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Abstract: Contemporary environmental challenges are increasingly significant. The primary cause is
the drastic changes in climates. The prediction of solar radiation is a crucial aspect of solar energy
applications and meteorological forecasting. The amount of solar radiation reaching Earth’s surface
(Global Horizontal Irradiance, GHI) varies with atmospheric conditions, geographical location, and
temporal factors. This paper presents a novel methodology for estimating surface sun exposure
using advanced deep learning techniques. The proposed method is tested and validated using
the data obtained from NASA’s Goddard Earth Sciences Data and Information Services Centre
(GES DISC) named the SORCE (Solar Radiation and Climate Experiment) dataset. For analyzing
and predicting accurate data, features are extracted using a deep learning method, Deep-FS. The
method extracted and provided the selected features that are most appropriate for predicting the
surface exposure. Time series analysis was conducted using Convolutional Neural Networks (CNNs),
with results demonstrating superior performance compared to traditional methodologies across
standard performance metrics. The proposed Deep-FS model is validated and compared with the
traditional approaches and models through the standard performance metrics. The experimental
results concluded that the proposed model outperforms the traditional models.

Keywords: forecasting; deep learning; feature selection; solar surface exposure; CNN

1. Introduction

Renewable energy represents an environmentally sustainable power source that mini-
mizes CO2 emission. Solar and wind power represent primary renewable energy sources
with virtually unlimited potential [1]. Today, climate change has become a serious concern,
and renewable energy can act as a solution to this. Because they do not emit gases, they
reduce carbon footprints and reduce environmental impacts. The depletion of fossil fuels
has also contributed to this. Among the available renewable energy sources, solar energy
for the generation of electricity [2] has become very popular. As the rapid growth of these
cells is increasing, the efficiency has improved greatly, making it more economical and
sustainable. With rapid growth and cost efficiency expected, it is likely to become the main
energy source in the world.

Solar energy has numerous contemporary applications. There are various environ-
mental parameters [3] that hinder traditional approaches to predicting the solar surface
accurately. Deep learning models have larger advancements over the traditional approaches
in predicting the time-series data and overcoming environmental parameters such as cloudy
skies and orbital positions. By integrating deep learning models, the accuracy of prediction
has increased significantly.

Solar power generation depends on weather conditions. This feature destabilizes
the overall operation of power systems. This instability can increase power outages and
prices, which will adversely affect the cost. Therefore, a technology that can provide a
balance between power supply and demand and establish a stable connection between
them is required. The conversion of solar energy is performed directly and is related to
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solar surface exposure. Consequently, variables that are directly related to it have been used
to predict the amount of solar power generation. Significant meteorological parameters,
including atmospheric conditions such as sky morphology, atmospheric visibility indices,
cloud coverage fraction, and associated climatic variables, have also been investigated.
The factors that are focused on predicting the amount of power generation have also been
analyzed. The analysis of all the factors revealed that solar surface exposure is the most
important feature for prediction. In this paper, different deep learning models are deployed
for estimating the solar surface exposure, along with the Deep-FS technique.

The rest of the paper is organized as follows. The literature review, research gaps,
and research contributions are presented in Section 2. The proposed methodology is
presented, including data acquisition, pre-processing, and the novel Deep-FS feature
selection approach, in Section 3. Then, it details the architecture of the hybrid CNN-
LSTM/GRU model and its implementation. Section 4 describes the experimental setup
and presents comprehensive results that compare the proposed approach with existing
methods. Then, it provides a detailed discussion of the findings, including an analysis of
model performance under different conditions. The paper concludes with a summary of
key findings and suggestions for future research directions in Section 5.

2. Related Work

Historical solar radiation forecasting studies have employed statistical time series
methods, including ARIMA (Autoregressive Integrated Moving Average), SARIMA (Sea-
sonal ARIMA), and ARMA-S (Seasonal ARMA) [4,5]. These methods model temporal
dependencies in radiation data through autoregressive components, moving averages,
and seasonal adjustments. However, such methods exhibit limitations in modeling non-
linear relationships, constraining their predictive accuracy. To address the limitations of
traditional statistical approaches, we implement a hybrid deep learning architecture that
combines (i) Convolutional Neural Networks (CNNs) for extracting local temporal patterns,
and (ii) long short-term memory (LSTM) and gated recurrent unit (GRU) networks for
capturing long-term dependencies. Building on work by Lim et al. [6], our approach
incorporates architectural improvements and robust validation methods for the prediction
of solar radiation.

Brahma et al. [7] used a deep learning model trained on time series data to predict
daily sun exposure after 1, 4, and 10 days. The data came from multiple regions. They
applied LSTM, GRU, and CNN to predict solar surface exposure, and they used extreme
gradient boosting, Pearson correlation, and Spearman correlation to choose neighboring
areas that are significantly correlated to the target area’s solar surface exposure.

In addition, they carried out feature selection using relief to enhance prediction perfor-
mance. Global Horizontal Irradiance (GHI) is our primary input parameter, representing
the total solar radiation received on a horizontal surface at the Earth’s surface. This includes
both direct and diffuse radiation components measured through the NASA POWER API.

Research on solar surface exposure accounts for temporal aspects. However, this
research has used a convolution operation approach or a mixture of convolution layers to
account for spatial aspects [8–10].

The primary variables utilized for solar surface exposure forecasts were those repre-
senting the direct impact of clouds on the phenomenon, such as the clearness index and the
cloud cover. Geographical variables such as latitude, longitude, and altitude, as well as
temporal variables such as year, month, day, and hour, were commonly used. The features
of the input variables were selected primarily using the filter approach [11]. Table 1 shows
a comprehensive literature analysis of different approaches.
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Table 1. Literature analysis for different approaches.

No. Title Authors Year Methodology Key Findings

1 Solar Irradiance Forecasting Ahmad et al. [12] 2017 CNNs with data augmenta-
tion

Achieved high accuracy in
short-term solar radiation
prediction

2 A Hybrid Machine Learning
Model Dhilip et al. [13] 2023 CNN-RNN hybrid model

Combined temporal and spa-
tial features for improved pre-
dictions

3 Transfer learning strategies Saramas et al. [14] 2022 Transfer learning with pre-
trained models

Enhanced model perfor-
mance with limited training
data

4 A Synthetic Data Generation
Technique Byun et al. [15] 2022 Synthetic data generation and

CNNs

Addressed data scarcity is-
sues, improving prediction re-
liability

5 Application of multi-source
data fusion Ling et al. [16] 2024 Integration of satellite and

ground data

Significantly improved accu-
racy by combining multiple
data sources

6
Prediction of solar irradiance
using convolutional neural
network

Chao et al. [17] 2023 CNNs
Focused on high-resolution
imagery to capture fine de-
tails in solar exposure

7 Deep learning approach for
one-hour ahead forecasting Patel et al. [18] 2021 CNNs and regression models

Improved solar panel effi-
ciency through accurate yield
estimation

8 Short-term solar radiation
forecasting Mehdi et al. [19] 2023 Hybrid CNN-RNN

Developed robust models
integrating spatial-temporal
data

9
Prediction of Solar Irradiance
and Photovoltaic Solar En-
ergy

Yonghua et al. [20] 2021 CNNs Achieved high accuracy in di-
verse weather conditions

10 Advanced multimodal fusion
method Lwengo et al. [21] 2023 Transfer learning and data

augmentation

Enhanced model generaliz-
ability across different re-
gions

11 Deep learning model for re-
gional solar radiation Ersan et al. [22] 2020 RNNs with feature engineer-

ing

Improved prediction accu-
racy through advanced fea-
ture extraction

12
A high-resolution, cloud-
assimilating numerical
weather prediction model

Patrick et al. [23] 2013 CNNs with high-resolution
imagery

Focused on capturing small-
scale variations in solar expo-
sure

13 Hybrid Machine Learning for
Solar Radiation Prediction Heydar et al. [24] 2021 CNN-RNN hybrid models

Combined strengths of CNNs
and RNNs for superior pre-
dictions

14
AI-based solar energy fore-
casting for smart grid integra-
tion

Said et al. [25] 2023 AI and machine learning tech-
niques

Leveraged AI to enhance pre-
dictive accuracy and model
robustness

15 Data-Driven Short-Term So-
lar Irradiance Forecasting Huang et al. [26] 2019 Data-driven approaches with

deep learning

Achieved significant im-
provements in prediction
reliability and accuracy

2.1. Research Gaps

Based on the comprehensive review of the literature, the following research gaps have
been identified:

• Current deep learning models lack effective feature selection mechanisms, potentially
including redundant or less relevant features that may impact prediction accuracy.
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• The integration of multiple deep learning architectures for solar exposure prediction re-
mains largely unexplored, especially in combining spatial and temporal feature extraction.

• Limited research exists on adaptable models that can handle varying environmental
conditions and seasonal changes while maintaining prediction accuracy.

2.2. Rsearch Contributions

Upon presenting the research gaps, this study makes the following key contributions
to the field:

• Developing a hybrid CNN–LSTM/GRU architecture (Deep-FS feature selection method-
ology) that effectively combines spatial and temporal feature extraction capabilities,
improving prediction accuracy over single-architecture approaches.

• Demonstrates improved performance over traditional approaches through compre-
hensive evaluation using the RMSE, RRMSE, R², and MAE metrics.

• Demonstrates superior performance over traditional statistical and machine learning
approaches, achieving 96% prediction accuracy with enhanced generalizability.

3. Proposed Method

The proposed method for predicting the solar surface is depicted in Figure 1. For data
acquisition, SORCE and SIM data are given as input. The features are identified based on
the selection of features for the prediction model. Feature engineering also identifies the
relevant set of features that are crucial for accurate prediction. In data processing, valid
timestamps, resizing, and normalization are performed. Optimal features are selected, and
the prediction model is designed to estimate the solar surface. The details of each step are
illustrated in the following sections.

Figure 1. Proposed Model.

3.1. Data Acquisition

The Solar Radiation and Climate Experiment (SORCE) is a NASA-sponsored satellite
mission launched on 25 January 2003, whose main objective was to study the impact of
the Sun on the Earth’s climate. It analyses solar radiation of all wavelengths and ranges
with higher accuracy and precision, which helps scientists to study the long-term effect of
solar radiation on Earth’s climate. Continuous monitoring has revealed that significant
correlations between solar phenomena geomagnetic storms, and other phenomena have a
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huge impact on Earth’s climate change. The data specification for different sets of channels
is presented in Table 2.

Table 2. SORCE Dataset Specification.

Ch# Name Wavelength
Range (nm)

Spatial
Res. (km)

Spectral
Res. (nm) Description

Ch#1 UV 100–400 10 1

Ultraviolet (UV) radiation mea-
surement is typically used for
ozone monitoring or atmospheric
composition studies

Ch#2 Visible 400–700 10 1
Visible light measurement is used
for surface reflectance, vegetation
monitoring, and cloud detection

Ch#3 NIR 700–1100 10 1

Near-infrared (NIR) measure-
ment is valuable for vegetation
health monitoring, land cover
classification, and moisture con-
tent

Ch#4 SWIR 1100–2500 10 1

Shortwave infrared (SWIR) mea-
surement is useful for geologi-
cal mapping, vegetation analysis,
and soil moisture estimation

Ch#5 MWIR 2500–5000 10 1

Midwave infrared (MWIR) mea-
surement is often utilized for tem-
perature mapping, fire detection,
and atmospheric profiling

Ch#6 LWIR 8000–12,000 10 1

Longwave infrared (LWIR) mea-
surement is critical for cloud char-
acterization, sea surface tempera-
ture monitoring, and more

Ch#7 CO2 400–750 10 0.1

Carbon dioxide (CO2) absorption
band is used for atmospheric com-
position studies and greenhouse
gas monitoring

Ch#8 O3 250–350 10 0.1

The ozone (O3) absorption band
is crucial for stratospheric ozone
monitoring and atmospheric
chemistry research

Ch#9 CH4 1900–2100 10 0.1

The methane (CH4) absorption
band is significant for monitoring
atmospheric methane concentra-
tions and sources

Ch#10 H2O 900–1000 10 0.1

Water vapor (H2O) absorption
band is important for studying
humidity distribution, cloud for-
mation, and precipitation

Ch#11 Aerosol 500–750 10 0.1

Aerosol optical depth measure-
ment is essential for air quality
monitoring, climate studies, and
atmospheric modeling

Ch#12 Cloud 800–1400 10 0.1
Cloud properties are retrieved, in-
cluding cloud top temperature,
cloud phase, and cloud height
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Table 2. Cont.

Ch# Name Wavelength
Range (nm)

Spatial
Res. (km)

Spectral
Res. (nm) Description

Ch#13 Albedo 340–2400 10 1

Surface albedo measurement is
used for climate modeling, en-
ergy balance studies, and land
surface characterization

Ch#14 Thermal 8000–12,000 10 1

Thermal infrared measurement is
crucial for land surface tempera-
ture estimation, urban heat island
detection, and more

Ch#15 Vegetation
Index N/A 10 N/A

Derived index combining multi-
ple spectral bands is used to as-
sess vegetation health and den-
sity

Ch#16
Land Sur-
face Tem-
perature

N/A 10 N/A
Derived temperature values rep-
resent the temperature of the
Earth’s surface

The data used through the experiments are obtained from NASA POWER API at
point-based resolution, with each data point representing measurements at specific latitude–
longitude coordinates. In this study, spatial interpolation between points is not performed
to maintain fidelity of the data.

3.2. Data Analysis and Preprocessing

The datasets of SORCE and SIM are processed for missing data points. Missing data
points were interpolated using mean values of adjacent observations; we can take the mean
of the data points as follows:

xi =
1
n

n

∑
j=1

xj (1)

where xi is a data point.
Now, normalization (0–1) is performed using the following equation:

x′i =
xi − xmin

xmax − xmin
(2)

After performing normalization, statistical, spectral and regression analyses are per-
formed. The results are presented in Figures 2–4 respectively.

Figure 2. Time series analysis for a specific time.
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Figure 3. Spectral analysis.

Figure 4. Regression analysis.

From the time-series analysis, it is evident that the periodic behavior of the data set
is similar to Earth’s orbital data. Furthermore, the wavelength patterns are identical and
consistent. With the regression analysis, our analysis demonstrates the capability to predict
spectral variations across alternative wavelength ranges.

Figure 3 shows the spectral analysis of SIM data at a 500 nm wavelength. Here, the
X-axis represents the frequency (1/day), and the Y-axis represents the amplitude/power.
The plot shows a sharp peak near frequency 0 followed by very low-amplitude oscillations.
This indicates a strong constant/baseline component in the solar radiation data; higher
frequency components have much smaller contributions, and most of the signal’s power is
concentrated in the low frequency range.

Figure 4 is a scatter plot showing the relationship between predicted and actual values,
where the X-axis represents Spectral Surface Exposure at 500 nm (actual values) and the
Y-axis represents predicted values. While blue dots are individual data points showing
actual vs. predicted values, the red line is the fitted regression line showing the trend.
It is obvious that there is a considerable scatter around the trend line, but with a clear
positive correlation.

3.3. Feature Extraction

Features from the SORCE dataset were extracted based on their time variances and
their distribution along different wavelengths. Some atmospheric particles are also in-
cluded, including aerosol particles. For the SIM data set, the behavior patterns, perfor-
mance metrics, mean and variances, time series analysis, and other relevant metrics are
extracted. The different features of the SORCE dataset are described in Table 3.
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Table 3. Features of SORCE datasets.

Feature Name Description Unit

Solar_Exposure Total solar exposure measured in
Earth’s atmosphere

Watts per square meter
(W/m²)

UV_Index Ultraviolet index measuring UV ra-
diation intensity Unitless

Visible_Light Visible light intensity Lux

IR_Exposure Infrared exposure Watts per square meter
(W/m²)

Ozone_Concentration The concentration of ozone in the
atmosphere Dobson units

Water_Vapor_Concentration Concentration of water vapor in the
atmosphere

Grams per cubic meter
(g/m³)

Surface_Temperature Temperature of the Earth’s surface Celsius (°C)

Atmospheric_Pressure The pressure exerted by the atmo-
sphere Hectopascals (hPa)

Solar_Activity_Index Index measuring solar activity and
sunspots Unitless

Solar_Flux Solar flux measurements Watts per square meter
(W/m²)

Aerosol_Optical_Depth Measure of aerosol particles in the
atmosphere Unitless

Cloud_Cover Percentage of sky covered by clouds Percent (%)

Wind_Speed Speed of wind at Earth’s surface Meters per second (m/s)

Precipitation_Rate Rate of precipitation (rainfall or
snowfall)

Millimeters per hour
(mm/hr)

Sea_Surface_Temperature Temperature of the sea surface Celsius (°C)

Ocean_Current_Speed Speed of ocean currents Meters per second (m/s)

Chlorophyll_Concentration Concentration of chlorophyll in wa-
ter

Milligrams per cubic meter
(mg/m³)

Photosynthetically_Active
_Radiation Solar radiation used by plants Micromoles per square meter

per second (µmol/m²/s)

Phytoplankton _Concentra-
tion

Concentration of phytoplankton in
water Cells per liter (cells/L)

Fish_Population_Density Density of fish population in water Fish per cubic meter
(fish/m³)

Algae_Bloom_Area Area covered by algae blooms Square kilometers (km²)

Primary_Production_Rate Rate of primary production in ma-
rine ecosystems

Grams of carbon per square
meter per year (gC/m²/yr)

Temperature_Anomaly Anomaly in surface temperature
compared to baseline Celsius (°C)

Sea_Level_Rise Rise in sea level Millimeters (mm)

Glacier_Mass_Balance Change in mass of glaciers Meters water equivalent
(m w.e.)

Ocean_Acidification Decrease in pH levels of oceans pH units

Online_Education _Enroll-
ment

Enrollment in online education
courses Millions

Remote_Work_Practices Adoption of remote work practices Percentage (%)

Telemedicine_Usage Usage of telemedicine services Consultations
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Table 3. Cont.

Feature Name Description Unit

Virtual_Reality_Adoption Adoption of virtual reality technolo-
gies Percentage (%)

Space_Exploration_Budget Budget allocated to space explo-
ration Billion USD

Mars_Colonization_Projects Projects related to the colonization
of Mars Count

AI_Satellite_Launches Satellite launches for AI applica-
tions Count

Climate_Change _Adapta-
tion_Projects

Projects addressing climate change
adaptation Count

Renewable_Energy _Invest-
ments

Investments in renewable energy
projects Billion USD

3.4. Feature Selection and Visualization

The feature-selection method is based on estimating the correlation or effect of a
particular feature on the SIM data set. The reason for using the Deep-FS is to better
understand the correlation of the features. This enhances the power of neural networks
to understand complex interactions. The features are identified on the basis of and the
weights assigned. For performance evaluation, RMSE is deployed.

For feature selection, let us assume that X and y are data points. The performance of
the model based on LSTM and GRU is based on the loss function defined as

L(θ, X, y) =
1
n

n

∑
i=1

(yi − f (Xi; θ))2 (3)

where θ is the model parameter.
The major task is to optimize the performance of the model and minimize the loss

function. To achieve this, an empty set is initialized to zero, and the best performance is
set to infinity. For each feature, the loss function is computed. If the current best score
is less than the loss score, the feature is updated and removed from the subset. This
process is repeated until no further performance improvement is required. Data points are
divided into time intervals, and predictions are made based on multiple extracted features.
Visualizations for different timestamps and channels are depicted in Figure 5.

Figure 5. Time series visualization for different timestamps.
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3.5. Model Design and Prediction

CNN is deployed to extract the features and predict the time series data. The input
variables are the feature variables, the channel parameters, and the extracted features. The
input is then pre-processed to identify the surface exposure. All features and parameters
were used to predict surface exposure. Different experiments were conducted at different
timestamps and data sets. For performance evaluation, training and testing were conducted
10 times due to the random nature of the deep learning model. All input parameters with
their specifications on different layers are defined in Table 4.

Table 4. Input parameters for model design.

Model Structure Value

CNN-LSTM Input 6 × 6 × K × F
Convolution 4 × 4 Filter

8 Filters
Zero Padding
Tanh Activation

Max Pooling 4 × 4 Filter
2 Strides

LSTM 16 Nodes
Tanh Activation

Output N × 1
MSE

CNN-GRU Input 6 × 6 × K × F
Convolution 4 × 4 Filter

8 Filters
Zero Padding
Tanh Activation

Max Pooling 4 × 4 Filter
2 Strides

GRU 16 Nodes
Tanh Activation

Output N × 1
MSE

To capture the spatial and temporal dependencies in the data and their nonlinear inter-
dependencies, the deep learning model is deployed. The deep learning model overcomes
the limitations of the traditional models. Incorporating the advantages of CNN along with
LSTM and GRU improves the accuracy prediction of the data for solar surface detection.
For a complex set of data, traditional approaches such as ARIMA and SARIMA are not
able to capture the interdependency between the data. The proposed model can be used
for large, complex sets of data. The proposed model combines CNN architecture along
with deep learning models, which enhances the feature extraction process to extract the
relevant set of features from a larger set of features. The proposed model uses advanced
feature extraction methods (Deep-FS), through which prediction accuracy is improved and
an accuracy of 96% is achieved.

The flow of the proposed model can be summarized as follows.

1. The solar data is acquired from both datasets. Let X represent the data points in
the dataset.

X = {x1, x2, . . . , xn} (4)

2. Data are then normalized for a specific range using the mean and standard deviation.

X′ =
X − µ

σ
(5)
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3. Relevant features are extracted from the features mentioned in Table 3 using the
feature extraction process:

• The data points are normalized.
• Convolution is applied to extract the local features.
• The RelU Activation function, along with pooling and flattening, is applied for

capturing essential features.

4. CNN-LSTM and CNN-GRU models are designed.
LSTM:

Z1 = Conv(X′; W1, b1) (6)

A1 = Activation(Z1) (7)

P1 = MaxPool(A1) (8)

L = LSTM(P1; θLSTM) (9)

ECNN−LSTM = Output(L; WO, bO) (10)

GRU:

Z2 = Conv(X′; W2, b2) (11)

A2 = Activation(Z2) (12)

P2 = MaxPool(A2) (13)

G = GRU(P2; θGRU) (14)

ECNN−GRU = Output(G; WO, bO) (15)

where

• W: Filter;
• b: bias;
• Z1: ReLU Activation.

The LSTM Cell Process is defined as

ft = σ(W f · [ht−1, xt] + b f ) (16)

it = σ(Wi · [ht−1, xt] + bi) (17)

C′
t = tanh(WC · [ht−1, xt] + bC) (18)

Ct = ft ∗ Ct−1 + it ∗ C′
t (19)

ot = σ(Wo · [ht−1, xt] + bo) (20)

ht = ot ∗ tanh(Ct) (21)

where

• ft: Forget Gate;
• it: Input Gate;
• h: Hidden State;
• Ct: Candidate Cell State;
• W: Weight.

5. Train the model and optimize the loss function.

L(θ, X, y) =
1
n

n

∑
i=1

(yi − f (Xi; θ))2 (22)

6. Evaluate the performance with different performance metrics RMSE, RRMSE, MAE,
and R2 as follows.
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (23)

RRMSE =
RMSE

Ȳ
=

√
1
n ∑n

i=1(yi − ŷi)2

ȳ
(24)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (25)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (26)

7. Perform a comparative analysis with traditional approaches for the validation of the
proposed method.

3.6. Elaboration on Model Selection

In this section, we will try to explain the specific advantages of LSTM and GRU
over other deep learning and machine learning algorithms for solar surface exposure
prediction problems.

3.6.1. Temporal Dependency Handling

LSTM and GRU are specifically designed to handle temporal dependencies through
their memory mechanisms, in contrast to the lack of explicit memory structures in regular
neural networks and CNNs. In [3], it is demonstrated that LSTM outperformed traditional
methods with 15.3% improvement in RMSE. Other ML algorithms such as SVM or Random
Forests do not maintain the temporal ordering of data.

3.6.2. Variable Sequence Length

LSTM/GRU can naturally handle variable-length sequences, while most other algo-
rithms require fixed input sizes. Ref. [11] showed LSTM’s ability to handle variable-length
temporal data with 92% precision.

3.6.3. Memory Management

Although LSTM uses memory cells with input, output, and forget gates, GRU has
a simpler architecture with reset and update gates. Both can selectively remember or
forget information, in contrast to other algorithms with the lack of this selective memory
capability. Ref. [9] demonstrated the hybrid CNN-LSTM model’s effectiveness in capturing
both spatial and temporal patterns.

3.7. Advantages over Specific Algorithms

Ref. [1] empirically showed the superiority of LSTM/GRU over the ARIMA and SVR
models, in addition to the work demonstrated in [1].

In contrast to Convolutional Neural Networks (CNNs), long short-term memory
(LSTM) and gated recurrent unit (GRU) architectures excel in sequential data processing,
with the ability to handle temporal dependencies and a wider support for time series
forecasting and analysis.

LSTM and GRU demonstrate superior capabilities capturing long-term dependencies
with a more robust training process, and it is significantly mitigated against vanishing
gradients compared to RNNs [27].

LSTM and GRU architectures are designed to process sequential data through their
gating mechanisms and memory cells, allowing them to capture temporal patterns. In con-
trast, traditional ML algorithms like SVM and Random Forest treat inputs as independent
features without considering temporal ordering [28].
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4. Experimental Results

Experimental validation was conducted to assess the model’s performance of the
proposed method. The input parameters defined in Table 4 were used to perform the
training. The outcome generated after calculating the loss function for each parameter is
considered. The one with the lowest loss is considered for the final output. Performance is
computed using features captured through Deep-FS.

Performance is also compared with single models as well as the combination of
different models. The features are selected using the Fisher Score, Recursive Feature
Elimination (RFE), Random Forest Importance, and Deep-FS. The performance metrics
used are RMSE, RRMSE, R2, and MAE. The experimental results are depicted in Table 5.

Table 5. Performance parameter computation for CNN-LSTM and CNN-GRU.

Model Method RMSE RRMSE R2 MAE

Convolutional
Neural Network
(Long Short-Term
Memory)

Full Features 0.24982 0.12806 0.9196 0.08241
Fisher Score 0.33946 0.29365 0.7468 0.11524
Recursive Feature Elimination
(RFE) 0.12323 0.06604 0.88034 0.11519

Random Forest Importance 0.38323 0.3755 0.99097 0.14686
Deep Feature Selection (LSTM) 0.43298 0.35714 0.75455 0.09747
Deep Feature Selection (GRU) 0.17336 0.13292 0.85743 0.03005

Convolutional
Neural Network
(Gated Recurrent
Unit)

Full Features 0.27278 0.21126 0.88356 0.07441
Fisher Score 0.1558 0.12057 0.80991 0.02427
Recursive Feature Elimination
(RFE) 0.28243 0.15821 0.7599 0.07977

Random Forest Importance 0.30569 0.19197 0.71394 0.09345
Deep Feature Selection (LSTM) 0.34302 0.29305 0.71952 0.05766
Deep Feature Selection (GRU) 0.47955 0.24397 0.94252 0.22997

As depicted in Table 5, Deep-FS leads as the most effective approach to predict solar
surface exposure compared to all other feature selection methods. The results show that
RFE, in terms of performance and with more variables, has improved results. Furthermore,
the Fisher Score and the RFE compared to the top 15% showed better results.

The overall results reveal that Deep-FS GRU has the best results when considering the
correlation between the feature vectors. Figure 6 shows the overall prediction results for a
specific time stamp.

Figure 6. Surface exposure prediction using CNN-LSTM models.



Sensors 2024, 24, 8059 14 of 18

To check whether the combination of different deep learning models is better, the
proposed model is tested against single deep learning models to check whether they are still
better. The models included are ANN, CNN, LSTM, and GRU. The input parameters are
the features extracted using the Deep-FS method. The experiments revealed that for time
series prediction, LSTM and GRU performed much better compared to ANN and CNN.
It is also concluded that the combination of LSTM and GRU with CNN performed much
better as they can predict all the characteristics much more accurately. The comparative
analysis of experimental performance parameters is shown in Table 6.

Table 6. Comparative performance parameter analysis for CNN-LSTM and CNN-GRU.

Method Model
Performance Parameters

RMSE RRMSE R2 MAE

Deep FS
(Long Short-Term
Memory)

Artificial Neural Network 0.249816 0.128064 0.919598 0.062408
Convolutional Neural Network 0.123233 0.066035 0.880335 0.015186
Long Short-Term Memory 0.432977 0.357142 0.754547 0.187469
Gated Recurrent Unit 0.272778 0.211255 0.883556 0.074408
CNN (LSTM) 0.082428 0.018207 0.759902 0.049766
CNN (GRU) 0.343018 0.293046 0.919515 0.117661

Deep FS
(Gated Recurrent
Unit)

Artificial Neural Network 0.339463 0.293649 0.746798 0.115235
Convolutional Neural Network 0.383229 0.37552 0.960973 0.146864
Long Short-Term Memory 0.173362 0.132921 0.857427 0.030054
Gated Recurrent Unit 0.155798 0.120573 0.809909 0.024273
CNN (LSTM) 0.125694 0.101969 0.713935 0.013449
CNN (GRU) 0.479554 0.243969 0.962519 0.229972

Table 6 compares the performance of different deep learning models (ANN, CNN,
LSTM, GRU, and their combinations) across two methods (Deep FS with long short-term
memory and Deep FS with Gated Recurrent Units). As depicted in Table 6, using a com-
bined approach for CNN with LSTM and GRU leads to a better outcome compared to
individual deep learning models. CNN, however, leads when the number of parameters
is time-bound, but when combined with others, it gives a better outcome. The GRU also
performs well, but with higher variability, but it misses some major interconnections. When
the data are complex, the ANN seems to have deviations from the actual values, while
the CNN is unable to handle the dynamics effectively. CNN-LSTM has the lowest MAE
and RMSE, indicating its superiority over other models. The combined models are highly
effective for short-term prediction, achieving better overall performance metrics (RMSE,
RRMSE, R², MAE), with CNN-LSTM having the lowest error rates (MAE: 0.013449, RMSE:
0.125694) among all configurations. Therefore, in the case of solar surface exposure predic-
tion, the combined model is much better than the individual models. The visualization of
the comparison is shown in Figure 7.

Figure 7. Surface exposure prediction using different models.
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For the prediction of data points, two traditional methods are generally used: Auto-
Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated
Moving Average (SARIMA). The proposed method is compared with both approaches
based on the evaluation parameters RMSE, RRMSE, MAE, and R2. The comparative
analysis is shown in Table 7, which demonstrates that the proposed CNN-based hybrid
models (CNN-LSTM and CNN-GRU) outperform traditional statistical methods (ARIMA
and SARIMA) across all evaluation metrics, with CNN-GRU achieving the best results.

Table 7. Comparative analysis of the proposed method.

Model RMSE RRMSE MAE R2

ARIMA 0.3543 0.1104 0.2544 0.8511
SARIMA 0.3234 0.0823 0.2234 0.8834
CNN (LSTM) 0.2516 0.0723 0.1812 0.9567
CNN (GRU) 0.2201 0.0611 0.1522 0.9233

The value of RMSE indicates the average error. The performance difference between
the proposed model and existing approaches is primarily derived from their capacity to
model data relationships. The traditional approach supports linear relationships, whereas
the deep learning model is designed to capture non-linear relationships to overcome
interdependency and produce accurate results.

The deep learning models can handle spatial and temporal data effectively. In addition,
they are scalable and adaptable to the new data, making them the best choice for the solar
surface exposure. The model demonstrates an accurate prediction of surface solar radiation
with prediction metrics such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). It also demonstrates valuable performance
improvements in the reduction in prediction error vs. SARIMA, the improvement in
seasonal pattern capture, and better handling of daily variations.

During the experiments, several performance metrics were measured. Figure 8 shows
the predictions of the CNN-GRU model tracking the actual solar radiation values with
moderate volatility, demonstrating the model’s ability to capture both general trends and
some short-term fluctuations.

Figure 8. The CNN-GRU model’s time series visualization for different timestamps.

Figure 9 displays the predictions of the CNN-LSTM model, following a smoother
trajectory compared to CNN-GRU, suggesting better handling of long-term patterns but
less sensitivity to short-term variations.
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Figure 9. The CNN-LSTM model’s time series visualization for different timestamps.

In Figure 10, the left plot shows stable training with low loss values converging around
0.03; the right plot demonstrates positive correlation between predicted and actual values
with some scatter, indicating decent but imperfect prediction accuracy for CNN/LSTM.

Figure 10. The CNN-LSTM model’s training history and prediction success.

In Figure 11, the CNN-GRU training shows similar training stability to CNN-LSTM but
with slightly more validation loss fluctuation; the prediction scatter plot reveals comparable
performance to CNN-LSTM with moderate spread around the ideal prediction line.

Figure 11. CNN-GRU model’s training history and prediction success.

In Figure 12, the CNN-GRU ROC curve shows strong classification performance with
an AUC of 0.81, with the curve rising dramatically in the early stages and maintaining
good true positive rates while keeping false positives relatively low. On the other hand,
CNN-LSTM model shows slightly lower but still good performance with an AUC of 0.79,
following a curve pattern similar to that of CNN-GRU but with marginally lower true
positive rates across different thresholds.
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Figure 12. CNN-GRU and CNN-LSTM ROC curves.

5. Conclusions

In this work, a method to predict the solar surface exposure is developed based on
the data received from the SORCE and SIM datasets. To overcome different environmental
constraints such as cloudy skies and orbital position of the Earth, feature variables are
generated and extracted using the Deep-FS method. For predicting time-series data, a
model is designed that combines CNN with LSTM and GRU. For performance evaluation,
performance metrics such as RMSE, RRMSE, R2, and MAE are used.

The CNN-GRU model achieved optimal performance with an RMSE of 0.2201, demon-
strating superior error minimization. The model also gives the lowest value of RRMSE
(0.0611), indicating its effectiveness for the relevance of the data. The error in the prediction
of the directions of the data of the model is also much less, at MAE (0.1522), compared to all
other traditional approaches. It has a variance of 92% for the data (R2 0.9233), proving that
the proposed model has the highest efficacy among all other traditional methods, making
it the most suitable for the prediction of the solar surface.

The experimental results showed that the proposed model (CNN-LSTM, CNN-GRU)
gives an accuracy of 96% in predicting the data points compared to the individual deep
learning models. The relevant features selected through the proposed method can predict
surface exposure with high precision.

In the future, the model can be extended to predict the surface exposure for a larger
set of areas based on the availability of the required data set. The model can be trained for
more complex environmental factors based on improved datasets, and prediction accuracy
can be improved for larger areas.

Author Contributions: Conceptualization, F.K. and K.O.; methodology, F.K. and K.O.; software, F.K.;
validation, F.K. and K.O.; formal analysis, F.K.; investigation, F.K.; resources, F.K.; data curation, F.K.;
writing—original draft preparation, F.K.; writing—review and editing, F.K. and K.O.; visualization,
F.K.; supervision, K.O.; project administration, K.O.; funding acquisition, F.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: In the experiments publicly available “Solar Radiation and Climate
Experiment (SORCE)” is used which is accessible through “https://eospso.nasa.gov/missions/solar-
radiation-and-climate-experiment, accessed on 2 November 2024”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216.

[CrossRef]
2. Mayer, M.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239.

[CrossRef]

https://eospso.nasa.gov/missions/solar-radiation-and-climate-experiment
https://eospso.nasa.gov/missions/solar-radiation-and-climate-experiment
http://doi.org/10.1016/j.apenergy.2019.114216
http://dx.doi.org/10.1016/j.apenergy.2020.116239


Sensors 2024, 24, 8059 18 of 18

3. Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural
network. Appl. Energy 2019, 251, 113315. [CrossRef]

4. Colak, I.; Yesilbudak, M.; Genc, N.; Bayindir, R. Multi-period prediction of solar radiation using ARMA and ARIMA models. In
Proceedings of the IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11
December 2015.

5. Alharbi, F.; Csala, D. A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting
Model-Based Time Series Approach. Inventions 2022, 7, 94. [CrossRef]

6. Lim, S.C.; Huh, J.H.; Hong, S.H.; Park, C.Y.; Kim, J.C. Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies 2022,
15, 8233. [CrossRef]

7. Brahma, B.; Wadhvani, R. Solar irradiance forecasting based on deep learning methodologies and multi-site data. Symmetry 2020,
12, 1830. [CrossRef]

8. Jalali, S.; Ahmadian, S.; Kavousi-Fard, A.; Khosravi, A.; Nahavandi, S. Automated deep CNN-LSTM architecture design for solar
irradiance forecasting. IEEE Trans. Syst. Man Cybern. 2021, 52, 54–65. [CrossRef]

9. Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid
CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [CrossRef]

10. Jebli, I.; Belouadha, F.; Kabbaj, M.; Tilioua, A. Prediction of solar energy guided by pearson correlation using machine learning.
Energy 2021, 224, 120109. [CrossRef]

11. Husein, M.; Chung, I. Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural
network: A deep learning approach. Energies 2019, 12, 1856. [CrossRef]

12. Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput.
Sci. 2017, 114, 304–313. [CrossRef]

13. Dhilip Kumar, R.; Prakash, K.; Sundari, P.A.; Sathya, S. A Hybrid Machine Learning Model for Solar Power Forecasting. E3S Web
Conf. 2023, 387, 04003. [CrossRef]

14. Sarmas, E.; Dimitropoulos, N.; Marinakis, V.; Mylona, Z.; Doukas, H. Transfer learning strategies for solar power forecasting
under data scarcity. Sci. Rep. 2022, 12, 14643. [CrossRef] [PubMed]

15. Chatterjee, S.; Byun, Y.C. A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles
Demand. Sensors 2023, 23, 594. [CrossRef] [PubMed]

16. Tan, L.; Kang, R.; Xia, J.; Wang, Y. Application of multi-source data fusion on intelligent prediction of photovoltaic power. Sol.
Energy 2024, 277, 112706. [CrossRef]

17. Hou, X.; Ju, C.; Wang, B. Prediction of solar irradiance using convolutional neural network and attention mechanism-based long
short-term memory network based on similar day analysis and an attention mechanism. Heliyon 2023, 9, e21484. [CrossRef]

18. Ozbek, A.; Yildirim, A.; Bilgili, M. Deep learning approach for one-hour ahead forecasting of energy production in a solar-PV
plant. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 44, 10465–10480. [CrossRef]

19. Neshat, M.; Nezhad, M.M.; Mirjalili, S.; Garcia, D.A.; Dahlquist, E.; Gandomi, A.H. Short-term solar radiation forecasting using
hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution
strategy. Energy 2023, 278, 127701. [CrossRef]

20. Park, S.; Kim, Y.; Ferrier, N.; Collis, S.; Sankaran, R.; Beckman, P. Prediction of Solar Irradiance and Photovoltaic Solar Energy
Product Based on Cloud Coverage Estimation Using Machine Learning Methods. Atmosphere 2021, 12, 395. [CrossRef]

21. Zhang, L.; Wilson, R.; Sumner, M.; Wu, Y. Advanced multimodal fusion method for very short-term solar irradiance forecasting
using sky images and meteorological data: A gate and transformer mechanism approach. Renew. Energy J. 2023, 216, 118952.
[CrossRef]

22. Yuzer, E.O.; Bozkurt, A. Deep learning model for regional solar radiation estimation using satellite images. Ain Shams Eng. J.
2020, 14, 102057. [CrossRef]

23. Mathiesen, P.; Collier, C.; Kleissl, J. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance
forecasting. Sol. Energy J. 2013, 92, 47–61. [CrossRef]

24. Hedar, A.R.; Almaraashi, M.; Abdel-Hakim, A.; Abdulrahim, M. Hybrid Machine Learning for Solar Radiation Prediction in
Reduced Feature Spaces. Energies 2021, 14, 7970. [CrossRef]

25. Said, Y.A. AI-based solar energy forecasting for smart grid integration. Neural Comput. Appl. 2023, 35, 8625–8634. [CrossRef]
26. Huang, C.; Wang, L.; Lai, L.L. Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites.

IEEE Trans. Ind. Electron. 2019, 66, 9918–9927. [CrossRef]
27. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
28. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.apenergy.2019.113315
http://dx.doi.org/10.3390/inventions7040094
http://dx.doi.org/10.3390/en15218233
http://dx.doi.org/10.3390/sym12111830
http://dx.doi.org/10.1109/TSMC.2021.3093519
http://dx.doi.org/10.1016/j.renene.2020.05.150
http://dx.doi.org/10.1016/j.energy.2021.120109
http://dx.doi.org/10.3390/en12101856
http://dx.doi.org/10.1016/j.procs.2017.09.045
http://dx.doi.org/10.1051/e3sconf/202338704003
http://dx.doi.org/10.1038/s41598-022-18516-x
http://www.ncbi.nlm.nih.gov/pubmed/36030346
http://dx.doi.org/10.3390/s23020594
http://www.ncbi.nlm.nih.gov/pubmed/36679392
http://dx.doi.org/10.1016/j.solener.2024.112706
http://dx.doi.org/10.1016/j.heliyon.2023.e21484
http://dx.doi.org/10.1080/15567036.2021.1924316
http://dx.doi.org/10.1016/j.energy.2023.127701
http://dx.doi.org/10.3390/atmos12030395
http://dx.doi.org/10.1016/j.renene.2023.118952
http://dx.doi.org/10.1016/j.asej.2022.102057
http://dx.doi.org/10.1016/j.solener.2013.02.018
http://dx.doi.org/10.3390/en14237970
http://dx.doi.org/10.1007/s00521-022-08160-x
http://dx.doi.org/10.1109/TIE.2018.2856199
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1016/j.physd.2019.132306

	Introduction
	Related Work
	Research Gaps
	Rsearch Contributions

	Proposed Method
	Data Acquisition
	Data Analysis and Preprocessing
	Feature Extraction
	Feature Selection and Visualization
	Model Design and Prediction
	Elaboration on Model Selection
	Temporal Dependency Handling
	Variable Sequence Length
	Memory Management

	Advantages over Specific Algorithms

	Experimental Results
	Conclusions
	References

