Sensors

Article

Hardware-Assisted Low-Latency NPU Virtualization Method for
Multi-Sensor Al Systems

Jong-Hwan Jean

check for
updates

Citation: Jean, J.-H.; Kim, D.-S.
Hardware-Assisted Low-Latency
NPU Virtualization Method for
Multi-Sensor Al Systems. Sensors 2024,
24,8012. https://doi.org/
10.3390/524248012

Academic Editor: Joaquin Ordieres
Meré

Received: 7 October 2024
Revised: 5 December 2024
Accepted: 13 December 2024
Published: 15 December 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Dong-Sun Kim *

Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea;
kingdoril@naver.com
* Correspondence: dongsun.kim07@sejong.ac.kr

Abstract: Recently, Al systems such as autonomous driving and smart homes have become integral
to daily life. Intelligent multi-sensors, once limited to single data types, now process complex text
and image data, demanding faster and more accurate processing. While integrating NPUs and
sensors has improved processing speed and accuracy, challenges like low resource utilization and
long memory latency remain. This study proposes a method to reduce processing time and improve
resource utilization by virtualizing NPUs to simultaneously handle multiple deep-learning models,
leveraging a hardware scheduler and data prefetching techniques. Experiments with 30,000 SA
resources showed that the hardware scheduler reduced memory cycles by over 10% across all models,
with reductions of 30% for NCF and 70% for DLRM. The hardware scheduler effectively minimized
memory latency and idle NPU resources in resource-constrained environments with frequent context
switching. This approach is particularly valuable for real-time applications like autonomous driving,
enabling smooth transitions between tasks such as object detection and route planning. It also
enhances multitasking in smart homes by reducing latency when managing diverse data streams.
The proposed system is well suited for resource-constrained environments that demand efficient
multitasking and low-latency processing.

Keywords: neural processing unit; virtualization; multi-sensor; hardware scheduler; prefetching

1. Introduction

Single sensors have become more complex and diverse with the rapid development of
artificial intelligence in modern society [1]. Now, several functions are integrated into a
single sensor to provide various services.

As shown in Figure 1, intelligent sensors are widely used in various areas of our daily
lives, and sensor technology continues to advance rapidly [2]. For example, smartwatches
have transitioned from simple time-measuring devices to multifunctional tools that include
heart rate monitoring and smartphone notification features [3]. Intelligent sensors also
play a pivotal role in creating smart homes, where devices like remote controllers, washing
machines, robot vacuum cleaners, and air conditioners are interconnected through smart-
phones. In autonomous driving, sensors such as radar and cameras are used to predict
vehicle locations and recognize pedestrians, respectively [4]. Sensors also enable facial
recognition for unlocking devices and enhance security through motion detection systems
that can respond to movement in real time. In the biomedical field, recent advancements
highlight the integration of machine learning (ML) algorithms to improve biosensing ac-
curacy and diagnostic efficiency. Al-based biosensors, for example, support the real-time
detection of biomarkers for diseases like cancer and infectious diseases [5-7]. Wearable
and implantable biosensors leverage ML to reduce latency and enhance decision making in
point-of-care (POC) systems [7]. Fast real-time processing has become essential as sensors
continue to process increasingly complex data. To meet the growing demands for real-time
processing, neural processing units (NPUs) have been combined with sensors to handle

Sensors 2024, 24, 8012. https://doi.org/10.3390/s24248012

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s24248012
https://doi.org/10.3390/s24248012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0006-2773-2975
https://orcid.org/0000-0002-7169-5028
https://doi.org/10.3390/s24248012
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24248012?type=check_update&version=2

Sensors 2024, 24, 8012

20f 14

complex data in parallel with low power consumption. This integration enables faster
execution of multiple tasks, such as real-time noise reduction in image streams for applica-
tions like autonomous driving and surveillance [8]. Despite these advancements, reducing
latency in environments where multiple sensor applications operate simultaneously re-
mains a critical challenge. NPUs can process deep-learning models at high speed, but when
multiple applications concurrently execute different deep-learning models, resource con-
tention often leads to memory bottlenecks, resulting in significant overhead [9]. Traditional
software-based NPU virtualization techniques, while addressing some of these challenges,
exacerbate latency due to frequent context switching between applications [10]. NeuCloud
has attempted to mitigate these issues by focusing on improving resource utilization and
ensuring performance isolation in multi-tenant cloud environments [9-11]. However, these
studies primarily target cloud-based multi-tenant scenarios, leaving gaps in addressing the
real-time processing requirements critical for environments such as multi-sensor systems
or edge devices.

Autonomous

Smarc Home Driving

NPU-integrated

smart sensor

Figure 1. Examples of real-life applications of multi-sensor Al in various fields.

To address these limitations, this study focuses on reducing real-time processing
latency to support multi-sensor Al applications where fast and accurate response times
are crucial. We propose a hardware-assisted NPU virtualization method that leverages a
hardware scheduler to optimize resource allocation and resolve memory bottlenecks during
concurrent task execution. We implemented a cycle accrual NPU virtualization simulator
using the DRAMsim3 library to validate our approach. This simulator measures memory
cycle values in a virtualized environment where five guest applications run simultaneously.
We achieved significant performance improvements by integrating a hardware scheduler
into the existing NPU virtualization system and prefetching data from deep-learning layers.
Testing various deep-learning models, including CNNs, demonstrated a substantial reduc-
tion in memory cycles. These findings highlight the potential of our method to enhance
real-time processing in biomedical sensor applications and other real-time critical environ-
ments. Moreover, hardware-assisted NPU virtualization maximizes resource utilization
and minimizes latency in intelligent multi-sensor systems where real-time processing is
essential. Even in resource-constrained, lightweight, and on-device environments, this
method significantly improves the performance of deep-learning models [12]. This ad-
vancement paves the way for more efficient and responsive Al-driven technologies in fields
such as autonomous vehicles, smart cities, advanced robotics, and real-time biomedical
applications [12,13].

Sensors 2024, 24, 8012

3o0f14

2. Simulation Environment and Methodology
2.1. NPU Virtualization Operation Flow

Figure 2 shows the operational flow of NPU virtualization. First, the hypervisor cre-
ates guest applications and device drivers. In the generated applications, the applications
request VNPU instances from the hypervisor. The hypervisor creates the vINPU instance
required for deep-learning of the guest app, such as the number of cores, network configu-
ration, memory size to allocate, input bandwidth, and clock speed. The hypervisor also
schedules which guest application should execute first and selects the appropriate vNPU in-
stance to provide [14]. It stores the provided vNPU instance information in control registers
to manage resources. Next, the guest application issues commands to start deep-learning
model computations. At this stage, the layer data of the deep-learning model are read from
DRAM and stored in the on-chip scratchpad memory. The NPU sequentially processes the
data by reading the layer data from the scratchpad memory, performing computations, and
handling the tasks. Once the tasks are complete, the system saves the final processed layer
information, as well as computes cycles, memory addresses, and intermediate results, and
the state of the vINPU instance is returned to the hypervisor. The system then initializes
the vINPU instance, and the next scheduled guest application begins execution, with the
hypervisor allocating the vNPU instance in the same manner as before. This describes the
overall operational flow of the NPU virtualization system.

App_vNPU Hv_app. VNPU_instances
U /_app_ A d i L
instance_request VvNPU_mapping] FLEINE g initialization

¢

Hv_Guest_app_create | il

{
1)

Guest_app_create Specifying core#, Create_vNPU_ Execute_
net_config, instances_to_app app_command
SRAM DRAM size,
input bandwidth, ¢ ¢
Gu.est_devlce_ clock speed Schedule_vNPU Load_network_info_
i s> tasks_for_each app from_DRAM_to_NPU
N| ¢
X

Select_
VNPU_instances
_toapp

Process_tasks_
in_NPU

Provide_vNPU.

instances_to_app

Save_current_
task_status

Save_
provided_vNPU_info
in control_register

Figure 2. NPU virtualization operation flow. The symbol ‘# represents the number of cores.

2.2. Experimental Setup

We designed this experimental platform to evaluate the performance of NPU virtual-
ization in efficiently executing multiple Al sensor applications. The platform utilizes an
enhanced tensor processing unit version 4 (TPUv4) architecture that has been specifically
modified to support hardware-assisted NPU virtualization. Through TPUv4, we built an en-
vironment to handle deep-learning data from various sensors through NPU virtualization.

2.2.1. Neural Processing Unit (NPU) Architecture

Figure 3 shows the parameters of the TPUv4 architecture set in the simulation. TPUv4
was designed with large-scale computational power to efficiently support demanding Al
workloads. TPUv4 features a highly optimized architecture specification, as shown in
Tables 1. TPUv4 efficiently handles various data using a systolic array (SA) consisting of

Sensors 2024, 24, 8012

4of 14

128 x 128 processing elements, enabling effective data flow and parallel processing [15].
The SA comprises 16,384 interconnected processing elements (PEs), each directly communi-
cating with its neighboring PEs [16]. This interconnected structure facilitates significantly
faster convolution layer computations and real-time data exchange, ensuring optimal
performance for deep-learning tasks. For enhanced efficiency, we ensured that only the
input and weights were moved using an output stationary method, which fixes the output
to enable data reuse and reduce redundant memory operations. We set the tile’s input
feature map and the filter size to 786,432 bytes, enabling the division of layers into smaller,
manageable chunks for efficient processing [17].

Virtual core
Tensor core Tensor core
Scalar Vector Scalar Vector
Unit Unit Unit Unit
HBM (——)E Matrix Matrix Matrix Matrix i(—) HBM
0 Multiplication | [Multiplication Multiplication | | Multiplication i
Unit Unit Unit Unit
Matrix Matrix Matrix Matrix
Multiplication | [Multiplication Multiplication | | Multiplication
Unit Unit Unit Unit
Figure 3. TPU v4 architecture.
Table 1. TPUv4 configuration parameters.
Parameter Value
Data flow type Output stationary
Systolic height 128
Systolic width 128
Tile ifmap size (byte) 786,432
Tile filter size (byte) 786,432
Tile ofmap size (byte) 786,432

2.2.2. SPM and DRAM Configuration

Table 2 represents the configuration parameter values of the SPM set in the experiment.
The parameters were carefully selected to optimize the performance and memory access
efficiency of the NPU. First, we set the relevance of the translation lookaside buffer (TLB)
to 8 and the total number of entries that can be stored in the TLB to 2048, ensuring efficient
virtual-to-physical address translation. The clock speed of both the NPU and DRAM was set
to 2 GHz, while the SPM access delay time was configured to one cycle for minimal latency.
We configured the ScratchPad memory (SPM) capacity to approximately 37 MB, a value
carefully determined based on the memory requirements of all five deep-learning models
used in the experiment. Additionally, we set the data block size to 64 bytes, optimizing the
memory transactions for each layer’s workload [18].

Table 3 presents the values of the DRAM configuration parameters used in the ex-
periment. We configured the DRAM with eight channels and allocated a channel size of
1024 MB in the simulation. We used a 128-bit bus width, four bank groups, and four banks
per group. Each bank was assigned 32,768 rows, and each row was set to have 64 columns.
The device width was defined as 128 bits. The Burst Length (BL), which determines the
data the DRAM can handle in one operation, was specified as 4 bits. We set the refresh
cycle time (tRFC) to 260 cycles and the write recovery time (tWR) to 16 cycles. The clock
cycle (tCK) was configured to 1 cycle. The CAS latency (CL), which controls the delay

Sensors 2024, 24, 8012

50f 14

before data are returned after a command, was set to 14 cycles. Similarly, we configured the
row-to-column delay (tRCD) to 14 cycles, the row precharge time (tRP) to 14 cycles, and the
row active time (tRAS) to 34 cycles. We implemented an open-page policy. Additionally,
we set the DRAM operating voltage (VDD) to 1.2 V, the active power consumption (IDDO0)
to 65 mA, and the current consumption during read operations (IDD4R) to 390 mA [19].

Table 2. SPM configuration parameters.

Parameter Value
TIb assoc 8
Tlb entrynum 2048
Npu clock speed (GHz) 2
Dram clock speed (GHz) 2
SPM size (bytes) 37,748,736
SPM latency 1
Data block size (bytes) 64
Table 3. DRAM configuration parameters.
Parameter Value
Channels 8
Bus Width (bit) 128
Bank Groups 4
Banks per Group 4
Rows per Bank 32,768
Columns per Row 64
Device Width (bit) 128
Burst Length (BL) 4
tCK (ns) 1
CL (CAS Latency) 14
tRCD (Row-to-Column Delay) 14
tRP (Row Precharge Time) 14
tRAS (Row Active Time) 34
tRFC (Refresh Cycle Time) 260
tWR (Write Recovery Time) 16
VDD (V) 1.2
IDDO (Active Power) 65 mA
IDDA4R (Read Power) 390 mA
Channel Size (MB) 1024
Row Buffer Policy Open Page

2.2.3. Deep-Learning Models Used

We tested the performance of NPU virtualization using five deep-learning models
to simulate different deep-learning models. We tested AlexNet and ResNet-50, which are
models designed for the image classification task; NCF, which predicts the right items for
users in recommendation systems by learning the interaction between users and items;
YOLO-tiny, which is used to quickly and efficiently detect multiple objects in images or
videos; and DLRM, which is designed for custom advertisements or product recommenda-
tions on large-scale data [20]. We tested these various models and tested the performance
of the NPU virtualization system.

2.3. NPU Virtualization System

Figure 4 shows the hardware-assisted NPU virtualization system. First, the hypervisor
creates a guest app with a device driver, runtime, and deep-learning framework. In
addition, it assigns a vNPU instance to the guest application and manages it through the
command buffer and control register. The created guest app requests the vINPU resources
from the hypervisor to run the deep-learning model, and the hypervisor provides the vNPU

Sensors 2024, 24, 8012

6 of 14

resources (as required by the app). In this process, the hypervisor securely accesses the
NPU and DRAM memory resources via the IOMMU. When calculating the deep-learning
model, the NPU reads the layer’s input and weights from DRAM through the DMA, stores
the data in scratch pad memory, and proceeds with the operation. The hypervisor manages
the NPU resources through this system so that each guest app can share and use a single
NPU resource [21].

NPU

Save layer info Hardware
scheduler

Cores

Read Input
Weight values

Input Weight values
DL model DRAM Scratch pad >
memory layer

A

DMA .
info
A
Address
translation
A
IOMMU
Manage NPU
resources [!
Requet vNPU GuestApp

A

instance 'ﬁrd N
Hypervisor evice ariver
Create VNPU instances %
T e DL Framework -

Y

Figure 4. Hardware-assisted NPU virtualization system.

2.3.1. Hypervisor Design and Implementation

The hypervisor creates and manages virtual machines and instances and efficiently
schedules them so multiple applications can run simultaneously. The hypervisor also
interfaces with the memory management unit MMU and the hardware scheduler to ef-
ficiently allocate resources. The hypervisor optimizes the scheduling method so context
switching between guest apps can occur freely [22]. In context switching, the status of tasks
in the suspended deep-learning model is stored in the checkpoint so that functions can
resume without data loss at subsequent execution [23]. However, this causes latency and
degrades the context switching process of the exchanging data from interrupted tasks [24].
We applied the hardware scheduler to the NPU virtualization system to address this is-
sue. As a result, the hardware scheduler significantly reduced the latency during context
switching by quickly recovering data. In addition, we used hardware schedulers as they
save scheduling information and algorithms in advance to promptly provide the resources
needed for each application in real time, thereby minimizing latency.

2.3.2. Data Prefetching Algorithms via Hardware Scheduler

The hypervisor allows the scheduler to calculate the number of SA required for each
layer for each application and allocate these resources as efficiently as possible based on the
number of guest applications entered and the maximum number of SA available. It also
ensures smooth context switching between guest apps. We used a layer-based approach
instead of traditional round-robin or priority-based scheduling methods when conducting
the experiments [25]. The scheduler calculates the number of active processing elements
(PEs) and SA required for each layer. It groups the layers into one group with as many
available resources as possible to allocate SA. The scheduler saves the current state of the
application so that it can resume the next interrupted task when the requested SA exceeds

Sensors 2024, 24, 8012

7 of 14

the number of available resources. However, the small number of limited SA resources
results in significant overhead due to frequent context switching. Algorithm 1 illustrates a
prefetching algorithmic system that we introduced to optimize data flow between memory
and NPU, allowing deep-learning models to be read from DRAM through hardware during
the computation time, thereby minimizing resource idle and improving the processing
speed. This algorithm stores scheduling information in the hardware scheduler to precisely
coordinate memory operations and computational tasks, reducing unnecessary delays.
Hardware-assisted virtualization systems enable faster data exchange and address persis-
tent software-based scheduling challenges. Once an app starts computation, it prefetches
data from the layer to the possible layer running on the next app. It is based on scheduling
information within the hardware scheduler’s acceptable memory and within the calculation
time of the app running before context switching. Thus, hardware schedulers speed up
each guest application’s transition and minimize unused time resources. They also enable
more efficient multitasking in multi-tenant environments. The proposed NPU virtualiza-
tion system optimizes task execution and resource utilization through an efficient data
prefetching algorithm [26]. The system uses a layer-based approach to ensure efficient task
processing in resource-constrained environments.

Algorithm 1: Data Prefetching for Hardware-Assisted NPU Virtualization
Input: A: Number of guest applications, N: Maximum NPUs, S: Scheduling
information
Output: Layer range for hardware scheduler
1 Create guest applications and virtual NPUs on the hypervisor;
2 Schedule guest applications on the hypervisor;
3 Store scheduling information S in the hardware scheduler;
4 forp=1to Pdo

5 Tread (lnext) — Tread (lnext/ DRAM);
6 Msize (lnext) — MDRAM(lnext)}
7 Cnpu(Ai) — Tcompute(Ai);
8 if Tread(h) < Cnpu and Msize(ll) < My, then
9 Prefetch the first layer /; from DRAM;
10 Cnpu — Cnpu — Tread(ll);
11 forj=2tokdo
12 if Msize(lj) < Mjy,, then
13 Prefetch layer /; from DRAM;
14 Cnpu — Cnpu - Tread(lj);
15 else
16 L Read intermediate result from DRAM;
17 else
18 L Read intermediate result from DRAM;
19 Determine the layer and tile range for the next guest application;
20 foreach Layer | in range do
21 L Read from the hardware scheduler;

During initialization, the hypervisor identifies the number of guest applications and
the maximum available SAs (systolic arrays). The hardware scheduler receives SA count
information for each application required per layer from the hypervisor, determines the
range of layers that can be processed, and checks for prefetch availability. The system
calculates the number of SAs needed for each layer, ensuring resource allocation is opti-
mized even in resource-constrained environments. This allows the scheduler to handle as
many deep-learning model layers as possible by leveraging the maximum resources the
hypervisor can provide to guest apps. The scheduler stores the application’s state (current

Sensors 2024, 24, 8012

8 of 14

layer, computational cycle, etc.) such that the deep-learning model can resume usually
later. The scheduler continues the aborted task when that deep-learning model is re-run
later. This process continues up to the available memory capacity My,, of the hardware
scheduler. The system loads data from subsequent operations into the available memory
by prefetching data from the following application during the current computation, thus
reducing idle time during context switching. By allowing memory access and computation
to proceed simultaneously, resource waste is minimized and overhead is reduced. The data
prefetching algorithm dynamically reads the layer data from the DRAM during computa-
tion and stores it in the hardware scheduler memory, making real-time processing more
efficient and adaptable to varying workloads. The hardware scheduler computes three
important parameters: the memory size of the layer Mg;,,, the time to read that memory
of the layer Ty¢,q, and the time to compute a deep-learning model Cypy before a context
switching. The system prevents the NPU from idling while waiting for memory access by
pre-processing the process of importing layers from the deep-learning model when the
next application runs. Specifically, the algorithm calculates the memory size to be imported
from the DRAM by calculating the read time T,.,q and the memory size Mgj,e. In the
hardware scheduler, if Mpext has less memory for a layer to be imported from the DRAM
than the available memory My,,, then that layer is prefetched to the hardware scheduler
to reduce memory access time. Here, Mpram(Inext) is a function used to calculate the
memory size Mgjze Of layer Inext. If the hardware scheduler has enough memory to store
the layer, the algorithm continues prefetching the layer data while the layer operation of
the previous application is in progress. The scheduler dynamically manages the balance
between prefetching and computation to ensure that the NPU is not idle. In addition, to
ensure accurate layer prefetching time, Tyeaq is continuously updated to check if prefetching
is still possible. When time or memory constraints make prefetching impossible, the system
interrupts the process and stores several operational states, such as the computational
cycle of the current layer. This process allows us to seamlessly resume work from the
saved state when the next context switching occurs, ensuring multiple applications can
effectively manage resources. For example, Crpu(A;) represents the NPU computational
cycle required by an application, and Tcompute(A,-) is a function that calculates the total
NPU computational cycles for that application. These variables determine the number of
layers to be stored in the hardware scheduler from the deep-learning model of the following
application, allowing flexible handling of multiple applications with less overhead. This
layered optimization minimizes unnecessary delays, enhancing multitasking efficiency in
dynamic environments. Even in cases of frequent context switching, the idle time of NPU
resources is minimized.

3. Results

First, scheduling was repeated from Alexnet to Resnet-50, NCF, Yolo-tiny, and DLRM
to run with context switching until all models were complete. We set the hardware sched-
uler’s memory to 1 MB.

3.1. Memory Access Cycles Under Different Burst Sizes and SA Counts

This section compares and analyzes the total memory cycles before and after applying
the hardware scheduler. The experiments were conducted by changing the values of
parameters such as burst size (64 bytes and 128 bytes) and the maximum available SA. The
evaluation model used five deep-learning models: AlexNet, ResNet-50, NCF, Yolo-tiny,
and DLRM.

3.1.1. Effect of the Hardware Scheduler by Changing Burst Size

Figure 5 presents the experimental outcomes obtained by configuring the burst size to
64 and 128 bytes. When applying the hardware scheduler, memory cycles were significantly
reduced when the burst size was 64 and 128 bytes.

Sensors 2024, 24, 8012

9 of 14

300000
> I 64 byte without hw-scheduler
o I 64 byte with hw-scheduler
£ 250000+ I 128 byte without hw-scheduler
GE’ B 128 byte with hw-scheduler
ie)
» 200000
(3]
>
o
2 150000
°
@®
o)
—
[P
© 100000+
[0)
©
=
[5)
© 50000
[}
=

Alexnet Resnet-50 Tiny-yolo DLRM

Figure 5. Comparison before and after the hardware scheduler when the burst size was changed.

The total memory cycle of AlexNet decreased by about 12.63% when the burst size
was 64 bytes, as shown in Table 4. ResNet-50, NCF, and Yolo-tiny also showed reductions
of 14.24%, 36.38%, and 17.07%, respectively. DLRM showed a 76.82% decrease due to the
hardware scheduler as most memory accesses were performed within the computational
time of previous applications, and most of the memory accesses were performed within
the computational time of prior applications.

Table 4. Memory cycle reduction (burst size: 64 bytes) with a hardware scheduler.

Model 1-Before 2-After Reduction (%)
Alexnet 253,764.0000 221,712.0000 12.63%
Resnet-50 73,282.0000 62,847.0000 14.24%
NCF 93,940.0000 59,763.0000 36.38%
Yolo-tiny 25,996.0000 21,558.0000 17.07%
DLRM 18,656.0000 4324.0000 76.82%

According to Table 5, when the burst size was 128 bytes, applying the hardware
scheduler resulted in a 13.96% reduction in the memory cycles of AlexNet. At the same
time, ResNet-50 saw a reduction of 15.48%, NCF saw 36.46%, Yolo-tiny saw 15.95%, and
DLRM saw 83.28%. In both cases, hardware schedulers were used to significantly reduce
the memory cycle, and the effectiveness of the hardware scheduler was significant even
when the burst size was changed. Therefore, applying NPU virtualization systems with
hardware schedulers to intelligent multi-sensor systems enables faster and more efficient
complex data processing.

Table 5. Memory cycle reduction (burst size: 128 bytes) with a hardware scheduler.

Model 1-Before 2-After Reduction (%)
Alexnet 239,652.0000 206,201.0000 13.96%
Resnet-50 71,220.0000 60,198.0000 15.48%
NCF 91,020.0000 57,837.0000 36.46%
Yolo-tiny 24,046.0000 20,211.0000 15.95%

DLRM 16,521.0000 2762.0000 83.28%

Sensors 2024, 24, 8012

10 of 14

3.1.2. Effect of Hardware Scheduler by Changing a Limited Number of SA Resources

Next, experiments were conducted by limiting the number of available SA resources.
Figure 6 and Tables 6-8 show the changes in memory cycles for reading layers when
the number of SA resources was 30,000, 40,000, and 50,000, respectively, for each model
before and after applying the hardware scheduler. Figure 7 illustrates the differences in
memory cycles by subtracting the memory cycles after applying the hardware scheduler
from those before its application. First, for 30,000, Alexnet, Resnet-50, NCF, Yolo-tiny, and
DLRM showed reductions of 12.63%, 14.24%, 36.38%, 17.07%, and 76.82%, respectively,
before and after the hardware scheduler was applied. For 40,000, Alexnet, Resnet-50, NCF,
Yolo-tiny, and DLRM showed reductions of 8.33%, 11.92%, 33.19%, 11.31%, and 73.22%,
respectively. Next, for 50,000, Alexnet, Resnet-50, NCF, Yolo-tiny, and DLRM showed
reductions of 3.16%, 8.14%, 30.86%, 9.77%, and 71.7%, respectively. As shown in Figure 7,
the effectiveness of the hardware scheduler was noticeable with a smaller limited number
of SA resources, with each deep-learning model showing a reduction of almost over 12% or
more when the limited number of SA was 30,000. For DLRM models with less memory
access time than other deep-learning models, the memory access time was reduced by more
than 70% in all cases. The DLRM model has relatively low memory requirements, and the
hardware scheduler was able to prefetch a significant amount of data needed during the
computational time of the previous model in the hardware scheduler’s on-chip memory.

The impact of the scheduler was more evident with a smaller number of SA available
at 30,000, but performance improvements were still observed with an increase to 50,000.
This allows for more efficient context switching in the frequent context switching with NPU
virtualization. In conclusion, we show that NPU virtualization systems with a hardware
scheduler can use limited resources more efficiently to minimize memory access time and
handle layers from multiple deep-learning models faster. As a result, NCF and DLRM
models have seen the most significant reduction in latency through the scheduler, and the
scheduler’s ability to prefetch data and reduce memory overhead is highly effective during
frequent context switching.

300000

I 30k SAs limit without hw-scheduler
I 30k SAs limit with hw-scheduler
250000+ I 40k SAs limit without hw-scheduler
I 40k SAs limit with hw-scheduler
I 50k SAs limit without hw-scheduler
I 50k SAs limit with hw-scheduler

200000+

150000+

100000+

0' mllllmllmmu,:

Alexnet Resnet-50 Tiny-yolo DLRM

Total cycle of reading layers to memory

Figure 6. Comparison before and after hardware scheduler application when the number of available
SA changed.

Sensors 2024, 24, 8012 110f 14

ko

=}

© 40000

=

8 —e— Alexnet
+ 35000 ~ +— Resnet-50
3 —e— NCF
c »— Tiny-yolo
£ 30000 - *— DLRM
=

@

< 25000 -

=3

o 20000

[}

2

O 15000 ~ o

P

£

$ 10000

£ \

C

9 5000 - o ®

5 i :

@ 0 T T T

= 30k 40k 50k

(@]

SA limit
Figure 7. Difference in memory cycles with and without a hardware scheduler.

Table 6. Memory cycle reduction with hardware scheduler for SA limits (30,000 SA).

Model 30,000 SA Before 30,000 SA After Reduction (%)
Alexnet 253,764.0000 221,712.0000 12.63%
Resnet-50 73,282.0000 62,847.0000 14.24%
NCF 93,940.0000 59,763.0000 36.38%
Yolo-tiny 25,996.0000 21,558.0000 17.07%
DLRM 18,656.0000 4324.0000 76.82%

Table 7. Memory cycle reduction with hardware scheduler for SA limits (40,000 SA).

Model 40,000 SA Before 40,000 SA After Reduction (%)
Alexnet 195,700.0000 179,400.0000 8.33%
Resnet-50 40,473.0000 35,650.0000 11.92%
NCF 86,524.0000 57,811.0000 33.19%
Yolo-tiny 22,326.0000 19,802.0000 11.31%
DLRM 14,254.0000 3816.0000 73.22%

Table 8. Memory cycle reduction with hardware scheduler for SA limits (50,000 SA).

Model 50,000 SA Before 50,000 SA After Reduction (%)
Alexnet 145,632.0000 141,027.0000 3.16%
Resnet-50 27,889.0000 25,620.0000 8.14%
NCF 82,242.0000 56,864.0000 30.86%
Yolo-tiny 19,124.0000 17,256.0000 9.77%
DLRM 11,412.0000 3224.0000 71.7%

4. Conclusions

In this study, we optimized NPU resource allocation in intelligent multi-sensor sys-
tems and significantly reduced memory access overhead through hardware-assisted NPU

Sensors 2024, 24, 8012

12 of 14

virtualization. Additionally, we reduced the memory stall time through using a prefetching
algorithm via the hardware scheduler, allowing each application to efficiently process
deep-learning model layers. The prefetching algorithm minimized idle NPU resource states
by preloading the deep-learning model layers running continuously in the DRAM into the
hardware scheduler. It also significantly improved the multitasking processing speed and
performance. When the memory space was limited, the DLRM and NCF models signifi-
cantly reduced memory access overhead when compared to other deep-learning models.
This was because the computation time of the previous deep-learning model before context
switching was sufficient, and the memory size of each layer in DLRM and NCF was smaller
compared with other models. The DLRM model, in particular, had relatively small layer
sizes compared with the different deep-learning models in the experiment. This allowed
most of the necessary layer data to be preloaded from DRAM into the hardware scheduler
during the previous task’s computation time. As a result, with 30,000 SA resources, memory
access cycles were reduced by up to 76%. The NCF model also showed a reduction of
over 30% in memory cycles in each case. Moreover, when we limited the SA resources
to 30,000, AlexNet decreased by 12%, ResNet-50 by 14%, and YOLO-tiny by 17%. These
results demonstrate that hardware-based virtualization processes deep-learning models
significantly faster than traditional software-based virtualization systems, achieving perfor-
mance improvements of over 10% across various deep-learning models. The DNN models
tested in this study—AlexNet, ResNet-50, YOLO-tiny, DLRM, and NCF—were selected for
their suitability in specific application domains. AlexNet is well suited for the lightweight
image classification tasks often required in resource-constrained edge environments and
wearable devices thanks to its relatively small model size that enables efficient operation
in such scenarios. ResNet-50 excels at extracting fine-grained details from high-resolution
images, making it ideal for applications such as medical imaging and precision surveil-
lance. YOLO-tiny provides real-time object detection capabilities, making it particularly
valuable in dynamic environments like autonomous driving and security systems that
require low-latency processing. DLRM is optimized for handling large-scale datasets in
applications such as social networks and recommendation systems, offering low memory
requirements and high processing efficiency. NCF is well suited for modeling relationships
between users and items, making it highly effective in personalized recommendation sys-
tems. These models were used to validate the versatility and efficiency of the hardware
scheduler in supporting various applications, demonstrating exceptional performance in
their respective application scenarios. This approach demonstrates the potential for broader
adoption in resource-constrained environments requiring real-time and efficient multi-task
processing. While existing studies have mainly proposed new scheduling methods based
on software, this study introduced hardware schedulers to validate significant performance
improvements. The hardware scheduler minimized memory access overhead in multi-
tenant environments, optimizing resource allocation when loading layer data into the NPU.
The effectiveness of the hardware scheduler became more prominent with fewer resources
and more frequent context switching. Modern lightweight or on-device Al systems often
need to simultaneously execute diverse applications with limited resources, although the
benefits of the hardware scheduler may be limited in environments with minimal app
transitions [27-29]. In such cases, the hardware scheduler is expected to achieve significant
results. Furthermore, this approach is particularly beneficial in specific applications such
as medical research, security, and surveillance. For instance, in medical research, wearable
or implantable medical devices can handle complex and diverse data streams with fast
transitions and processing while reducing latency in real-time biosensing and diagnostics.
In security and surveillance systems, the proposed method accelerates the processing
of multiple camera feeds and sensor data, contributing to improved real-time detection
capabilities. This approach also reduces power consumption and ensures more efficient
use of resources by utilizing a single NPU to simultaneously run multiple applications. Ad-
ditionally, this method facilitates faster and more cost-effective data processing in real-time
multi-tenant environments, enhancing the practicality and applicability of this approach.

Sensors 2024, 24, 8012 13 of 14

Author Contributions: Conceptualization, software, and validation, J.-H.]J.; methodology and super-
vision, D.-S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Artificial Intelligence Semiconductor SW Integrated Platform Technology Development Project pro-
gram (1711195792), which was supervised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The deep-learning model data used in this study can be found at the
following URL https:/ /github.com/casys-kaist/mNPUsim (accessed on 14 December 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Sun, T.; Feng, B.; Huo, |.; Xiao, Y,; Wang, W.; Peng, |.; Li, Z.; Du, C.; Wang, W.; Zou, G.; et al. Artificial Intelligence Meets Flexible
Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Lett. 2024,
16, 14. [CrossRef] [PubMed]

Javaid, M.; Haleem, A_; Rab, S.; Singh, R.P.; Suman, R. Sensors for Daily Life: A Review. Sens. Int. 2021, 2, 100121. [CrossRef]
Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access
2019, 7, 133190-133202. [CrossRef]

Méndez Gémez, J. Efficient Sensor Fusion of LIDAR and Radar for Autonomous Vehicles. Ph.D. Thesis, Universidad de Granada,
Granada, Spain, 2022

Qureshi, S.A.; Hsiao, WW.-W.; Hussain, L.; Aman, H.; Le, T.-N.; Rafique, M. Recent development of fluorescent nanodiamonds
for optical biosensing and disease diagnosis. Biosensors 2022, 12, 1181. [CrossRef]

Kadian, S.; Kumari, P; Shukla, S.; Narayan, R. Recent advancements in machine learning enabled portable and wearable
biosensors. Talanta Open 2023, 8, 100267. [CrossRef]

Flynn, C.D.; Chang, D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics 2024, 14,
1100. [CrossRef]

Samsung Electronics. Samsung Electronics Introduces A High-Speed, Low-Power NPU Solution for Al Deep Learning. Sam-
sung Semiconductor. Available online: https://semiconductor.samsung.com/news-events/tech-blog/samsung-electronics-
introduces-a-high-speed-low-power-npu-solution-for-ai-deep-learning/ (accessed on 22 September 2024).

Xue, Y,; Liu, Y.; Nai, L.; Huang, J. V10: Hardware-Assisted NPU Multi-tenancy for Improved Resource Utilization and Fairness.
In Proceedings of the 50th Annual International Symposium on Computer Architecture, Orlando, FL, USA, 17-21 June 2023;
pp- 1-15.

Xue, Y; Liu, Y,; Huang, J. System Virtualization for Neural Processing Units. In Proceedings of the 19th Workshop on Hot Topics
in Operating Systems, Providence, RI, USA, 22-24 June 2023; pp. 80-86.

Xue, Y; Liu, Y.; Nai, L.; Huang,]. Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms. arXiv 2024,
arXiv:2408.04104.

Yoo, H.J. Deep learning processors for on-device intelligence. In Proceedings of the 2020 on Great Lakes Symposium on VLSI,
Virtual Event, China, 7-9 September 2020; pp. 1-8.

Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [CrossRef]
Yu, H.; Peters, A.M.; Akshintala, A.; Rossbach, C.J. AvA: Accelerated virtualization of accelerators. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems Lausanne,
Switzerland, 16-20 March 2020; pp. 807-825.

Jouppi, N.; Kurian, G.; Li, S.; Ma, P.; Nagarajan, R.; Nai, L.; Patil, N.; Subramanian, S.; Swing, A.; Towles, B.; et al. Tpu v4: An
optically reconfigurable supercomputer for machine learning with hardware support for embeddings. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, Orlando, FL, USA, 17-21 June 2023; pp. 1-14.

Milovanovic, I.Z.; Tokic, T.I.; Milovanovic, E.L; Stojcev, M.K. Determining the number of processing elements in systolic arrays.
Facta Univ. Ser. Math. Inform. 2000, 15, 123-132.

Chen, Y.X.; Ruan, S.J. A throughput-optimized channel-oriented processing element array for convolutional neural networks.
IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 752-756. [CrossRef]

Avissar, O.; Barua, R.; Stewart, D. An optimal memory allocation scheme for scratch-pad-based embedded systems. ACM Trans.
Embed. Comput. Syst. (TECS) 2002, 1, 6-26. [CrossRef]

Hwang, S.; Lee, S.; Kim, J.; Kim, H.; Huh,]. mnpusim: Evaluating the effect of sharing resources in multi-core npus. In Proceedings
of the 2023 IEEE International Symposium on Workload Characterization (IISWC), Ghent, Belgium, 1-3 October 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 167-179.

https://github.com/casys-kaist/mNPUsim
http://doi.org/10.1007/s40820-023-01235-x
http://www.ncbi.nlm.nih.gov/pubmed/37955844
http://dx.doi.org/10.1016/j.sintl.2021.100121
http://dx.doi.org/10.1109/ACCESS.2019.2940729
http://dx.doi.org/10.3390/bios12121181
http://dx.doi.org/10.1016/j.talo.2023.100267
http://dx.doi.org/10.3390/diagnostics14111100
https://semiconductor.samsung.com/news-events/tech-blog/samsung-electronics-introduces-a-high-speed-low-power-npu-solution-for-ai-deep-learning/
https://semiconductor.samsung.com/news-events/tech-blog/samsung-electronics-introduces-a-high-speed-low-power-npu-solution-for-ai-deep-learning/
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.1109/TCSII.2020.3017789
http://dx.doi.org/10.1145/581888.581891

Sensors 2024, 24, 8012 14 of 14

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kao, S.C.; Kwon, H.; Pellauer, M.; Parashar, A.; Krishna, T. A Formalism of DNN Accelerator Flexibility. Proc. ACM Meas. Anal.
Comput. Syst. 2022, 6, 1-23. [CrossRef]

Lozano, S.; Lugo, T.; Carretero,]. A Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems. IEEE Access
2023, 11, 36244-36263. [CrossRef]

Paolino, M.; Pinneterre, S.; Raho, D. FPGA virtualization with accelerators overcommitment for network function virtualization.
In Proceedings of the 2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,
4-6 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1-6.

Doddamani, S.; Sinha, P.; Lu, H.; Cheng, TH.K ; Bagdi, H.H.; Gopalan, K. Fast and live hypervisor replacement. In Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Providence, RI, USA, 13-14
April 2019; pp. 45-58.

Patel, A.; Daftedar, M.; Shalan, M.; El-Kharashi, M.W. Embedded hypervisor xvisor: A comparative analysis. In Proceedings of
the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Turku, Finland, 4-5
March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 682-691.

Dummler, J.; Kunis, R.; ; Runger, G. Layer-based scheduling algorithms for multiprocessor-tasks with precedence constraints. In
Proceedings of the International Conference on Parallel Computing: Architectures, Algorithms and Applications (ParCo 2007), Advances in
Parallel Computing; 10S Press: Amsterdam, The Netherlands, 2007; Volume 5, pp. 321-328

Jiang, W.; Liu, P; Jin, H.; Peng, J. An Efficient Data Prefetch Strategy for Deep Learning Based on Non-volatile Memory. In
Green, Pervasive, and Cloud Computing: 15th International Conference, GPC 2020, Xi'an, China, 13-15 November 2020; Proceedings 15;
Springer International Publishing: Cham, Switzerland, 2020; pp. 101-114.

Aivaliotis, V.; Tsantikidou, K.; Sklavos, N. IoT-based multi-sensor healthcare architectures and a lightweight-based privacy
scheme. Sensors 2022, 22, 4269. [CrossRef]

El-Hajj, M.; Mousawi, H.; Fadlallah, A. Analysis of lightweight cryptographic algorithms on iot hardware platform. Future
Internet 2023, 15, 54. [CrossRef]

Kim, K,; Jang, S.J.; Park,]J.; Lee, E.; Lee, S.S. Lightweight and energy-efficient deep learning accelerator for real-time object
detection on edge devices. Sensors 2023, 23, 1185. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3530907
http://dx.doi.org/10.1109/ACCESS.2023.3264825
http://dx.doi.org/10.3390/s22114269
http://dx.doi.org/10.3390/fi15020054
http://dx.doi.org/10.3390/s23031185
http://www.ncbi.nlm.nih.gov/pubmed/36772225

	Introduction
	Simulation Environment and Methodology
	NPU Virtualization Operation Flow
	Experimental Setup
	Neural Processing Unit (NPU) Architecture
	SPM and DRAM Configuration
	Deep-Learning Models Used

	NPU Virtualization System
	Hypervisor Design and Implementation
	Data Prefetching Algorithms via Hardware Scheduler

	Results
	Memory Access Cycles Under Different Burst Sizes and SA Counts
	Effect of the Hardware Scheduler by Changing Burst Size
	Effect of Hardware Scheduler by Changing a Limited Number of SA Resources

	Conclusions
	References

