
Citation: Park, H.; Jang, H. Enhancing

Time Series Anomaly Detection: A

Knowledge Distillation Approach

with Image Transformation. Sensors

2024, 24, 8169. https://doi.org/

10.3390/s24248169

Academic Editor: Francesco Mercaldo

Received: 1 December 2024

Revised: 16 December 2024

Accepted: 19 December 2024

Published: 21 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Enhancing Time Series Anomaly Detection: A Knowledge
Distillation Approach with Image Transformation
Haiwoong Park and Hyeryung Jang *

Division of Computer Science & Artificial Intelligence, Dongguk University, Seoul 04620,
Republic of Korea; yuti97@dgu.ac.kr
* Correspondence: hyeryung.jang@dgu.ac.kr

Abstract: Anomaly detection is critical in safety-sensitive fields, but faces challenges from scarce
abnormal data and costly expert labeling. Time series anomaly detection is relatively challenging due
to its reliance on sequential data, which imposes high computational and memory costs. In particular,
it is often composed of real-time collected data that tends to be noisy, making preprocessing an
essential step. In contrast, image anomaly detection has leveraged advancements in technologies for
analyzing spatial patterns and visual features, achieving high accuracy and promoting research aimed
at improving efficiency. We propose a novel framework that bridges image anomaly detection with
time series data. Using Gramian Angular Field (GAF) transformations, we convert time series into
images and apply state-of-the-art techniques, Reverse Distillation (RD) and EfficientAD (EAD), for
efficient and accurate anomaly detection. Tailored preprocessing and transformations further enhance
performance and interoperability. When evaluated on the multivariate time series anomaly detection
dataset Secure Water Treatment (SWaT) and the univariate datasets University of California, Riverside
(UCR) and Numenta Anomaly Benchmark (NAB), our approach demonstrated high recall overall
and achieved approximately 99% F1 scores on some univariate datasets, proving its effectiveness as a
novel solution for time series anomaly detection.

Keywords: anomaly detection; time series; imaging time series; knowledge distillation; sensor
operation data

1. Introduction

Anomaly detection involves identifying abnormal data that deviates from standard
patterns and plays a critical role in ensuring security and stability in various applications [1].
It is widely adopted in high-stakes fields such as finance, healthcare, and manufacturing,
where safety and risk management are priorities. For example, detecting unusual trans-
action patterns helps prevent fraud in finance, while identifying abnormal patient vitals
can enable early diagnosis in healthcare. As a result, anomaly detection remains a re-
search topic of substantial practical value across multiple domains. Despite its importance,
anomaly detection faces several inherent challenges. First, the scarcity of anomalous data
poses a significant hurdle for training models. Anomalies are rare and unpredictable in
real-world settings, making it difficult to collect sufficient data for effective learning. Sec-
ond, the process of labeling collected data requires specialized knowledge, making it both
time-consuming and costly. Lastly, anomalies can appear in diverse and unpredictable
patterns, making it nearly impossible to define all abnormal patterns in advance. These
challenges highlight the limitations of supervised approaches that rely heavily on labeled
examples of anomalies.

To address these challenges, recent research on anomaly detection has increasingly
focused on unsupervised learning methods. These approaches train models exclusively on
normal data to learn its patterns and classify instances that deviate from these patterns as
anomaly during testing. Initially, unsupervised learning methods showed lower detection
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rates compared to supervised and semi-supervised approaches. However, with advance-
ments in deep learning, applying techniques such as contrastive learning, representation
learning, and generative models has led to remarkable detection performance across vari-
ous domains. Additionally, unsupervised learning approaches often need to process large
amounts of data. Techniques like coreset subsampling and knowledge distillation [2] enable
efficient memory management, aiding in handling large datasets and enhancing detection
performance. These methods enable robust and effective anomaly detection across various
applications using only normal data, without requiring labeled anomalies.

With advancements in unsupervised anomaly detection, time series anomaly detection
is growing in importance as applications utilizing time series data continue to expand [3].
Time series data, characterized by sequential observations over time, are common in
domains such as real-time sensor monitoring, traffic analysis, industrial operations, climate
science, and urban planning. Because time series data exhibit temporal dependencies,
in which past observations influence current values, specialized approaches that consider
both short and long sequences are required for tasks such as forecasting and decision-
making. Additionally, time series data accumulate over time, leading to large datasets that
often contain noise and missing values, necessitating preprocessing. These factors result in
high computational and memory costs for time series anomaly detection and increase the
difficulty of detection.

On the other hand, image anomaly detection has achieved high detection performance
and efficiency with advancements in image feature learning and modeling techniques.
Leveraging generative models and pre-trained models, it has become possible to achieve
high-performance anomaly detection by identifying differences that occur in abnormal
images. Furthermore, dividing images into patches allows for more precise and detailed
anomaly detection. Recent studies have applied techniques such as model lightweight,
transfer learning, and knowledge distillation, enabling high efficiency in terms of time and
memory while maintaining strong performance.

In this study, we propose a framework that applies image anomaly detection tech-
niques to time series data to achieve high anomaly detection accuracy and computational
efficiency. Previous studies have explored the application of time series data to image
anomaly detection. For example, T2IAE [4] and TSI-GAN [5] transform time series data
into images and employ generative models for anomaly detection. However, these methods
rely on relatively outdated models, such as GANs or adversarial autoencoders, in image
anomaly detection. ITF-TAD [6] transforms time series data into images using wavelet
transformation and applies PatchCore [7], a state-of-the-art method, to image anomaly
detection. However, the PatchCore model in ITF-TAD uses feature extractors pre-trained
on image datasets, which may not be optimal for images transformed from time series
data. We aim to transform time series data into images and apply state-of-the-art image
anomaly detection methods to achieve superior performance and efficiency. This process
enables the effective representation of normal data patterns from time series as images,
addressing the common challenge of insufficient abnormal data in anomaly detection and
improving anomaly detection performance. Then, the transformed images are applied to
knowledge-distillation-based image anomaly detection techniques to generate anomaly
maps. These maps are then used to perform efficient and accurate time series anomaly
detection. Our framework modularizes each step, considering the unique characteristics of
time series data, and enables the adaptation of methods according to the characteristics of
the target dataset to enhance anomaly detection performance. The main contributions of
this study are as follows:

• Generalization of normal patterns through processing: Normal time series data are
segmented based on repetitive patterns and transformed into images while preserving
time series characteristics. Although normal patterns in time series data can be
unstable due to noise and other factors, segmenting them by cycle and generalizing
them into image representations enables more robust detection against such variability.
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This approach facilitates the formation of normal patterns in unsupervised anomaly
detection, leading to improved detection performance.

• Anomaly-map-based time series anomaly detection: Using a knowledge-distillation-
based anomaly detection model, an anomaly map is derived from image anomaly
detection results. The transformed image and the derived anomaly map, which
preserve the temporal dependency and time series characteristics, allow for an intuitive
understanding of where anomalies occur. Leveraging this map and the preserved
time series structure, we propose a more accurate and efficient anomaly detection
algorithm for time series data.

• Experimental validation: extensive experiments on various real-world datasets vali-
date the effectiveness of the proposed framework and demonstrate significant perfor-
mance gains over existing methods.

2. Related Works
2.1. Anomaly Detection of Time Series Data

Time series anomaly detection is a challenging task due to the various characteristics
of time series data. One of these characteristics is that past points influence the present,
making the order significant and making it challenging to detect anomalies based solely on
individual points. Therefore, it is essential to consider the correlations across different time
points at the sequence level. Additionally, the characteristics and patterns of time series data
can differ across datasets, which can result in considerable variations in performance, even
when using the same detection model. For these reasons, time series anomaly detection
often shows low accuracy, and developing a generalized model applicable to a wide range
of time series datasets is also difficult. To address these challenges, various approaches
have been explored for time series anomaly detection, including self-supervised learning,
Transformers [8], graph neural networks (GNNs) [9], contrastive learning, and diffusion
models [10]. Self-supervised learning [11] and contrastive learning [12] effectively capture
patterns and features in normal data, and can be applied to diverse time series datasets,
making them highly effective for time series anomaly detection with excellent performance.
Transformer-based methods [13,14] are capable of handling long-range dependencies due
to the self-attention mechanism, enabling them to effectively learn long-term patterns in
time series data. They can also consider relationships between variables. Both of these
capabilities contribute to the strong performance in multivariate time series anomaly
detection. The traditional transformer had limitations in terms of efficiency, handling
temporal dependencies, and real-time anomaly detection. However, recent research has
been continuously improving the attention structure and sequence modeling, overcoming
these limitations and achieving high performance. Similarly, GNNs are well-suited for
capturing complex relationships between variables, making GNN-based methods [15]
effective in multivariate time series anomaly detection. However, as the size of the graph
increases, the computational cost grows significantly, making it inefficient for large-scale
time series data, and it has the limitation of being dependent on the design of the graph
structure. Diffusion models learn the distribution of normal time series data and detect
anomalies by utilizing reconstruction errors during the restoration process. This allows
diffusion-based methods [16] to effectively learn complex patterns in time series data,
enhancing their generalization capabilities and reducing the impact of noise. As a result,
they achieve a high anomaly detection performance, and can be applied to a wide range
of time series datasets. However, due to the high computational complexity, it may be
unsuitable for real-time anomaly detection, and since it does not directly capture the
temporal dependencies of time series data, it struggles to capture relationships between
time points, compared to other models. In this way, various techniques aim to solve
the problems in traditional time series anomaly detection by taking into account the
characteristics of time series data and enhancing performance. This study was conducted
with the same goal.
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2.2. Image Transformation of Time Series Data

Transforming time series data into images provides a way to apply image anomaly
detection techniques to time series data. The purpose of these transformation techniques is
to preserve the key temporal features and patterns inherent in time series data while mini-
mizing information loss. Methods like the Markov Transition Field (MTF) [17], Recurrence
Plot (RP) [18], and Gramian Angular Field (GAF) [17] are widely used for this purpose.
MTF discretizes time series data into states and computes transition probabilities between
them, providing a visual representation of temporal transitions. RP calculates the similarity
between time points in a time series to construct a recurrence matrix, offering insights
into repetitive patterns within the data. GAF encodes time series into polar coordinates,
capturing angular information to preserve temporal dependencies and the overall struc-
ture of the data. This method has been particularly effective in bridging time series and
image anomaly detection. As a result, by selecting the appropriate transformation method
based on the characteristics of the dataset, the overall anomaly detection performance can
be improved.

2.3. Anomaly Detection of Image Data

Image anomaly detection has made significant progress, driven by advancements in
feature learning and modeling techniques. In particular, by leveraging generative models,
significant progress has been made in overcoming the difficulties of learning complex
patterns in image anomaly detection, and it has become possible to interpret anomaly
detection results through anomaly maps. Additionally, research on model optimization for
efficiency, domain generalization to ensure functionality across various domains, and mul-
timodal approaches continue to be actively explored. Studies such as GANomaly [19] and
AnoGAN [20], which utilize Generative Adversarial Networks (GANs), learn the distri-
bution of normal data and effectively detect anomalies by comparing the reconstructed
image with the real image. While these methods, using advanced GAN models, can be
flexibly applied to various domains, they have limitations, such as unstable training and
lower detection performance on complex data. As a result, research continues to explore
the integration of GANs with other techniques to overcome these limitations. Addition-
ally, studies like CSFLOW [21] and FastFlow [22], which utilize Normalizing flow, detect
anomalies by learning the data distribution and estimating the probability that the data
belongs to the normal distribution. This approach has the advantage of providing clear
and numerically interpretable anomaly detection criteria, and after training, it offers fast
anomaly detection speeds, making it suitable for real-time anomaly detection. However,
it has drawbacks, such as complex network design, high training costs, and sensitivity
to noise. To address these issues, efforts are being made to improve data preprocessing
and architecture design for efficiency. Diffusion-based methods [16] learn the accurate
distribution of data, achieving high anomaly detection performance and ease of application
across various domains. However, they come with high computational costs and complex
training. To address this, model compression and progressive training [23] have been
applied, improving both performance and efficiency. Methods using patches, such as
SPADE [24] and PaDiM [25], divide images into patches and detect anomalies by compar-
ing features across the patches using pre-trained models on large datasets. This approach
makes it easier to detect local anomalies and identify the location of anomalies. However,
it is sensitive to patch size, and can be computationally expensive. PatchCore [7] improves
efficiency by using a coreset subsampling technique that only stores important features,
achieving excellent performance and optimization. ReConPatch [26] employs contrastive
learning to learn patch-level representations and calculate the similarity between patches,
reducing computational complexity while achieving high anomaly detection accuracy.
Additionally, GLASS [27] introduces a different image anomaly detection approach by
generating artificial anomalous data and amplifying the differences between normal and
anomalous data to effectively learn the patterns of normal data and achieve high anomaly
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detection performance. In this way, image anomaly detection has demonstrated high
accuracy, and recent research is actively focusing on achieving efficiency as well.

3. Preliminaries

In this section, we describe two knowledge-distillation-based image anomaly detection
models that we used to derive the anomaly map.

3.1. Reverse Distillation

Reverse Distillation (RD) [28] is designed to ensure that the teacher and student
models do not share the same architecture and have different data flows. This resolves
the problem of the student model excessively mimicking the teacher model in traditional
knowledge-distillation-based anomaly detection, which often leads to failures in detecting
anomalies. Figure 1 illustrates the overall structure of Reverse Distillation.

Figure 1. Overview of reverse distillation.

Reverse Distillation employs a reversed architecture, using a pre-trained encoder as
the teacher model and a trainable decoder as the student model. This design prevents the
student model from directly mimicking the parameters of the teacher model. Additionally,
it introduces a module called the One-Class Bottleneck Embedding Module (OCBE), which
compresses the features extracted by the Teacher model before passing them to the Student
model. During this process, the Student model filters out unnecessary information, such as
anomalies and noise, and learns only the information relevant to normal data. This ensures
that the student model does not mimic the teacher model for abnormal data. The training
process uses only normal data and employs a loss function to minimize the difference
between the features encoded by the Teacher model and those decoded by the Student
model. The feature differences are calculated at each layer using pixel-level cosine similarity,
and these differences are then used to generate anomaly maps for each layer.
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, (1)

where f k
E(h, w) and f k

D(h, w) represent the feature vectors at spatial location (h, w), ∥ · ∥ de-
notes the Euclidean norm, E corresponds to the encoder of the teacher model, D represents
the decoder of the student model, k denotes the layer index, and h, w specify the spatial
pixel locations.
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K

∑
k=1

{
1

HkWk

Hk

∑
h=1

Wk

∑
w=1

Mk(h, w)

}
, (2)

where LKD represents the knowledge distillation loss, where K is the total number of layers
considered, and Hk and Wk, respectively, denote the height and width of the anomaly map
at the k-th layer.

Since the anomaly maps generated by each layer have different resolutions, they are
up-sampled and then combined to produce the final anomaly map for the input image.
This approach overcomes existing limitations and enables accurate anomaly detection.

3.2. EfficientAD

EfficientAD (EAD) [29] utilizes a lightweight feature extractor called the Patch De-
scription Network (PDN), which efficiently represents each 33 × 33 patch as a single
feature vector, enabling efficient anomaly detection. Similar to other methods, EAD uses
only normal data during training and detects anomalies based on the differences between
the outputs of the teacher and student models. Figure 2 illustrates the overview of the
EAD architecture.

While using a lightweight feature extractor can improve efficiency, it may lead to
lower anomaly detection performance. To address this, EAD introduces a hard feature loss
to enhance detection performance. The hard feature loss, Lhard, is designed to compute
the loss only for areas where the student model fails to properly mimic the teacher model
during training. Lhard is defined as

Lhard =
1

|Dhard| ∑
(c,w,h)∈Dhard

Dc,w,h, (3)

where Dc,w,h represents the distance between the teacher model’s output and the student
model’s output at the c-th channel and position (w, h), with I denoting the input image,
quantified as

Dc,w,h = (T(I)c,w,h − S(I)c,w,h)
2 (4)

and Dhard is the set of values in D that are in the top phard percentile. Additionally, EAD
introduces a loss penalty term called Lpenalty. Features are extracted from images randomly
sampled from a dataset not used during training, and the average of these features is
used as Lpenalty. This ensures that data not seen during training yield high loss values,
preventing the student model from effectively mimicking the teacher model for images
that are either abnormal or unseen during training.

Lpenalty =
1

CWH ∑
c
∥S(P)c∥2

F, (5)

where C, W, and H are the number of channels, width, and height of the output, and P rep-
resents a randomly sampled image from a dataset not used during training. Consequently,
the loss LST, which represents the difference between the student model and the teacher
model in EAD, is defined as

LST = Lhard + Lpenalty. (6)
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Figure 2. Overview of EfficientAD.

EAD also utilizes an autoencoder to detect logical anomalies. Logical anomalies
involve contextual issues in an image, such as objects being in unexpected positions or
having abnormal sizes. It refers to an anomaly that can only be identified by analyzing
the image as a whole. To detect this, an autoencoder is trained using distance loss, LAE,
with the teacher’s output as the target. LAE is defined as

LAE =
1

CWH ∑
c
∥T(I)c − A(I)c∥2

F, (7)

where A(I)c denotes the output of the autoencoder for the c-th channel.
If a logical anomaly is present in the image, it can be detected due to the failure

in reconstruction. However, autoencoders often have difficulty capturing fine-grained
patterns, leading to reconstruction failures even for normal images, which can cause false
positives. To prevent this, the student model’s output is doubled, enabling it to predict not
only the teacher’s output, but also the autoencoder’s output. Additionally, the difference
between the student model’s output and the autoencoder’s output is used as an additional
loss term, LSTAE, to reduce false positives and stabilize the training process. LSTAE is
defined as

LSTAE =
1

CWH ∑
c
∥A(I)c − S′(I)c∥2

F, (8)

where S′(I)c denotes the student model’s output that predicts the autoencoder’s output
for the c-th channel, and A(I)c represents the autoencoder’s output for the same channel.
Finally, the total loss for EAD is defined as

Ltotal = LST + LAE + LSTAE. (9)
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After training, the student model, utilizing the PDN, has a short dependency range,
while the autoencoder has a long dependency range. This difference in long-range depen-
dencies makes it possible to generate a global anomaly map for detecting logical anomalies.
Additionally, since both the student model and teacher model have short dependency
ranges, they can be used to generate a local anomaly map. EAD combines the global
anomaly map and the local anomaly map to produce the final anomaly map.

4. Methods

The overall structure of the framework proposed in this study is illustrated in Figure 3,
and each component is described in detail in the following subsections. Section 4.1 discusses
the pre-processing step, where time series data are transformed and segmented according
to its characteristics before being converted into images. In Section 4.2, we explain the
method for converting the pre-processed time series data into images. Section 4.3 describes
the process of generating anomaly maps from the transformed images using knowledge-
distillation-based image anomaly detection models. Lastly, in Section 4.4, we explain the
method for performing time series anomaly detection using the generated anomaly maps.

Figure 3. The overall structure of the proposed framework.

4.1. Data Pre-Processing

Anomalies in time series data can manifest in various forms depending on the dataset’s
characteristics [30]. Typically, these anomalies are categorized into three types (see Figure 4
for examples):

• Point anomaly: abnormal data values at specific time points.
• Contextual anomaly: data with individually normal values that appear abnormal in a

temporal context.
• Collective anomaly: a group of data points that individually appear normal but

together form an anomalous pattern.
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Contextual anomalies and collective anomalies can be challenging to detect because
individual values may appear as normal data. Additionally, real-world time series data
are often vast, making labeling difficult and containing noise and missing values, which
complicates anomaly detection. Despite these challenges, detecting all anomalies is crucial
as they can lead to substantial losses. To address these limitations and improve anomaly
detection, we explain data transformation methods that can enhance detection performance
by considering the characteristics of the data during the pre-processing stage. We also de-
scribe a method for dividing the time series into subsequences based on cycle to generalize
normal patterns. This segmentation plays a significant role in generalizing unstable normal
patterns, which are affected by noise and other factors.

Figure 4. Anomaly types of time series data.

4.1.1. Data Transformation

Let xt denote the observed value at time t within the time series x = {x1, x2, . . . , xT},
where T represents the total number of observations. Abnormal data are unpredictable, and
may exhibit either large or small deviations from normal patterns. Anomalies with large
deviations can mask anomalies with relatively smaller deviations, reducing the anomaly
detection performance. Conversely, very small deviations can be difficult to distinguish
from normal data, making them undetectable. Therefore, transformations that amplify or
reduce deviations between data points, considering the characteristics of the data, can be
beneficial for anomaly detection. We provide a brief explanation of three representative
transformation methods.

1. Min-Max Normalization scales data to a range of [−1, 1], enhancing small differences
between values for improved anomaly detection. However, it may distort distri-
butions in the presence of significant discrepancies. The transformation process is
expressed as follows:

xt,minmax =
xt − min(x)

max(x)− min(x)
× 2 − 1, (10)

where min(x), max(x) are the minimum and maximum values in the time series x,
respectively.

2. Z-Score Normalization adjusts the data to have a mean of zero and scales it by the
standard deviation, making it easier to identify anomalies that differ significantly from
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the average. This method may underperform for non-normal distributions or datasets
heavily influenced by anomalies. The transformation process is defined as follows:

xt,z-score =
xt − µ

σ
, (11)

where µ is the mean of the times series x and σ is the standard deviation of the time
series x.

3. Log Transformation reduces the impact of extreme values and stabilizes data distribu-
tion. It is particularly useful for wide value ranges, but may distort cyclic patterns.
The log transformation process is represented by the following equation:

xt,log = log(xt + 1). (12)

In addition to the three methods mentioned above, other techniques, such as Fourier
transform and wavelet transform, can be applied based on the characteristics of the dataset.
Fourier transform converts time series data into the frequency domain, facilitating the
detection of cyclic patterns, while wavelet transform provides both time and frequency
information, enabling effective analysis of various patterns within the data. Applying these
transformations in alignment with the dataset characteristics can further improve anomaly
detection performance.

4.1.2. Time Series Segmentation

Time series data exhibit temporal dependencies, where past values influence current
ones. However, analyzing the entire sequence increases model complexity and reduces
efficiency. Dividing the data into subsequences for analysis can address these issues to some
extent. When segmenting the data, the criteria for division are quite important. Since the
temporal correlations between time points in the data must be considered, the subsequences
should not be too short. Conversely, if the subsequences are too long, the aforementioned
issues may arise. Additionally, if segmentation is performed without considering the repeti-
tive patterns inherent in the time series data, it can make pattern analysis more challenging.
To preserve temporal dependencies effectively and make the data suitable for unsupervised
anomaly detection, we segmented the data based on the intervals where repetitive patterns
appear. These intervals are called cycles. Since there can be multiple types of patterns,
and the intervals are not always consistent, determining cycle by considering all patterns is
difficult and ambiguous. Such cycles can be defined using intervals between successive
extrema or mean values, and can also be determined using domain knowledge, time series
decomposition, and frequency analysis.

Figure 5 shows the result of decomposing time series data into trends, seasonality,
and residuals. Adjusting the intervals of the cycle using decomposition results, domain
knowledge, and frequency analysis helps in identifying the appropriate cycle. This allows
the time series data to be segmented by pattern, significantly improving the learning level
for normal patterns. Additionally, it enables the discovery of patterns that are difficult
to intuitively identify in time series data. This approach of segmenting time series data
by cycles holds significant value in anomaly detection. However, for non-cyclic data,
the sequence is divided into fixed-length segments. In this case, it becomes challenging
to account for the patterns in the time series data, which can hinder pattern analysis and
result in lower detection performance. The segmented intervals are represented as follows:

Segmenti = {xt | ti ≤ t < ti+1}, (13)

where t represents the time points, ti and ti+1 denote the boundaries of the interval for the
defined cycle.
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Figure 5. Time series decomposition results.

Even when cycles exist, it can be difficult to establish criteria for cycle segmentation
if there are various types of repetitive patterns with significant detailed differences, even
though they appear similar in the overall context. In such cases, a domain expert or user
manually defines the intervals for segmentation. This approach requires a process similar
to labeling, as segmentation must be performed for each cycle, which can be inefficient.
However, if insightful segmentation is achieved, it can result in high detection rates, even
for complex data. The segmented intervals are represented as follows:

Segmenti = {xt | ai ≤ t ≤ bi}, (14)

where ai, bi are the starting and end points of the segment defined by the user, respectively.
As a result, the approach of segmenting cycles aims to divide time series data into

meaningful patterns, enabling each subsequence to effectively represent the time series
patterns and enhance anomaly detection performance.

4.2. Encoding Time Series

In this study, we employ Gramian Angular Field (GAF) [17] transformation to convert
time series data into images while preserving temporal dependencies. Two versions
are utilized:

• Local GAF (LGAF): focuses on local extrema for normalization, emphasizing sub-
tle changes.

• Global GAF (GGAF): normalizes using global extrema, providing robustness to noise
and better generalization.

The conversion process of LGAF involves first normalizing the time series data to a
range of [−1, 1]. The normalized values are then transformed into angles in a polar
coordinate system.
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Given a normalized time series x̃ = {x̃1, x̃2, . . . , x̃T}, each element x̃i is transformed
into an angle ϕi as

ϕi = arccos(x̃i), for i = 1, 2, . . . , n (n = subsequence length).

Then, a symmetric matrix is constructed using either sum or difference of angles between
two time points. Two types of matrices can be generated: Gramian Angular Summation
Field (GASF), which computes the cosine of the angle sums, and Gramian Angular Differ-
ence Field (GADF), which computes the sine of the angle differences. GASF emphasizes
the correlation between time points in a time series and preserves overall patterns, while
GADF captures changes in the time series, providing a clearer representation of dynamic
variations. In this study, we used only GASF, as the data consists of repetitive signal
values, making it more suitable for analyzing cyclic patterns in time series data. As a result,
the local GAF (LGAF) is obtained as follows:

LGAF =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) . . . cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) . . . cos(ϕ2 + ϕn)

...
...

. . .
...

cos(ϕn + ϕ1) cos(ϕn + ϕ2) . . . cos(ϕn + ϕn)

 (15)

However, images generated through the LGAF transformation cannot account for the
information of the entire sequence. To address this limitation, we propose a modified image
transformation method called Global GAF (GGAF), which incorporates the information
of the entire sequence. GGAF normalizes the time series data to the range of [−1, 1] for
conversion into a polar coordinate system, but it includes the global maximum and mini-
mum values of the entire sequence during the normalization process. By considering the
full range of the sequence values, GGAF reduces the influence of local extrema and trans-
forms the time series into images that reflect the overall sequence more comprehensively.
In GGAF, the time series data are transformed into an angle as

ϕi = arccos(x̃i), for i = 1, 2, . . . , N (N = total sequence length).

LGAF is better at capturing subtle changes, but can be heavily influenced by local extrema.
On the other hand, GGAF considers the entire range of time series data, making it more
robust to noise and capable of representing the data in a more generalized form. However,
GGAF becomes less effective at detecting subtle changes, and may result in decreased
performance if the overall range of the data are too wide, leading to model insensitivity
and overfitting. Both methods aim to effectively represent the normal patterns of time
series data. By analyzing the characteristics of the data before transformation and applying
the appropriate method, detection performance can be improved. In Figure 6, we provide
examples of time series data and transformed images obtained using LGAF and GGAF.

(a) Time series data (b) LGAF image (c) GGAF image
Figure 6. Comparison of time series data and GAF representations.
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4.3. Image Anomaly Detection via Knowledge Distillation

In the previous step, the time series data were encoded into images while preserving
its temporal dependencies and correlations. Using the images transformed by the Gramian
Angular Field (GAF), this step applies a knowledge-distillation-based image anomaly
detection model.

Knowledge Distillation (KD) [2] is a widely used technique for making deep learning
models more efficient and lightweight. This approach leverages the relationship between a
teacher model and a student model during training. The teacher model is typically a large,
pre-trained network trained on a large scale dataset, demonstrating high performance.
On the other hand, the student model is designed as a much smaller network, which
is trained to mimic the outputs of the teacher model. By transferring knowledge from
the teacher model to the student model, the student model can achieve results close
to the teacher model’s performance while requiring fewer computational resources and
less memory. In other words, knowledge distillation transfers the complex learning and
inference abilities of the large teacher model to the smaller student model, allowing the
student model to closely replicate the performance of the teacher model.

This knowledge distillation technique has also been applied to anomaly detection.
In anomaly detection, the basic approach to leveraging knowledge distillation [31] is to
train the student model to mimic the teacher model only on normal data. The student
model learns to replicate the teacher model’s outputs well for normal data, but fails to
do so for abnormal data that it has not encountered during training. This leads to a
discrepancy between the outputs of the teacher and student models for abnormal data,
which is then used to detect anomalies. In image anomaly detection, this discrepancy is
used to create an anomaly map in the form of a heatmap. However, this approach can
sometimes fail when the student model generalizes the teacher model’s outputs too well,
even for abnormal data, leading to a failure in detection. Research on anomaly detection
using knowledge distillation has aimed to address this issue. Among the proposed methods,
Reverse Distillation (RD) [28] prevents the student model from perfectly mimicking the
teacher model by altering their structures, and EfficientAD (EAD) [29] ensures that the
student model learns only the parts where it fails to replicate the teacher model’s outputs,
effectively overcoming this limitation. RD generates anomaly maps at multiple resolutions,
upscales them into a final anomaly map, and utilizes it for precise anomaly detection.
EAD uses a lightweight feature extractor, Patch Description Network (PDN), for efficiency
and integrates an autoencoder to detect logical anomalies as well. In time series data,
a logical anomaly is typically considered a type of contextual anomaly, as the data may
appear normal in isolated segments but reveal logical inconsistencies when viewed in the
overall context. EAD can detect such logical anomalies by incorporating an autoencoder. It
combines the global map, which captures the logical anomaly, with the local map, which
identifies localized anomaly, to produce a final anomaly map.

Since we transformed the time series data into images while preserving their temporal
characteristics, we believe that applying image anomaly detection methods to these trans-
formed images allows for anomaly detection while considering the temporal characteristics
of the data. Therefore, we utilize the anomaly maps generated from the transformed images
for time series anomaly detection. To achieve accurate and efficient anomaly detection,
we adopt image anomaly detection techniques that generate precise and efficient anomaly
maps, leveraging RD and EAD models. By utilizing the anomaly maps derived from these
models, we aim to perform highly accurate and efficient time series anomaly detection.

4.4. Anomaly Detection in Time Series

This study preprocesses time series data by segmenting it into cyclic patterns. This
step divides the time series data into segments based on cycles, allowing for the formation
of robust generalized patterns that are less affected by fluctuations. The segmented subse-
quences are then converted into images using LGAF or GGAF, preserving temporal order
and correlations. This enables the application of high-performance image anomaly detec-



Sensors 2024, 24, 8169 14 of 28

tion methods while retaining the essential temporal characteristics required for handling
time series data. In this study, anomaly maps for the transformed images are generated
using a knowledge-distillation-based image anomaly detection model. All these processes
aim to enhance anomaly detection performance and adapt time series data to advanced
unsupervised image anomaly detection methods. The pseudocode for these processes can
be found in Algorithm 1.

Algorithm 1: Anomaly map generation via preprocessing, GAF, and knowledge
distillation model

Input: Time series data X, cycle length C, knowledge-distillation-based image
anomaly detection model D

Output: Anomaly map list A
Initialize an empty list A to store anomaly maps;
// Step 1: Divide the time series into subsequences based on the

cycle length
Divide X into subsequences {x1, x2, . . . , xn} of length C;
// Step 2: Normalize and apply GAF transformation
foreach subsequence xi do

Normalize xi using min-max normalization such that xi ∈ [−1, 1];
Compute the GAF transformed image Ii from the normalized xi;

end
// Step 3: Generate anomaly maps
foreach GAF transformed image Ii do

Use the teacher model and student model in D to compute their outputs for Ii;
Compute the difference between the teacher model’s output and the student

model’s output to generate the anomaly map Mi;
Add the generated anomaly map Mi to the list A;

end
return the list A containing all anomaly maps;

Since the primary goal of this study is time series anomaly detection, the anomaly
maps obtained through the previous processes must be utilized for detecting anomalies in
time series data. The width and height of a GAF transformed image are identical to the
length of the subsequence it represents. In the image, each pixel indicates the relationship
between the time points corresponding to its coordinates. For example, in an image I,
the pixel I(32, 48) represents the relationship between the 32nd and 48th time points.
This also applies to the anomaly map, where the pixel values represent how abnormal the
relationship is between the two time points corresponding to the coordinates. By examining
the pixel values in the anomaly map, we can determine how much the relationship between
each time point and other time points deviates from the normal pattern. In other words, it
reveals how much a specific time point deviates from the overall pattern of the subsequence.
An anomaly is a time point that deviates from the normal pattern and is therefore likely to
have relationships with other time points in the subsequence that differ significantly from
those of normal data. Thus, by analyzing the relationships between each time point and
other time points in the anomaly map, it is possible to detect whether a specific time point
is an anomaly.

Before applying the previously described anomaly detection rule, this study employs
an initial anomaly detection criterion to ensure efficient detection. For cyclic data, the en-
tire sequence is divided into subsequences based on cycles. The length of each divided
subsequence represents the cycle length. If a sequence does not exhibit a normal pattern, it
will face difficulty in this cycle-based segmentation, resulting in abnormal subsequence
lengths. Therefore, if the length of a subsequence deviates significantly from the average
subsequence length used during training, it is detected as an anomaly.
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If the subsequence length is considered normal, the pixel values in the anomaly map
are examined. As detecting anomalies for all pixels is inefficient, the detection begins with
the pixels on the main diagonal. In the transformed image, pixels on the main diagonal
represent the relationship of a time point with itself. If a time point is an anomaly, it is
likely to have relationships with other time points that deviate from the normal pattern,
resulting in higher values in the anomaly map. Therefore, anomaly detection is performed
only for the time points where the pixel values on the main diagonal exceed the threshold.
For the selected time points, the values of all pixels in the same row and column as the
main diagonal pixel are summed. This is because the pixels in the same row and column
contain information about the relationships between the selected time point and other
time points. The values of all these pixels are summed to calculate the Final Anomaly
Score (FAS). If the FAS exceeds threshold · number of pixels · H, the selected time point is
classified as an anomaly. H is a hyperparameter designed to relax the anomaly detection
criteria. This variable helps detect subtle or continuous anomalies, which might have
pixel values relatively close to those of normal patterns. By tuning H, the success rate of
detecting such cases improves, which enhances overall anomaly detection performance.
The pseudocode for this process is presented in Algorithm 2.

The above detection method is applied to each image, producing detection results for
each subsequence. These results are then combined to generate the final anomaly detection
outcome for the entire sequence. This study adopts and develops methodologies that are
both efficient and enhance detection performance at each section, resulting in a robust and
efficient time series anomaly detection system.

Algorithm 2: Time series anomaly detection using anomaly map
Input: Anomaly map A of size N × N, sequence length hyper-parameter L,

threshold T, hyper-parameter H, index I of the anomaly map
Output: List of anomaly pixels defined by (I, i, j)
Initialize an empty list R to store anomaly pixels;
if N < L then

for i = 0 to N − 1 do
if A[i, i] > T then

// If the diagonal pixel value exceeds the threshold,
perform the following steps

Compute the total sum S of all pixel values in row i and column i;
Count the number of pixels n included in the sum S;
if S > n × H × T then

Add (I, i) to the list R;
end

end
end

end
Return the list R containing anomaly pixel index with the map index;

5. Experiments
5.1. Experimental Setup

Datasets. To evaluate performance, we used three publicly available time series
datasets. These widely used benchmark datasets were utilized to compare our results with
other methods. The datasets are summarized in Table 1.

• Secure Water Treatment dataset (SWaT) [32]: The SWaT dataset consists of data col-
lected from 51 sensors in a real water treatment process. Each sensor measures
parameters such as water level, pressure, flow rate, and actuator operation. Only the
normal operation data were used for training, while the abnormal operation data
were used for testing. Testing was performed individually on representative sensors,
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and the results from these sensors were combined to determine the overall anomaly
detection performance for the SWaT dataset. According to [32], the system requires ap-
proximately 5 h for stabilization. Therefore, the first 21,600 data points were removed
from the training data, and down-sampling by a factor of 10 was applied to process
the data efficiently.

• InternalBleeding dataset from UCR [33]: The University of California, Riverside (UCR)
dataset includes time series data collected from various domains, such as industrial
systems, environmental sensors, biological signal sensors, and financial data. It is
widely used for time series anomaly detection research. The dataset consists of uni-
variate time series data. In our experiments, we used the InternalBleeding data,
which contains measurements of arterial blood pressure in pigs, excluding synthetic
sequences generated with intentionally created anomalies.

• NAB dataset [34,35]: The Numenta Anomaly Benchmark (NAB) dataset comprises real
and artificially generated uni-variate time series data collected to evaluate anomaly
detection algorithms for real time applications. It includes data such as machine
temperature sensor readings, CPU temperatures, New York taxi traffic volumes,
and AWS server metrics. For our experiments, we divided the data into subsequences
of length 100 and performed anomaly detection. Only normal data points, excluding
233 anomaly containing timestamps, were used for training.

Table 1. Dataset statistics.

Dataset Train Test Anomaly Rate

SWaT [32] 47,520 44,991 12.2091%
UCR [33] 31,700 5900 1.8813%

NAB [34,35] 3800 4033 0.0007%

Metrics. The results of time series anomaly detection were evaluated by comparing
the actual labels with the detected anomalies, defined as follows:

• True Positive (TP): an instance where an actual abnormal point is correctly identified
as abnormal.

• False Positive (FP): an instance where a normal point is incorrectly identified as
abnormal.

• True Negative (TN): an instance where a normal point is correctly identified as normal.
• False Negative (FN): an instance where an actual abnormal point is incorrectly identi-

fied as normal.

Based on these cases, the performance of the time series anomaly detection system in this
study was evaluated using various metrics, including Accuracy, Precision, Recall, F1 score,
False Positive Rate (FPR), and Area Under the Receiver Operating Characteristic Curve
(AUROC). These metrics were designed to assess the anomaly detection performance from
different perspectives, particularly for imbalanced datasets with relatively few anoma-
lies. Through this approach, the comprehensive performance of the time series anomaly
detection system was evaluated.

Experimental environment. In this study, PyTorch [36] versions 1.13.0, 1.9.1, and 2.4.1
were used due to the presence of modules requiring different virtual environments. All
experiments were conducted on a server equipped with CUDA 12.1 and four NVIDIA
GeForce RTX 3090 GPUs. The EAD model was trained using the Adam optimizer [37]
with a learning rate of 1 × 10−4 and momentum parameters (β1, β2) = (0.9, 0.999). The RD
model was also trained using the Adam optimizer, but with a learning rate of 0.005 and
momentum parameters (β1, β2) = (0.5, 0.999).

5.2. Analysis of the Proposed Framework

Figure 7 illustrates a specific segment of the LIT-301 sensor data from the SWaT
dataset. The top row represents normal data, while the bottom row represents abnormal
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data containing anomalies. From left to right, each column displays the raw time series
data, the LGAF transformed image, and the resulting anomaly map. For the normal data,
the anomaly map shows an anomaly score of 0 for all pixels, indicating no detected anoma-
lies at any time point. In contrast, the anomaly map for the abnormal data contains multiple
pixels along the main diagonal that exceed the threshold, and the FAS value also surpasses
the criteria, successfully detecting anomalies. These detected points correspond to time
segments in the raw data where abnormal patterns deviate from the normal patterns. This
demonstrates the successful anomaly detection process. The detailed results of anomaly
detection are presented below.
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(a) SWaT sensor raw data

(b) LGAF transformed image (c) Anomaly maps

Figure 7. Visualization of SWaT raw data, LGAF transformed images, and anomaly maps for normal
and abnormal data segments. The top row corresponds to the normal data segment, and the bottom
row represents the abnormal data segment.

5.2.1. Module-Wise Analysis

This section evaluates the performance of our proposed system on the dataset, com-
pares the performance of different modules, and provides an interpretation of the results.
The experimental results include comparisons of segmentation methods, encoding tech-
niques, and utilized models. For all configurations other than the comparison targets,
the settings achieving the highest performance were selected for the experiments.

Table 2 presents the experimental results comparing time series data segmentation
based on cyclic intervals with segmentation using regular intervals. Due to the nature
of the proposed method, it is hard to consider the interrelations between different time
series segments. However, segmenting data by cyclic intervals enables each subsequence
to represent a typical normal pattern, which significantly contributes to improving overall
anomaly detection performance even without considering such interrelations. Moreover,
this approach preserves temporal relationships within a cycle, such as time dependencies
within the data, further enhancing detection accuracy. That said, this method is difficult
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to apply to non-cyclic data and can degrade performance if an incorrect cycle is selected.
Therefore, to effectively apply cyclic segmentation, preliminary processes such as data
analysis or decomposition are essential. Figure 8 shows examples of dividing the image by
cycle and by regular interval.

Table 2. Performance comparison between two segmentation methods for time series data. P: Preci-
sion, R: Recall, AUC: Area Under the ROC curve, F1: F1 score. The best scores are highlighted in bold.
A higher value indicates a better result.

Data Sensor
Regular Cycle

P ↑ R ↑ F1 ↑ AUC ↑ P R F1 AUC

SWaT

LIT-101 0.9603 0.5949 0.7347 0.7958 0.9013 0.6552 0.7588 0.8226
LIT-301 0.9069 0.6334 0.7458 0.8122 0.9470 0.6858 0.7955 0.8402
AIT-202 0.1258 0.7542 0.2157 0.5127 0.9207 0.6364 0.7526 0.8144
AIT-504 0.1184 0.7883 0.2059 0.4861 0.9735 0.5811 0.7278 0.7895
MV-101 0.0824 0.0446 0.0579 0.4877 0.8720 0.6537 0.7473 0.8202
MV-303 0.2161 0.0380 0.0647 0.5094 0.9337 0.6714 0.7811 0.8324

DPIT-301 0.7397 0.6787 0.7079 0.8227 0.9761 0.6100 0.7515 0.8044

UCR 0.9412 1.0000 0.9697 0.9994 0.9910 0.9821 0.9865 0.9910

Table 3 presents the experimental results comparing different image encoding methods.
GGAF has an advantage in maintaining consistency within time series data, reducing the
impact of noise, and preserving overall patterns. However, in the SWaT dataset used in this
study, the sensor values exhibit oscillations with small variations and are not significantly
affected by extreme values. Due to these data characteristics, the experimental results for
LGAF and GGAF showed no substantial differences. This is because the stable variability
in the data did not provide factors that could clearly distinguish the two methods. Similarly,
no significant differences were observed in the UCR dataset.

Table 3. Performance comparison between LGAF and GGAF. P: Precision, R: Recall, AUC: Area
Under the ROC curve, F1: F1 score. The best scores are highlighted in bold.

Data Sensor
LGAF GGAF

P R F1 AUC P R F1 AUC

SWaT

LIT-101 0.9283 0.6363 0.7550 0.8147 0.9013 0.6552 0.7588 0.8226
LIT-301 0.9470 0.6858 0.7955 0.8402 0.9386 0.6734 0.7842 0.8336
AIT-202 0.9229 0.6343 0.7518 0.8134 0.9207 0.6364 0.7526 0.8144
AIT-504 0.9735 0.5811 0.7278 0.7895 0.9484 0.5855 0.7240 0.7905
MV-101 0.8504 0.6656 0.7467 0.8246 0.8720 0.6537 0.7473 0.8202
MV-303 0.9337 0.6714 0.7811 0.8324 0.9330 0.6714 0.7809 0.8323

DPIT-301 0.9761 0.6100 0.7515 0.8044 1.0000 0.6106 0.7582 0.8053

UCR 0.9910 0.9821 0.9865 0.9910 0.9412 1.0000 0.9697 0.9994

NAB 0.0182 0.6667 0.0354 0.8199 0.0132 1.0000 0.0260 0.9721

In contrast, for the NAB dataset, the LGAF method failed to detect one of the three
anomalous points, whereas the GGAF method successfully detected all three. This can be
attributed to the oscillatory nature of normal data within a specific range, where GGAF’s
ability to apply consistent criteria and reduce the influence of minor variations made it
more effective at identifying anomaly caused by extreme values.

Figure 9 illustrates the results of LGAF and GGAF on the NAB dataset. The top row
presents the results using LGAF, and the bottom row shows the results using GGAF. Images
generated with LGAF present minimal differences between anomalous and normal data,
resulting in low anomaly scores on the corresponding anomaly maps. In contrast, images
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generated with GGAF present more pronounced differences, and the anomaly maps show
higher anomaly scores, successfully identifying the anomalies.

(a) Cycle-based data segmentation graph (b) Regular interval data segmentation graph

Figure 8. Comparison of data segmentation methods.
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(a) NAB Train Data to Image (b) NAB Test Data to Image (c) Anomaly maps

Figure 9. Comparison of LGAF and GGAF on NAB train and test data, including anomaly maps. The
top row shows results from LGAF, and the bottom row shows results from GGAF.

As such, GGAF may be more effective for detecting anomalies associated with extreme
values or in scenarios where the data exhibits high variability and noise.

Table 4 presents the experimental results comparing different image anomaly detection
models. The results focus on univariate data for each model, showing similar performance
across the models with no significant differences for the dataset used in this study. As shown
in Table 5, RD, despite its simple structure, calculates feature differences across multiple
layers. On the other hand, EAD uses the efficient PDN network, resulting in lower memory
usage compared to RD.

In terms of training time, there were notable differences between the two models. RD
employs a standard Dataloader, leading to relatively shorter training times. In contrast,
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EAD utilizes an InfiniteDataloader, which allows for infinite repetition of the dataset
during training, resulting in longer training times. However, since EAD is not influenced
by the number of training samples, it could potentially achieve shorter training times when
handling large datasets.

Table 4. Performance comparison between RD and EAD. P: Precision, R: Recall, AUC: Area Under
the ROC curve, F1: F1 score. The best scores are highlighted in bold.

Data Sensor
RD EAD

P R F1 AUC P R F1 AUC

SWaT

LIT-101 0.9310 0.6308 0.7520 0.8121 0.9013 0.6552 0.7588 0.8226
LIT-301 0.8981 0.6881 0.7792 0.8386 0.9470 0.6858 0.7955 0.8402
AIT-202 0.9279 0.6304 0.7508 0.8118 0.9207 0.6364 0.7526 0.8144
AIT-504 0.9735 0.5811 0.7278 0.7895 0.9369 0.5922 0.7257 0.7933
MV-101 0.8720 0.6537 0.7473 0.8202 0.8627 0.6545 0.7443 0.8200
MV-303 0.9337 0.6714 0.7811 0.8324 0.9134 0.6758 0.7768 0.8334

DPIT-301 0.9761 0.6100 0.7515 0.8044 0.6434 0.7042 0.6724 0.8249

UCR 0.8279 0.9018 0.8632 0.9491 0.9910 0.9821 0.9865 0.9910

NAB 0.0171 1.0000 0.0337 0.9787 0.0132 1.0000 0.0260 0.9721

Table 5. Comparison of memory usage, train time, and anomaly map generation time between RD
and EAD.

Methods Train Time (s) Test Time (s) Memory Usage (MiB)

RD 1069 16 8978
EAD 2539 17 2030

Given that the dataset used in this study primarily consists of simple patterns, the per-
formance gap between EAD and RD was not significant. In conclusion, EAD is more
suitable for efficient anomaly detection tasks with low memory requirements, while RD is
better suited for detecting anomalies in complex datasets where higher precision is required.

5.2.2. Comparison with Baselines

This section compares the performance of the proposed system on the dataset with
various baselines and provides an interpretation of the results. Similarly to the previous
section, experiments were conducted using configurations that achieved the highest per-
formance. However, a new criterion for the anomaly detection threshold was additionally
introduced. This was based on the observation that evaluation results are highly influenced
by the chosen threshold values. In this study, results were analyzed using (1) a general
threshold and (2) an optimal threshold that yielded the best performance for each sensor.

The general threshold was derived by averaging the anomaly scores at actual anomaly
points from a subdataset of the MVTecAD image dataset [38]. In contrast, the optimal
threshold was determined by adjusting various threshold values and selecting the one that
produced the best performance.

Table 6 presents the results of uni-variate time series anomaly detection experiments
conducted on the SWaT dataset using individual sensors. Since the ground truth used in the
experiments includes attack information for all sensors, it is possible that an attack is marked
in the ground truth, even if no attack occurred on the specific sensor being evaluated.

When applying the general threshold, the results showed superior performance com-
pared to the baseline. Additionally, when optimal thresholds were set for each sensor,
improvements were observed in the Recall and F1 score for most sensors, indicating en-
hanced detection performance for abnormal data. This suggests that the general threshold
was stricter than the optimal threshold, as it typically had a higher value, leading to more
stringent anomaly detection criteria.
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Table 6. Performance comparison of anomaly detection methods on selected SWaT dataset sensors.
Accu: Accuracy, P: Precision, R: Recall, F1: F1 score, FPR: Fall Positive Ratio. The best scores are
highlighted in bold. A higher value indicates a better result. For FPR, a lower value indicates a
better result.

Sensor Methods Accu ↑ P R F1 FPR ↓

LIT-101

CUSUM [39] 0.8663 0.3642 0.2686 0.0030 0.0739
GAN-AD [40] 0.8763 0.5000 0.0175 0.0003 0.0932

Ours 0.9492 0.9310 0.6308 0.7520 0.0065
Ours * 0.9491 0.9013 0.6552 0.7588 0.0100

LIT-301

CUSUM 0.8150 0.1292 0.0902 0.0010 0.0843
GAN-AD 0.8685 0.2222 0.0104 0.0002 0.0052

Ours 0.9544 0.9651 0.6501 0.7769 0.0033
Ours * 0.9569 0.9470 0.6858 0.7955 0.0053

AIT-202

CUSUM 0.5567 0.0924 0.2515 0.0013 0.3945
GAN-AD 0.6022 0.0458 0.1710 0.0007 0.3548

Ours 0.9489 0.9279 0.6304 0.7508 0.0068
Ours * 0.9489 0.9207 0.6364 0.7526 0.0076

DPIT-301

CUSUM 0.8413 0.1846 0.1714 0.0017 0.0841
GAN-AD 0.8440 0.2500 0.0267 0.0005 0.0118

Ours 0.9199 0.6643 0.6958 0.6797 0.0489
Ours * 0.9203 0.6665 0.6949 0.6804 0.0484

AIT-504

CUSUM 0.7097 0.0623 0.1438 0.0008 0.2301
GAN-AD 0.8603 0.1474 0.1435 0.0014 0.1114

Ours 0.9474 0.9624 0.5922 0.7332 0.0032
Ours * 0.9474 0.9624 0.5922 0.7332 0.0032

MV-303

CUSUM 0.7155 0.0967 0.1918 0.0012 0.2201
GAN-AD 0.8768 0.1754 0.0300 0.0005 0.0174

Ours 0.9460 0.8720 0.6537 0.7473 0.0133
Ours * 0.9541 0.9337 0.6714 0.7811 0.0066

Ours: general threshold; Ours *: optimal threshold.

For sensors such as DPIT-301 and AIT-504, the results were identical or very similar.
This was because the values of the optimal threshold and the general threshold for these
sensors were closely aligned. Overall, detection performance was particularly strong
when the data exhibited general patterns and when the train and test datasets had similar
characteristics. This is because the process of segmenting normal patterns and generating
images facilitates the learning of normal data, thereby enabling more effective detection of
anomalies that deviate from these patterns.

However, differences in the data patterns of individual sensors led to varying levels of
normal pattern formation, resulting in some variation in anomaly detection performance.
Nevertheless, the overall performance was consistently strong when optimal thresholds
were applied to each sensor.

Table 7 presents the results of uni-variate time series anomaly detection experiments
conducted on the UCR and NAB datasets. The experimental results for the UCR dataset
demonstrated the best performance compared to existing models, which can be attributed
to the characteristics of the dataset. The time series data in the UCR dataset consist of
similar normal patterns, and the length of each pattern is neither too short nor too long.
This allowed the data to be fully utilized without requiring additional preprocessing steps
such as down-sampling. Furthermore, the differences in normal patterns between the
training and testing data were minimal, making it relatively easier to detect anomalies
when they appeared in the test set. These factors contributed to the superior performance
observed on the UCR dataset compared to other datasets.
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Table 7. Performance comparison across UCR, NAB datasets. P: Precision, R: Recall, AUC: Area
Under the ROC curve, F1: F1 score. The best scores are highlighted in bold.

Methods
UCR NAB

P R F1 AUC P R F1 AUC

MERLIN [41] 0.8013 0.7262 0.8414 0.7619 0.7542 0.8018 0.8984 0.7773
LSTM-NDT [42,43] 0.6400 0.6667 0.8322 0.6531 0.5231 0.8294 0.9781 0.6416

DAGMM [44] 0.7622 0.7292 0.8572 0.7453 0.5337 0.9718 0.9916 0.6890
OmniAnomaly [45] 0.8421 0.6667 0.8330 0.7442 0.8346 0.9999 0.9981 0.9098

MSCRED [46] 0.8522 0.6700 0.8401 0.7502 0.5441 0.9718 0.9920 0.6976
MAD-GAN [47] 0.8666 0.7012 0.8478 0.7752 0.8538 0.9891 0.9984 0.9165

USAD [48] 0.8421 0.6667 0.8330 0.7442 0.8952 1.0000 0.9989 0.9447
MTAD-GAT [49] 0.8421 0.7272 0.8221 0.7804 0.7812 0.9972 0.9978 0.8761

CAE-M [50] 0.7918 0.8019 0.8019 0.7968 0.6981 1.0000 0.9957 0.8222
GDN [15] 0.8129 0.7872 0.8542 0.7998 0.6894 0.9988 0.9959 0.8158

TranAD [14] 0.8889 0.9892 0.9541 0.9364 0.9407 1.0000 0.9994 0.9694
Ours 0.9910 0.9821 0.9865 0.9910 0.0171 1.0000 0.0337 0.9787

On the other hand, the results for the NAB dataset showed a Recall of 1.0, successfully
detecting all anomalies, but the Precision and F1 score were relatively low. According to
the dataset statistics reported for the baseline model TranAD [14], the anomaly ratio was
0.92%. However, in the actual data used for our experiments, the anomaly ratio was only
0.07%, with just 3 out of 4033 sequences labeled as anomalies. While the data surrounding
the labeled anomalies exhibited significant deviations from the normal range, the Ground
Truth designated only three specific points as anomalies.

Our system detected not only the labeled anomalies, but also the surrounding points
affected by those anomalies, resulting in a relatively high number of False Positives and,
consequently, lower Precision. However, since the system did not misclassify normal points
outside the vicinity of anomalies as anomalies, the overall anomaly detection performance
can still be regarded as robust.

Additionally, the experimental result of TSI-GAN [5], which employs a mechanism
similar to ours by converting time series data into images and applying image anomaly
detection techniques, achieved an F1 score of 0.846 on the InternalBleeding dataset. While
there is a difference in the amount of data used, our model achieved a higher average F1
score of 0.939 based on experiments conducted on additional subdatasets.

Table 8 presents the results of multivariate time series anomaly detection experiments
conducted on the SWaT dataset. The results of T2IAE are based on using the same GAF
method as our system. In this study, anomaly detection was performed on a selected set of
representative sensors from the SWaT dataset, and the results were aggregated to derive
the final performance, which was then compared with baseline models. The experiments
analyzed the results using a general threshold applied uniformly across all sensors and
optimal thresholds tailored for each sensor.

The comparison of the two approaches showed that applying optimized thresholds for
individual sensors reduced False Positives, and enabled the detection of more anomalies.
The final performance of the SWaT dataset was evaluated by integrating the anomaly
points detected across the selected sensors. The anomaly detection results can be intuitively
observed in Figure 10. Our system demonstrated relatively low precision, but consistently
high recall. This indicates that the model identified a larger number of points as anomalies,
effectively maintaining a low False Positive Rate (FPR). The ability to identify anomalies
without missing them, even at the cost of misclassifying some normal data as abnormal
(False Positives), is often considered more valuable in certain domains. Therefore, the results
of this study can be considered significant, especially in fields where rapid and reliable
anomaly detection is crucial.
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Table 8. Performance comparison across SWaT datasets. The results for SWaT are aggregated outcomes
derived from a selection of representative sensors. Ours represents the results obtained with a general
threshold, and SWaT* represents the results obtained with an optimal threshold. P: Precision, R: Recall,
AUC: Area Under the ROC curve, F1: F1 score. The best scores are highlighted in bold.

Methods
SWaT

P R F1 AUC

MERLIN 0.6560 0.2547 0.6175 0.3669
LSTM-NDT 0.7778 0.5109 0.7140 0.6167

DAGMM 0.9933 0.6879 0.8436 0.8128
OmniAnomaly 0.9782 0.6957 0.8467 0.8131

MSCRED 0.9992 0.6770 0.8433 0.8072
MAD-GAN 0.9593 0.6957 0.8463 0.8065

USAD 0.9977 0.6879 0.8460 0.8143
MTAD-GAT 0.9718 0.6957 0.8464 0.8109

CAE-M 0.9697 0.6957 0.8464 0.8101
GDN 0.9697 0.6957 0.8462 0.8101

TranAD 0.9760 0.6997 0.8491 0.8151
T2IAE 0.9555 0.7611 0.8473 -
Ours 0.5673 0.7373 0.6412 0.8295

Ours * 0.6020 0.7841 0.6811 0.8560
Ours: general threshold; Ours *: optimal threshold. The baseline results are referenced from those provided in
other papers and are presented accordingly. Metrics not officially reported are indicated with a dash (-).

For this experiment, the analysis was conducted using representative sensors from
similar sensor groups where attacks occurred, rather than averaging performance across
all sensors in the SWaT dataset. Future research could consider the correlations between
sensors and expand anomaly detection to a larger set of sensors. By aggregating results
across more sensors, the system’s anomaly detection performance is expected to be fur-
ther enhanced.

(a) Ground truth of SWaT dataset
Figure 10. Cont.
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(b) Anomaly detection results (using optimal threshold)

(c) Overlap of ground truth and detection results

Figure 10. Visualization of ground truth and detection results on SWaT dataset.

6. Discussion and Conclusions

This study consists of four independent modules: preprocessing, encoding time series,
image anomaly detection, and anomaly detection in time series. The system flexibly cap-
tures normal patterns and considers temporal correlations, thereby generalizing them into
image representations of normal patterns that are robust to minor fluctuations. This enables
the construction of generalized normal patterns, effectively distinguishing abnormal data
and enhancing the performance of unsupervised time series anomaly detection. Addition-
ally, the system leverages anomaly maps derived from the image anomaly detection model
to propose an efficient and effective detection algorithm. As a result, it achieves higher
recall compared to previous studies. However, the quality of normal pattern formation
significantly impacts detection performance; when the relationships between variables or
subsequences are highly interdependent, it can be challenging to form normal patterns,



Sensors 2024, 24, 8169 25 of 28

which can negatively affect detection performance. These limitations can be addressed by
adopting more advanced techniques tailored to the characteristics of the data.

This study preprocesses time series data and converts them into images for anomaly
detection, but it cannot consider the relationships between transformed images. This
limitation may result in performance degradation when processing time series data with
non-cyclic or dynamic patterns, as it fails to capture inter-sequence correlations. To ad-
dress this, our future research will work on developing methods to consider relationships
between transformed images.

Furthermore, reflecting interdependency between variables for multivariate time
series data could enable more advanced anomaly detection. To achieve this, we aim
to improve image transformation techniques or incorporate additional methods such as
convolution and attention mechanisms to enhance performance in multivariate time series
anomaly detection.

In the image anomaly detection module, we utilized a knowledge-distillation-based
model for efficient anomaly detection, but there are also studies based on various other
techniques. We will continuously monitor trends in image anomaly detection to appropri-
ately adopt and improve more efficient and high-performing models, thereby expanding
the applicability of the system to diverse datasets and achieving competitive results.

In conclusion, the proposed method encodes time series data into images and applies
them to image anomaly detection models, exploring the potential for cross-domain integra-
tion. It demonstrated strong performance with high recall, particularly on univariate time
series datasets with cyclic patterns. Our system is expected to provide significant value in
real-time applications requiring high anomaly detection rates, such as industrial control
systems (ICS), IoT environments, healthcare, and financial domains.
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GAF Gramian Angular Field
LGAF Local Gramian Angular Field
GGAF Global Gramian Angular Field
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KD Knowledge Distillation
RD Reverse Distillation
EAD EfficientAD
PDN Patch Description Network
SPADE Semantic Pyramid Anomaly Detection
FAS Final Anomaly Score
SWaT Secure Water Treatment dataset
UCR University of California, Riverside
NAB Numenta Anomaly Benchmark
AWS Amazon Web Services
MVTecAD MVTec Anomaly Detection dataset
IoT Internet of Things
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