A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film
<p>Illustrations of (<b>a</b>) graft polymer conformations, (<b>b</b>) grafted PANI chains, and (<b>c</b>) the diffusion of ammonia molecules within the PANI graft chains.</p> "> Figure 2
<p>Three-layered structure of the flexible polyaniline graft film sensor.</p> "> Figure 3
<p>Illustration of PANI graft film sensor preparation: (<b>a</b>) polyaniline graft film; (<b>b</b>) sensor structure.</p> "> Figure 4
<p>SEM images of the surfaces of (<b>a</b>) PET film, (<b>b</b>) PD-coated PET film, (<b>c</b>) PANI grafted on PET film, and (<b>d</b>) cross-section of PANI grafted film.</p> "> Figure 5
<p>The characteristics of the PANI graft film sensor: (<b>a</b>) response–recovery curves to 250 ppm of NH<sub>3</sub> measured at 30 °C and 50 °C, (<b>b</b>) response–recovery curve to 50–250 ppm NH<sub>3</sub> at 50 °C, (<b>c</b>) calibration curve measured at 50 °C, and (<b>d</b>) comparison of response–recovery curves of sensors with different PANI forms.</p> "> Figure 6
<p>Illustration showing how the sensor is bent into shape.</p> "> Figure 7
<p>Effects of the bending angle on the response recovery curves of the PANI grafted film sensor to 250 ppm NH<sub>3</sub> at 50 °C: (<b>a</b>) sensor bent 60° outward; (<b>b</b>) sensor bent 60° inward.</p> ">
Abstract
:1. Introduction
2. PANI Graft Polymers
3. Materials and Methods
3.1. Materials
3.2. Preparation of PANI Grafted on PET Film
3.3. Characterization of PANI Graft Film
3.4. NH3 Gas-Sensing Measurement
4. Results and Discussion
4.1. Morphological Characterization of the PANI Graft Film
4.2. Ammonia Gas-Sensing Response
4.3. Mechanical Stability of PANI Graft Film Sensor
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klerke, A.; Christensen, C.H.; Norskov, J.K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310. [Google Scholar] [CrossRef]
- Itoh, N.; Oshima, A.; Suga, E.; Sato, T. Kinetic enhancement of ammonia decomposition as a chemical hydrogen carrier in palladium membrane reactor. Catal. Today 2014, 236, 70–76. [Google Scholar] [CrossRef]
- Zhang, T.; Miyaoka, H.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides. ACS Appl. Energy Mater. 2018, 1, 232–242. [Google Scholar] [CrossRef]
- Matsunaga, T.; Matsumoto, S.; Tasaki, R.; Ogura, Y.; Eboshi, T.; Takeishi, Y.; Honda, K.; Sato, K.; Nagaoka, K. Oxidation of Ru/Ce0.5Zr0.5O2-X at ambient temperature as a trigger for carbon-free H2 production by ammonia oxidative decomposition. ACS Sustainable Chem. Eng. 2020, 8, 13369–13376. [Google Scholar] [CrossRef]
- Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients. Anal. Bioanal. Chem. 2017, 409, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, T.; Crowley, K.; Kelly, F.; Ward, F.; Holian, J.; Watson, A.; Killard, A.J. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors. Anal. Chem. 2013, 85, 12158–12165. [Google Scholar] [CrossRef] [PubMed]
- Natale, C.D.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Li, H.-Y.; Lee, C.-S.; Kim, D.H.; Lee, J.-H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 2018, 10, 27858–27867. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Fan, H.; Li, Z.; Jia, Y.; Yadav, A.K.; Dong, G.; Wang, W.; Dong, W.; Wang, S. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens. Actuators B 2021, 334, 129677. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Liu, M.; Chen, C.; Cui, J.; Chen, X.; Wu, K.; Sun, D. Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuators B 2021, 334, 129647. [Google Scholar] [CrossRef]
- Lv, D.; Shen, W.; Chen, W.; Tan, R.; Xu, L.; Song, W. PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature. Sens. Actuators B 2021, 328, 129085. [Google Scholar] [CrossRef]
- Kukla, A.L.; Shirshov, Y.M.; Piletsky, S.A. Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B 1996, 37, 135–140. [Google Scholar] [CrossRef]
- Dhawan, S.K.; Kumar, D.; Ram, M.K.; Chandra, S.; Trivedi, D.C. Application of conducting polyaniline as sensor material for ammonia. Sens. Actuators B 1997, 40, 99–103. [Google Scholar] [CrossRef]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Nanostrutured polyaniline sensors. Chem. Eur. J. 2004, 10, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Matsuguchi, M.; Io, J.; Sugiyama, G.; Sakai, Y. Effect of NH3 gas on electrical conductivity of polyaniline blend films. Synth. Met. 2002, 128, 15–19. [Google Scholar] [CrossRef]
- Korent, A.; Soderznik, K.Z.; Sturm, S.; Rozman, K.Z.; Redon, N.; Wojkiewicz, J.L.; Duc, D. Facile fabrication of an ammonia-gas sensor using electrochemically synthesized polyaniline on commercial screen-printed three-electrode systems. Sensors 2021, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Cai, Y.; Nie, X.; Xiong, J.; Wang, Y.; Song, H.; Li, Z.; Shen, Y.; Li, C. PSS-doped PANI nanoparticle/Ti3C2TX composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuators B 2023, 374, 132788. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, H.; Shi, Y.; Yu, X.; Lan, G. Preparation and gas sensing properties of PANI/SnO2 hybrid material. Polymers 2021, 13, 1360. [Google Scholar] [CrossRef]
- Jia, A.; Liu, B.; Liu, H.; Li, Q.; Yun, Y. Interface Design of SnO2@PANI Nanotube with enhanced sensing performance for ammonia detection at room temperature. Front. Chem. 2020, 8, 383. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Jiang, Y.; Duan, Z.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sens. Actuators B 2020, 319, 128293. [Google Scholar] [CrossRef]
- Fan, G.; Chen, D.; Li, T.; Yi, S.; Ji, H.; Wang, Y.; Zhang, Z.; Shao, G.; Fan, B.; Wang, H.; et al. Enhanced room-temperature ammonia-sensing properties of polyaniline-modified WO3 nanoplates derived via ultrasonic spray process. Sens. Actuators B 2020, 312, 127892. [Google Scholar] [CrossRef]
- Li, S.; Diao, Y.; Yang, Z.; He, J.; Wang, J.; Liu, C.; Liu, F.; Lu, H.; Yan, X.; Sun, P.; et al. Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuators B 2018, 276, 526–533. [Google Scholar] [CrossRef]
- Liu, C.; Tai, H.; Zhang, P.; Yuan, Z.; Du, X.; Xie, G. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 2018, 261, 587–597. [Google Scholar] [CrossRef]
- Merian, T.; Redon, N.; Zujovic, Z.; Stanisaljev, D.; Wojkiewicz, J.L.; Gizdavic-Nikolaidis, M. Ultra sensitive ammonia sensors based on microwave synthesized nanofibrillar polyanilines. Sens. Actuators B 2014, 203, 626–634. [Google Scholar] [CrossRef]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y.; Tai, H. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B 2022, 369, 132302. [Google Scholar] [CrossRef]
- Yin, C.; Gao, L.; Zhou, F.; Duan, G. Facile synthesis of polyaniline nanotubes using self-assembly method based on the hydrogen bonding: Mechanism and application in gas sensing. Polymers 2017, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Synthesis of polyaniline nanotubes using Mn2O2 nanofibers as oxidant and their ammonia sensing properties. Synth. Metals 2011, 161, 56–61. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Wu, S.; Wei, F.; Hu, Y.; Xu, X.; Zhang, L. Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sens. Actuators B 2020, 323, 128689. [Google Scholar] [CrossRef]
- Wojkiewicz, J.L.; Bliznyuk, V.N.; Carquigny, S.; Elkamchi, N.; Redon, N.; Lasri, T.; Pud, A.A.; Reynaud, S. Nanostructured polyaniline-based composite for ppb range ammonia sensing. Sens. Actuators B 2011, 160, 1394–1403. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Z.; Chang, J.; Wan, P.; Huang, J.; Feng, L. Design and preparation of hollow NiO sphere-polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuators B 2021, 344, 130179. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Yang, Z.; He, J.; Wang, J.; Zhao, L.; Lu, H.; Tian, T.; Liu, F.; Sun, P.; et al. Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sens. Actuators B 2018, 273, 726–734. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Nakamae, T.; Fujisada, R.; Shiba, S. A highly sensitive ammonia gas sensor using micrometer-sized core-shell-type spherical polyaniline particles. Sensors 2021, 21, 7522. [Google Scholar] [CrossRef] [PubMed]
- Sutar, D.S.; Padma, N.; Aswal, D.K.; Deshpande, S.K.; Gupta, S.K.; Yakhmi, J.V. Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sens Actuators B 2007, 128, 286–292. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Li, J.; Yoon, S.J.; Hsieh, B.-Y.; Tai, W.; O’Donnell, M.; Gao, X. Stably doped conducting polymer nanoshells by surface initiated polymerization. Nano Lett. 2015, 15, 8217–8222. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H.; Kennard, O.; Watson, O.G. Tables of bond lengths determined by X-Ray and neutron diffraction. Part I. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. II 1987, 12, S1–S19. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Asahi, T. Properties and stability of polyaniline nanofiber ammonia sensors fabricated by novel on-substrate method. Sens. Actuators B 2011, 160, 999–1004. [Google Scholar] [CrossRef]
- Wang, H.; Nie, S.; Li, H.; Ali, R.; Fu, J.; Xiong, H.; Li, J.; Wu, Z.; Lau, W.-M.; Mahmood, N.; et al. 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 2019, 4, 2343–2350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xu, Y.; Zhou, T.; Liu, L.; Chen, Q.; Gao, B. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuators B 2022, 365, 131928. [Google Scholar] [CrossRef]
- YADAV, A.; Kumar, J.; Shahabuddin, M.D.; Agarwal, A.; Saini, P. Improved ammonia sensing by solution processed dodecyl benzene sulfonic acid doped polyaniline nanorod networks. IEEE Access 2019, 7, 139571–139579. [Google Scholar] [CrossRef]
- Chen, S.; Sun, G. High sensitivity ammonia sensor using a hierarchical polyaniline/poly(ethylene-co-glycidyl methacrylate) nanofibrous composite membrane. ACS Appl. Mater. Interfaces 2013, 5, 6473–6477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, G.; Chen, Y.; Liu, S.; Xu, J.; Jing, C.; Zhang, J.; Yang, J.; Cheng, Y.; Chu, J. Dynamic liquid phase deposition of doped nanostructured PANI tube sensor, for trace-level NH3 gas detection. Sens. Actuators B 2020, 305, 127–459. [Google Scholar] [CrossRef]
Structure | Dopant | CNH3/ppm | T/°C | S/- | t80/min | Re/% |
---|---|---|---|---|---|---|
Graft | H2SO4 | 250 | 50 | 35 | 11 | 90 |
Nanofiber | HCl | 500 | 50 | 23 | 9 | 89 |
Microsphere | H2SO4 | 250 | 30 | 179 | 19 | 92 |
Granule | H2SO4 | 250 | 50 | 6 | 15 | 85 |
Material | Structure | CNH3/ppm | T/°C | Humidity/%RH | S 1/- | Ref. |
---|---|---|---|---|---|---|
PANI | Graft | 100 | 50 | dry | 20 | This work |
PANI | Film | 40 | 20 ± 3 | 30 | 4.2 | [43] |
PANI | Nanorod | 50 | 27 | 50 | 1.2 | [44] |
PANI | Nanotube | 50 | 25 | 40 | 27 | [27] |
PANI/(PE-co-GMA) | Nanofiber | 25 | 26 ± 1 | 25 ± 3 | 25 | [45] |
PVDF@PANI | Core–shell | 10 | 25 | 50 | 2 | [31] |
In2O3@PANI | Core–shell | 100 | 20 | 50 | 45 | [23] |
GO/PANI | Hollow Rambutan | 100 | 20 | 25 | 31 | [33] |
WO3@PANI | Nanoplate | 100 | 25 | 40 | 33 | [22] |
PANI/TiO2 | Tube | 100 | R.T. | dry | 16 | [46] |
PANI/cellulose | Nanofiber | 10 | R.T. | 45 | 5 | [30] |
PANI:PSS/Ti3C2TX | Nanoplate | 10 | 24 | 20 | 3.9 | [18] |
PANI/HNTs | Nanotube | 50 | 25 | 50 | 2.6 | [26] |
Bending Angle | log (R0/Ω) | Normalized S Value/% | t80/min | Re/% | |
---|---|---|---|---|---|
Sensor 1 | 0 | 4.7 | 100 | 11 | 81 |
−60 | 5.4 | 74 | 13 | 84 | |
Sensor 2 | 0 | 4.8 | 100 | 9 | 92 |
+60 | 5.4 | 91 | 9 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuguchi, M.; Horio, K.; Uchida, A.; Kakunaka, R.; Shiba, S. A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film. Sensors 2024, 24, 3695. https://doi.org/10.3390/s24113695
Matsuguchi M, Horio K, Uchida A, Kakunaka R, Shiba S. A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film. Sensors. 2024; 24(11):3695. https://doi.org/10.3390/s24113695
Chicago/Turabian StyleMatsuguchi, Masanobu, Kaito Horio, Atsuya Uchida, Rui Kakunaka, and Shunsuke Shiba. 2024. "A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film" Sensors 24, no. 11: 3695. https://doi.org/10.3390/s24113695
APA StyleMatsuguchi, M., Horio, K., Uchida, A., Kakunaka, R., & Shiba, S. (2024). A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film. Sensors, 24(11), 3695. https://doi.org/10.3390/s24113695