<b>c</b>) Batch number = 10.</p> "> Figure 11
<p>Motion scene along the y = 3 trajectory with SNR = 20dB and K = 200. (<b>a</b>) Motion scene. (<b>b</b>) Positioning results.</p> "> Figure 12
<p>Motion scene along the y = 40 trajectory. (<b>a</b>) Motion scene. (<b>b</b>) Positioning results with SNR = 20 dB and K = 200. (<b>c</b>) Positioning results with SNR = 30 dB and K = 200,000.</p> "> Figure 13
<p>The curved trajectory passing through the target with SNR = 20 dB and K = 200. (<b>a</b>) Motion scene. (<b>b</b>) Positioning results.</p> "> Figure 14
<p>Motion scene along the y-axis trajectory with SNR = 20 dB and K = 200. (<b>a</b>) Motion scene. (<b>b</b>) Positioning results.</p> "> Figure 15
<p>DOF comparison in terms of the DPD spatial spectrum with the batch number L = 99, SNR = 20 dB, and snapshots K = 200. (<b>a</b>) ULA-SDF algorithm. (<b>b</b>) SDCA-SDF algorithm. (<b>c</b>) SSR-SDF algorithm. (<b>d</b>) NNM-SDF algorithm. (<b>e</b>) Proposed algorithm.</p> "> Figure 16
<p>RMSE performance comparison with seven sources with different SNRs.</p> "> Figure 17
<p>RMSE performance comparison with three sources with different SNRs. (<b>a</b>) Non-circular signal. (<b>b</b>) Circular aignal.</p> "> Figure 18
<p>RMSE performance comparison with seven sources in different snapshots.</p> ">
Abstract
:1. Introduction
2. DPD Model with a Moving Array
DPD Model Based on Coprime Array
3. Proposed Algorithm
3.1. Gridless Recovery Based on Array Interpolation
3.2. Positioning Estimation for Circular and Non-Circular Signals
Algorithm 1: An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array |
4. Simulation Results
4.1. Resolution
4.2. Localization Accuracy
4.3. The Impact of the Movement Trajectory
4.3.1. Batch Number
4.3.2. Movement Trajectory
4.4. Degrees of Freedom
4.5. Computation Time
5. Discussion
5.1. The Influence of Target Circularity Balance
5.2. The Measurement of Low SNR
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statemen
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, P.; Li, P.; Tang, L.; Zhang, X.; Wu, Q. Self-Position Awareness Based on Cascade Direct Localization over Multiple Source Data. IEEE Trans. Intell. Transp. Syst. 2024, 25, 796–804. [Google Scholar] [CrossRef]
- Fan, W.; Liu, S.; Li, C.; Huang, Y. Fast Direct Localization for Millimeter Wave MIMO Systems via Deep ADMM Unfolding. IEEE Wirel. Commun. Lett. 2023, 12, 748–752. [Google Scholar] [CrossRef]
- Pan, M.; Liu, P.; Liu, S.; Qi, W.; Huang, Y.; You, X.; Jia, X.; Li, X. Efficient joint DOA and TOA estimation for indoor positioning with 5G picocell base stations. IEEE Trans. Instrum. Meas. 2022, 71, 1–19. [Google Scholar] [CrossRef]
- Trinh-Hoang, M.; Viberg, M.; Pesavento, M. Partial relaxation approach: An eigenvalue-based DOA estimator framework. IEEE Trans. Signal Process. 2018, 66, 6190–6203. [Google Scholar] [CrossRef]
- Sun, Y.; Ho, K.; Yang, Y.; Chen, L. An Asymptotically Optimal Estimator for Source Location and Propagation Speed by TDOA. IEEE Signal Process. Lett. 2023, 30, 1037–1041. [Google Scholar] [CrossRef]
- Li, Q.; Chen, B.; Yang, M. Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating direction method of multipliers. IEEE Sens. J. 2020, 20, 13666–13673. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R. RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes. IEEE Trans. Veh. Technol. 2014, 64, 2037–2050. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y. Statistical performance analysis of direct position determination method based on Doppler shifts in presence of model errors. Multidimens. Syst. Signal Process. 2017, 28, 149–182. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.P.; Yan, J. A high-resolution DOA estimation method with a family of nonconvex penalties. IEEE Trans. Veh. Technol. 2018, 67, 4925–4938. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Optimum localization of multiple sources by passive arrays. IEEE Trans. Acoust. Speech Signal Process. 1983, 31, 1210–1217. [Google Scholar] [CrossRef]
- Amar, A.; Weiss, A.J. Direct position determination: A single-step emitter localization approach. In Classical and Modern Direction-of-Arrival Estimation; Elsevier: Amsterdam, The Netherlands, 2009; pp. 385–424. [Google Scholar]
- Weiss, A.J. Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process. Lett. 2004, 11, 513–516. [Google Scholar] [CrossRef]
- Yin, J.; Wang, D.; Wu, Y.; Liu, R. Direct localization of multiple stationary narrowband sources based on angle and Doppler. IEEE Commun. Lett. 2017, 21, 2630–2633. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct localization for massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, G.; Li, X.; Xu, T.; Zhang, M.; Guo, F. Direct Position Determination based on Passive Synthetic Aperture for Coherent Receivers. IEEE Sens. J. 2024, 24, 17917–17925. [Google Scholar] [CrossRef]
- Lv, L.; Wu, S.; Li, H.; Jiang, C.; Su, Y. DNN-aided distributed direct position determination for UAV cluster. IEEE Trans. Veh. Technol. 2023, 72, 16839–16844. [Google Scholar] [CrossRef]
- Zhou, T.; Yi, W.; Kong, L. Non-Cooperative passive direct localization based on waveform estimation. Remote Sens. 2021, 13, 264. [Google Scholar] [CrossRef]
- Demissie, B.; Oispuu, M.; Ruthotto, E. Localization of multiple sources with a moving array using subspace data fusion. In Proceedings of the 2008 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–7. [Google Scholar]
- Tzafri, L.; Weiss, A.J. High-resolution direct position determination using MVDR. IEEE Trans. Wirel. Commun. 2016, 15, 6449–6461. [Google Scholar] [CrossRef]
- Yin, J.x.; Wu, Y.; Wang, D. Direct position determination of multiple noncircular sources with a moving array. Circuits Syst. Signal Process. 2017, 36, 4050–4076. [Google Scholar] [CrossRef]
- Oispuu, M.; Nickel, U. Direct detection and position determination of multiple sources with intermittent emission. Signal Process. 2010, 90, 3056–3064. [Google Scholar] [CrossRef]
- Picard, J.S.; Weiss, A.J. Direct position determination sensitivity to NLOS propagation effects on Doppler-shift. IEEE Trans. Signal Process. 2019, 67, 3870–3881. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 2010, 59, 573–586. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part I: Fundamentals. IEEE Trans. Signal Process. 2016, 64, 3997–4012. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Lu, Y.; Ren, S.; Cao, S. Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process. 2017, 65, 5549–5563. [Google Scholar] [CrossRef]
- Zhang, Y.; Ba, B.; Wang, D.; Geng, W.; Xu, H. Direct position determination of multiple non-circular sources with a moving coprime array. Sensors 2018, 18, 1479. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Z.; Zeng, H. Direct position determination for augmented coprime arrays via weighted subspace data fusion method. Math. Probl. Eng. 2021, 2021, 2825025. [Google Scholar] [CrossRef]
- Fuchs, J.J. On the application of the global matched filter to DOA estimation with uniform circular arrays. IEEE Trans. Signal Process. 2001, 49, 702–709. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef]
- Gurbuz, A.C.; McClellan, J.H.; Cevher, V. A compressive beamforming method. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2617–2620. [Google Scholar]
- Hyder, M.M.; Mahata, K. Direction-of-Arrival Estimation Using a Mixed l2,0 Norm Approximation. IEEE Trans. Signal Process. 2010, 58, 4646–4655. [Google Scholar] [CrossRef]
- Xu, X.; Wei, X.; Ye, Z. DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty. IEEE Signal Process. Lett. 2012, 19, 155–158. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, O.K.; Ye, J.C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing. IEEE Trans. Inf. Theory 2012, 58, 278–301. [Google Scholar] [CrossRef]
- Stoica, P.; Babu, P.; Li, J. SPICE: A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 2010, 59, 629–638. [Google Scholar] [CrossRef]
- Liu, Z.; Kopp, G.A. A numerical study of geometric effects on vortex shedding from elongated bluff bodies. J. Wind. Eng. Ind. Aerodyn. 2012, 101, 1–11. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans. Signal Process. 2018, 67, 208–220. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y. A correlation-aware sparse Bayesian perspective for DOA estimation with off-grid sources. IEEE Trans. Antennas Propag. 2019, 67, 7661–7666. [Google Scholar] [CrossRef]
- Das, A. Real-valued sparse Bayesian learning for off-grid direction-of-arrival (DOA) estimation in ocean acoustics. IEEE J. Ocean. Eng. 2020, 46, 172–182. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed sensing off the grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B.N.; Recht, B. Near minimax line spectral estimation. IEEE Trans. Inf. Theory 2014, 61, 499–512. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Wagner, M.; Park, Y.; Gerstoft, P. Gridless DOA estimation and root-MUSIC for non-uniform linear arrays. IEEE Trans. Signal Process. 2021, 69, 2144–2157. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 2012, 61, 38–43. [Google Scholar] [CrossRef]
- Wagner, M.; Gerstoft, P.; Park, Y. Gridless DOA estimation via. alternating projections. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4215–4219. [Google Scholar]
- Deng, J.; Yin, J.; Yang, B.; Chen, T. Direct position determination of non-circular signals based on off-grid sparse reconstruction. In Proceedings of the 5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023), Wuhan, China, 24–26 March 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12748, pp. 125–131. [Google Scholar]
- Mishra, K.V.; Cho, M.; Kruger, A.; Xu, W. Spectral super-resolution with prior knowledge. IEEE Trans. Signal Process. 2015, 63, 5342–5357. [Google Scholar] [CrossRef]
- Wu, X.; Yan, J. Gridless mixed sources localization based on low-rank matrix reconstruction. IEEE Wirel. Commun. Lett. 2020, 9, 1748–1752. [Google Scholar] [CrossRef]
- Abeida, H.; Delmas, J.P. MUSIC-like estimation of direction of arrival for noncircular sources. IEEE Trans. Signal Process. 2006, 54, 2678–2690. [Google Scholar] [CrossRef]
- Picinbono, B. On circularity. IEEE Trans. Signal Process. 1994, 42, 3473–3482. [Google Scholar] [CrossRef]
- Xu, D.; Huang, L.; Xu, X.; Ye, Z. Widely linear MVDR beamformers for noncircular signals based on time-averaged second-order noncircularity coefficient estimation. IEEE Trans. Veh. Technol. 2013, 62, 3219–3227. [Google Scholar]
- Wan, L.; Han, G.; Jiang, J.; Rodrigues, J.J.; Feng, N.; Zhu, T. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst. J. 2015, 11, 41–49. [Google Scholar] [CrossRef]
- Huarng, K.C.; Yeh, C.C. A unitary transformation method for angle-of-arrival estimation. IEEE Trans. Signal Process. 1991, 39, 975–977. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Amin, M.G.; Himed, B. Sparsity-based DOA estimation using co-prime arrays. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3967–3971. [Google Scholar]
- Liu, C.L.; Vaidyanathan, P.; Pal, P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2639–2642. [Google Scholar]
Algorithm | SNR = 5 dB | SNR = 10 dB |
---|---|---|
ULA-SDF | 0.3210 | 0.2973 |
SDCA-SDF | 0.2937 | 0.2820 |
SSR-SDF | 0.2933 | 0.2332 |
NNM-SDF | 0.2884 | 0.2217 |
Proposed | 0.2742 | 0.2062 |
Algorithm | Algorithm Time | Exhaustive Search Time |
---|---|---|
ULA-SDF | 0.013367 | 7.016410 |
SDCA-SDF | 0.018876 | 7.201545 |
SSR-SDF | 6.443729 | 9.073410 |
NNM-SDF | 4.048454 | 9.062430 |
Proposed | 4.470362 | 9.050351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, J.; Guo, H.; Miao, Y. An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array. Sensors 2024, 24, 6718. https://doi.org/10.3390/s24206718
Wang Z, Zhang J, Guo H, Miao Y. An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array. Sensors. 2024; 24(20):6718. https://doi.org/10.3390/s24206718
Chicago/Turabian StyleWang, Zhaobo, Jun Zhang, Hui Guo, and Yingjie Miao. 2024. "An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array" Sensors 24, no. 20: 6718. https://doi.org/10.3390/s24206718
APA StyleWang, Z., Zhang, J., Guo, H., & Miao, Y. (2024). An Enhanced Direct Position Determination of Mixed Circular and Non-Circular Sources Using Moving Virtual Interpolation Array. Sensors, 24(20), 6718. https://doi.org/10.3390/s24206718