
Citation: Meng, Y.; Jiang, H.; Duan,

N.; Wen, H. Real-Time Hand Gesture

Monitoring Model Based on

MediaPipe’s Registerable System.

Sensors 2024, 24, 6262. https://

doi.org/10.3390/s24196262

Academic Editor: Stefanos Kollias

Received: 13 August 2024

Revised: 24 September 2024

Accepted: 25 September 2024

Published: 27 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Hand Gesture Monitoring Model Based on
MediaPipe’s Registerable System
Yuting Meng 1,*, Haibo Jiang 2, Nengquan Duan 1 and Haijun Wen 1,*

1 College of Mechanical Engineering, North University of China, Taiyuan 030051, China; duannq@nuc.edu.cn
2 SIMITECH Co., Xi’an 710086, China; mr.boj@outlook.com
* Correspondence: nataliaboolean@163.com (Y.M.); whjnuc@126.com (H.W.)

Abstract: Hand gesture recognition plays a significant role in human-to-human and human-to-
machine interactions. Currently, most hand gesture detection methods rely on fixed hand gesture
recognition. However, with the diversity and variability of hand gestures in daily life, this paper
proposes a registerable hand gesture recognition approach based on Triple Loss. By learning the
differences between different hand gestures, it can cluster them and identify newly added gestures.
This paper constructs a registerable gesture dataset (RGDS) for training registerable hand gesture
recognition models. Additionally, it proposes a normalization method for transforming hand gesture
data and a FingerComb block for combining and extracting hand gesture data to enhance features
and accelerate model convergence. It also improves ResNet and introduces FingerNet for registerable
single-hand gesture recognition. The proposed model performs well on the RGDS dataset. The
system is registerable, allowing users to flexibly register their own hand gestures for personalized
gesture recognition.

Keywords: machine learning; real-time monitoring; gesture recognition; Triple Loss

1. Introduction

In daily life, gestures provide an efficient means of communication and play a signif-
icant role in interpersonal interactions [1]. With the advancement of technology and the
development of human–computer interactions, gesture recognition has gradually gained
attention as a natural and intuitive way of interacting [2]. Gesture recognition refers to
the analysis and identification of human hand movements and postures by computers,
enabling natural interactions between humans and machines. It is a vital research area in
the fields of human–computer interaction and computer vision [3], with a wide range of
potential applications, such as virtual reality, smart homes, security monitoring, handwrit-
ing recognition, medical image analysis, and more. Gesture recognition technologies can
be classified into two main categories: sensor-based gesture recognition and image-based
gesture recognition [4].

In the early stages, gesture recognition heavily relies on sensor-based methods due
to immature hardware and algorithms. Data gloves or electromagnetic waves are com-
monly used to capture hand movements. For instance, IBM introduced a device called
“DataGlove” [5], which monitored hand movements in real-time and transmitted them to
computers. While this approach often provided more accurate results, the need to wear
sensor devices limited its widespread adoption in everyday applications.

In recent years, with the rapid development of computer vision technology, the use
of visuals in the industry is becoming increasingly widespread [6–8]. The methods for
recognizing target movements and postures through image or video analysis are becoming
more mature. Compared to traditional methods, image-based gesture recognition does
not require additional wearable devices, making the recognition process more natural
and gradually becoming mainstream technology [9]. In 2002, a research team at the

Sensors 2024, 24, 6262. https://doi.org/10.3390/s24196262 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24196262
https://doi.org/10.3390/s24196262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24196262
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196262?type=check_update&version=1

Sensors 2024, 24, 6262 2 of 16

Massachusetts Institute of Technology (MIT) proposed a vision-based gesture recognition
system that used infrared cameras to capture hand movements and employed computer
vision techniques for gesture recognition [10]. Subsequently, products such as the Microsoft
Kinect sensor and Leap Motion gesture recognizer have made gesture recognition more
accessible to the general public [11]. This approach does not require extra equipment and
can easily integrate with computers and mobile devices, making it increasingly popular.

Gesture recognition techniques include hand pose representation, feature extraction,
and classification algorithms [12]. Hand pose representation methods are typically based
on key points, skeletal data, or depth images. Feature extraction methods can utilize shape,
texture, or motion-related features of gestures. Classification algorithms may involve
traditional machine learning techniques such as SVM (Support Vector Machine) or Random
Forests, as well as deep learning algorithms like CNN (Convolutional Neural Networks) or
RNN (Recurrent Neural Network) [13].

Image-based gesture recognition can be further classified into two categories: static
gesture recognition and dynamic gesture recognition [14,15]. Dynamic gestures refer to
gesture sequences over time and space, where hand shape and position change with time.
It emphasizes the process of gesture changes. On the other hand, static gestures refer to the
posture of the hand at a specific moment, mainly including hand shape, texture, orientation,
and relative spatial positions. As static gestures represent a certain state in the process of
dynamic gestures, they form the core of gesture recognition. Thus, this paper focuses on
exploring static gesture recognition.

Existing methods for static gesture recognition mainly involve custom modeling
through traditional approaches and feature extraction and recognition through deep learn-
ing methods [16]. Currently, available deep learning models have enhanced the perfor-
mance of gesture recognition to a certain extent. However, adding a new gesture requires
retraining the existing models, and each new gesture demands a substantial amount of
data for support. Current methods treat each gesture as a separate class, similar to dis-
tinguishing between apples and cats. However, in reality, each gesture falls under the
broader category of “hand”, and they share many common characteristics. Therefore, we
propose using neural networks to train a classifier for the “hand” category, learning the
differences between various gestures, and when encountering a new gesture, the network
can recognize and classify it accordingly. By inputting a diverse set of gestures into the
neural network, we enabled the model to discern the commonalities and essence of different
gestures and learn the distinctions between various and similar gestures. Ultimately, this
approach achieves the recognition of new gestures, completing a register-based gesture
recognition system.

2. Related Work

There are many existing datasets for sign language recognition tasks. In this section, we
first review some existing sign language datasets. Athitsos et al. [17] proposed an American
sign language dataset called ASLLVD, consisting of 9800 video samples containing 3300 sign
language words. Sincan and Keles proposed a Türkiye sign language dataset called
AUTSL, which contained 38,336 video samples, including 226 sign languages performed by
43 different sign language speakers. These videos were recorded in both indoor and outdoor
environments. This dataset has color, depth, and skeleton modes. Necati [18] proposed
RWTH-PHOENIX-WEATHER-2014T, a German sign language dataset for continuous sign
language recognition, which was based on weather forecast videos broadcasted by nine
sign language hosts. The training set, validation set, and test set of the dataset contain
7096, 519, and 642 data samples, respectively. The CSL-Daily [19] dataset 3 can be used
for continuous sign language recognition and translation tasks. CSL-Daily focuses more
on daily life scenarios, including multiple themes such as family life, healthcare, and
school life. The training, validation, and testing sets of CSL-Daily contain 18,401, 1077, and
1176 video samples, respectively. These datasets have their own focuses, but they still vary
from the different posture situations of the same gesture that this article wants to solve.

Sensors 2024, 24, 6262 3 of 16

Therefore, in subsequent work, this article has created a small gesture dataset RGDS to
supplement the existing gesture dataset with fewer training samples for different postures
of the same gesture.

Generally speaking, constructing gesture recognition and classification models is the
main stage of gesture recognition technology. By extracting the spatiotemporal features
of gestures and classifying them, the existing technologies can mainly be divided into
two categories: traditional methods and deep learning. Most traditional methods use
pre-defined templates or sequence similarity matchingschemes. Among them, traditional
methods such as He Li et al. [14] used the maximum likelihood criterion Hausdorff distance
for recognition [15], and used a multi-resolution search strategy to improve the search speed
while also recognizing letter gestures as well. However, the recognition effect is not good
for gestures that undergo deformation (rotation and scaling). Zhang Liangguo et al. [20]
sed the Hausdorff distance template matching method to compare the contour feature
points of gesture areas and successfully completed the recognition of 30 Chinese sign
language gestures; Yang Xuewen et al. [21] overcame the shortcomings of existing gesture
recognition algorithms in handling gestures such as scaling, translation, and rotation,
using a method that combines gesture main direction and class Hausdorff distance. Zhu
Jiyu et al. [22] used a gesture recognition method based on structural analysis to obtain
the overall and local change information of gestures, increasing the types of recognizable
gesture types. However, these traditional methods also have common drawbacks, such as
relatively complex calculation processes, high manpower consumption, and unsatisfactory
real-time performance.

Deep learning methods have now become the mainstream method for completing ges-
ture recognition work: experimental results from studies [23–29] have shown that gesture
recognition technology based on neural network training has the ability to improve the
accuracy of some meaningful gesture recognition work to over 95%. Xin Wenbin et al. [23]
used a static gesture real-time recognition method based on the ShuffleNetv2-YOLOv3
model, extracted features from gesture images using ShuffleNetv2, and then classified
gestures using the YOLOv3 neural network model, increasing the fps from 41 to 44. By
adopting the CBAM attention mechanism module, the model’s accuracy increased from
96.6% to 98.2%. Wu [25] adopted a novel recognition algorithm of a dual channel convolu-
tional neural network (DC-CNN) to simultaneously extract features from gesture images
and hand images, effectively improving the generalization ability of CNN, but the improve-
ment in accuracy was not very significant. At this point, people noticed the shortcomings
of single visual recognition in reading gestures. Songyao Jiang et al. [27] proposed indepen-
dent sign language recognition (SAM-SLR-v2), a skeleton-aware multimodal framework
with a global synthesis model. This pattern provides annotations for skeleton-based sign
language recognition, but the recognition performance was poor in cases of occlusion
or insignificant posture. Papadimitriou et al. [28] proposed a deep learning framework
3D-DCNN + ST-MGCN using appearance and skeletal information for automatic sign
language recognition without special input, which reduced the relative error rate of Greek
language recognition by 53%. However, this was only for the recognition of the entire arm
and did not show any improvement compared to single-finger or hand recognition.

It can be found in the literature that current deep learning gesture recognition work
has developed quite maturely. However, current image-based gesture recognition is based
on recognizing the projected image of the hand on the image screen. However, what we
generally consider gestures is based on the mutual combination of finger joints, i.e., the same
gesture forms different images on the image screen in different poses. Therefore, image-
based gesture recognition has limitations in recognizing the same gesture in different poses.
In response to the above issues, this method obtains the three-dimensional coordinates
of the finger’s joint points and identifies the features of the joint points, enabling users to
recognize the same gesture in different postures. Considering the classification of features
in gesture recognition models, we did not adopt the commonly used softmax classifier. We
found that Florian Schroff et al. [30] used Triple Loss to construct FaceNet, which directly

Sensors 2024, 24, 6262 4 of 16

learned the mapping from facial images to a compact Euclidean space, where distance
directly corresponded to the measure of facial similarity. The goal of Triple Loss is to make
the embeddings of samples with the same label as close as possible in the embedding space
and the embeddings of samples with different labels as far apart as possible. The Softmax
loss function is commonly used for multi-class classification tasks. It maps the output of the
network to a probability distribution such that the sum of probabilities for each category is
one. The objective of the Softmax loss function is to maximize the probability of the correct
category while minimizing the probability of the incorrect category. However, the Softmax
loss function may be troubled when dealing with large intra-class differences as it only
considers the differences between samples of the same category and ignores the differences
between different categories. In contrast, the Softmax loss function mainly focuses on the
differences between samples of the same category, while the Triple Lossfunction pays more
attention to increasing the similarity between samples of the same category and increasing
the degree of difference between different categories.

Finally, the MediaPipe we used in our research is a cross-platform machine learning
framework open-source by Google [31] designed to assist developers in building machine
learning applications based on visual, audio, and sensor inputs. Finger in MediaPipe is
an algorithm module used for hand pose estimation [32]. It can locate and track fingers
through input hand images and estimate the three-dimensional posture of fingers. The
input of the Finger module is a set of hand images, such as hand images captured by a
camera or hand images that have already been captured. The Finger module detects and
tracks fingers, obtaining the position and posture information of each finger. Based on deep
neural networks, it trains on a large amount of hand image data to achieve the accurate
detection and tracking of fingers. In addition, the Finger module also utilizes some image
processing and computer vision algorithms, such as morphological processing, filters, and
Kalman filters, to further improve the accuracy and stability of detection and tracking.

3. Research Methodology
3.1. Gesture Recognition Process

In the context of image recognition and classification, there are four main tasks:
classification, localization, detection, and segmentation. For gesture recognition, we needed
to address the tasks of classification, localization, and detection. To achieve this, we used
the following steps:

1. Classification and Localization:

Utilize the open-source MediaPipe provided by Google to obtain the position and
coordinate points of the hand. This step helps us identify and locate the hand within
the image.

2. Data Preprocessing:

Apply geometric transformations to the coordinate points of the hand obtained in the
previous step to normalize the data. This normalization step ensures that the hand’s shape
and position are consistent and comparable across different images.

3. Feature Embedding:

Use FingerNet to perform embedding on normalized hand data. FingerNet is a
deep neural network designed to extract representative features from the hand’s coordi-
nate points.

4. Loss Functions:

Apply the Triple Loss and CrossEntropy Loss functions during the network training
phase. The Triple Loss function is responsible for pushing embeddings of samples with
the same gesture label closer together in the embedding space and pushing embeddings
of samples with different gesture labels farther apart. The CrossEntropy Loss function is
utilized for the classification aspect of network training.

Sensors 2024, 24, 6262 5 of 16

By following these steps (Figure 1), the gesture recognition model can be trained
based on the features extracted from hand coordinates, leading to accurate classifying. This
approach combines localization and classification to achieve effective gesture recognition.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 16

the same gesture label closer together in the embedding space and pushing embeddings
of samples with different gesture labels farther apart. The CrossEntropy Loss function is
utilized for the classification aspect of network training.

By following these steps (Figure 1), the gesture recognition model can be trained
based on the features extracted from hand coordinates, leading to accurate classifying.
This approach combines localization and classification to achieve effective gesture recog-
nition.

Figure 1. Gesture classification implementation process.

3.2. Data Preparation
For this study, gesture recognition was based on the key points of the fingers. There-

fore, if the bending degree of finger joints is the same, it can be considered the same ges-
ture. To address this feature, a registerable gesture dataset (RGDS) was constructed spe-
cifically for gesture recognition. The RGDS consists of hand gesture images with a resolu-
tion of 2624 × 2457. It contains 32 different gesture categories, each with 50 samples, re-
sulting in a total of 1600 samples.

As shown in Figure 2, (1) and (2) represent different postures of the same gesture,
while (1) and (2) depict different gestures altogether. The RGDS dataset captures these
variations in gesture postures and includes images with various finger joint bending de-
grees, enabling the model to recognize the same gesture in different poses.

Please note that the RGDS dataset has been curated to encompass diverse hand ges-
ture samples, facilitating effective training and the evaluation of the gesture recognition
model.

Figure 2. Gesture data. (1) and (2) represent gesture photographs for two different gestures.

3.3. Data Preprocessing
After processing the images containing hands through the MediaPipe network, we

obtained the three-dimensional coordinates of 21 key points of the fingers, as shown in

Figure 1. Gesture classification implementation process.

3.2. Data Preparation

For this study, gesture recognition was based on the key points of the fingers. Therefore,
if the bending degree of finger joints is the same, it can be considered the same gesture.
To address this feature, a registerable gesture dataset (RGDS) was constructed specifically
for gesture recognition. The RGDS consists of hand gesture images with a resolution of
2624 × 2457. It contains 32 different gesture categories, each with 50 samples, resulting in a
total of 1600 samples.

As shown in Figure 2, (1) and (2) represent different postures of the same gesture, while
(1) and (2) depict different gestures altogether. The RGDS dataset captures these variations
in gesture postures and includes images with various finger joint bending degrees, enabling
the model to recognize the same gesture in different poses.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 16

the same gesture label closer together in the embedding space and pushing embeddings
of samples with different gesture labels farther apart. The CrossEntropy Loss function is
utilized for the classification aspect of network training.

By following these steps (Figure 1), the gesture recognition model can be trained
based on the features extracted from hand coordinates, leading to accurate classifying.
This approach combines localization and classification to achieve effective gesture recog-
nition.

Figure 1. Gesture classification implementation process.

3.2. Data Preparation
For this study, gesture recognition was based on the key points of the fingers. There-

fore, if the bending degree of finger joints is the same, it can be considered the same ges-
ture. To address this feature, a registerable gesture dataset (RGDS) was constructed spe-
cifically for gesture recognition. The RGDS consists of hand gesture images with a resolu-
tion of 2624 × 2457. It contains 32 different gesture categories, each with 50 samples, re-
sulting in a total of 1600 samples.

As shown in Figure 2, (1) and (2) represent different postures of the same gesture,
while (1) and (2) depict different gestures altogether. The RGDS dataset captures these
variations in gesture postures and includes images with various finger joint bending de-
grees, enabling the model to recognize the same gesture in different poses.

Please note that the RGDS dataset has been curated to encompass diverse hand ges-
ture samples, facilitating effective training and the evaluation of the gesture recognition
model.

Figure 2. Gesture data. (1) and (2) represent gesture photographs for two different gestures.

3.3. Data Preprocessing
After processing the images containing hands through the MediaPipe network, we

obtained the three-dimensional coordinates of 21 key points of the fingers, as shown in

Figure 2. Gesture data. (1) and (2) represent gesture photographs for two different gestures.

Please note that the RGDS dataset has been curated to encompass diverse hand gesture
samples, facilitating effective training and the evaluation of the gesture recognition model.

3.3. Data Preprocessing

After processing the images containing hands through the MediaPipe network, we
obtained the three-dimensional coordinates of 21 key points of the fingers, as shown in
Figure 3. At this point, the x and y coordinates of the three-dimensional points are based
on the image’s left-bottom corner as the coordinate origin. The z-coordinate is based on the
0th point as the coordinate origin.

Sensors 2024, 24, 6262 6 of 16

Sensors 2024, 24, x FOR PEER REVIEW 6 of 16

Figure 3. At this point, the x and y coordinates of the three-dimensional points are based
on the image’s left-bottom corner as the coordinate origin. The z-coordinate is based on
the 0th point as the coordinate origin.

To facilitate further image processing, we standardized and rectified the coordinates
of the 21 key points of the fingers. Here, we take the 0th point as the coordinate origin; the
x-axis runs from 0 to 17, and the y-axis runs from 0 to 5. Using the right-hand rule, we can
obtain a three-dimensional coordinate system based on the 0th point, which will be used
for subsequent processing.

Figure 3. MediaPipe finger landmark. The red dots are the 21 key points selected for the hand,
which are connected by a green line to form a complete line of identification of the hand.

Canonical transformations are mathematical transformations commonly used to an-
alyze and simplify the description of physical systems. They involve selecting appropriate
coordinate system transformations to convert physical quantities in the original coordi-
nate system, making the problem’s formulation more concise or convenient for solving.
The core idea of canonical transformations is to choose a new set of basis vectors to repre-
sent vectors in the original coordinate system. These new basis vectors often possess spe-
cial properties, such as orthogonality or normalization, to simplify the problem’s descrip-
tion or solution.

In this specific case, we are considering two sets of basis vectors: one based on the
points 0 to 5 and another based on the points 0 to 17.
(1) Taking the 0th point as the coordinate origin, we performed a translation of the orig-

inal coordinates. Let x0, y0 represent the original coordinates of point 0, and xi, yi rep-
resent the original coordinates of point i. After the translation, we obtained new co-
ordinates X0, Y0. 𝑋 = 𝑥 − 𝑥 (1)𝑌 = 𝑦 − 𝑦 (2)

(2) We calculated the vector 𝑃0𝑃17ሬሬሬሬሬሬሬሬሬሬ⃑ and 𝑃0𝑃5ሬሬሬሬሬሬሬሬ⃑ 𝑃𝑃ଵሬሬሬሬሬሬሬሬሬሬሬ⃑ = ((𝑥ଵ − 𝑥), (𝑦ଵ − 𝑦), (𝑧ଵ − 𝑧)) (3)𝑃𝑃ହሬሬሬሬሬሬሬሬሬ⃑ = ((𝑥ହ − 𝑥), (𝑦ହ − 𝑦), (𝑧ଵ − 𝑧)) (4)

(3) We calculated the normal vector 𝑃௭ሬሬሬ⃑ of the plane formed by vectors 𝑃𝑃ହሬሬሬሬሬሬሬሬ⃑ and 𝑃𝑃ଵሬሬሬሬሬሬሬሬሬሬ⃑ 𝑃௭ሬሬሬ⃑ = 𝑃𝑃ହሬሬሬሬሬሬሬሬሬ⃑ × 𝑃𝑃ଵሬሬሬሬሬሬሬሬሬሬሬ⃑ (5)

Figure 3. MediaPipe finger landmark. The red dots are the 21 key points selected for the hand, which
are connected by a green line to form a complete line of identification of the hand.

To facilitate further image processing, we standardized and rectified the coordinates
of the 21 key points of the fingers. Here, we take the 0th point as the coordinate origin; the
x-axis runs from 0 to 17, and the y-axis runs from 0 to 5. Using the right-hand rule, we can
obtain a three-dimensional coordinate system based on the 0th point, which will be used
for subsequent processing.

Canonical transformations are mathematical transformations commonly used to ana-
lyze and simplify the description of physical systems. They involve selecting appropriate
coordinate system transformations to convert physical quantities in the original coordinate
system, making the problem’s formulation more concise or convenient for solving. The
core idea of canonical transformations is to choose a new set of basis vectors to represent
vectors in the original coordinate system. These new basis vectors often possess special
properties, such as orthogonality or normalization, to simplify the problem’s description
or solution.

In this specific case, we are considering two sets of basis vectors: one based on the
points 0 to 5 and another based on the points 0 to 17.

(1) Taking the 0th point as the coordinate origin, we performed a translation of the
original coordinates. Let x0, y0 represent the original coordinates of point 0, and xi, yi
represent the original coordinates of point i. After the translation, we obtained new
coordinates X0, Y0.

X0 = xi − x0 (1)

Y0 = yi − y0 (2)

(2) We calculated the vector
⇀

P0P17 and
⇀

P0P5

⇀
P0P17 = ((x17 − x0), (y17 − y0), (z17 − z0)) (3)

⇀
P0P5 = ((x5 − x0), (y5 − y0), (z17 − z0)) (4)

(3) We calculated the normal vector
⇀
Pz of the plane formed by vectors

⇀
P0P5 and

⇀
P0P17

⇀
Pz =

⇀
P0P5 ×

⇀
P0P17 (5)

⇀
Pz =

∣∣∣∣∣∣
i j k

x5 − x0 y5 − y0 z5 − z0
x17 − x0 y17 − y0 z17 − z0

∣∣∣∣∣∣ (6)

(4) Change in Basis

Sensors 2024, 24, 6262 7 of 16

For a point P in the basis of
⇀
Q =

(
⇀
a ,

⇀
b ,

⇀
c
)

, its coordinates are given by (xr, yr, zr)

using Equation (7). In the basis of
⇀
Q =

(
⇀
A,

⇀
B ,

⇀
C
)

, its coordinates are given by (xq, yq, zq)

using Equation (8). The coordinates of
⇀
A,

⇀
B, and

⇀
C in the basis of

⇀
R are given, respectively,

by (Xar, Yar, Zar), (Xbr, Ybr, Zbr), and (Xcr, Ycr, Zcr) using Equations (9)–(11). Formula (12)
can be obtained by Formulas (9)–(11); we obtained Equation (13), which represents the
coordinates of point P in both bases, showing that (7) = (8). From this, we could derive the

coordinate transformation matrix F (14) that transforms point P from
⇀
R to

⇀
Q.

P =

xr
yr
zr

·⇀R =

xr
yr
zr

·[⇀a ,
⇀
b ,

⇀
c
]
= xr

⇀
a + yr

⇀
b + zr

⇀
c (7)

P =

xq
yq
zq

·⇀Q =

xq
yq
zq

·[⇀A,
⇀
B ,

⇀
C
]
= xq

⇀
A + yq

⇀
B + zq

⇀
C (8)

⇀
A =

Xar
Yar
Zar

·⇀P = Xar
⇀
a + Yar

⇀
c + Zar

⇀
c (9)

⇀
B =

Xbr
Ybr
Zbr

·⇀P = Xbr
⇀
a + Ybr

⇀
c + Zbr

⇀
c (10)

⇀
C =

Xcr
Ycr
Zcr

·⇀P = Xcr
⇀
a + Ycr

⇀
c + Zcr

⇀
c (11)

⇀
Q =

[
⇀
A,

⇀
B ,

⇀
C
]
=

Xar Xbr Xcr
Yar Ybr Ycr
Zar Zbr Zcr

·⇀P (12)

xq
yq
zq

 =

xr
yr
zr

·⇀P ·⇀Q−1
=

xr
yr
zr

·F (13)

F =
⇀
P ·

⇀
Q

−1
(14)

3.4. Model Construction

After data preprocessing, gesture images were transformed into 1 × 22 × 3-dimensional
data. The 22 dimensions comprise the following information: the first dimension represents
the hand’s orientation, dimensions 2 to 6 contain the coordinates of each joint of the thumb,
dimensions 7 to 10 contain the coordinates of each joint of the index finger, dimensions 11 to
14 contain the coordinates of each joint of the middle finger, dimensions 15 to 18 contain the
coordinates of each joint of the ring finger, and dimensions 19 to 22 contain the coordinates
of each joint of the little finger. These gesture features are then extracted and combined
using the FingerComb block to form 1 × 33 × 32dimensional data. The structure of the
FingerComb block is illustrated in Figure 4, where convolution is performed using conv1d.

The main innovation of ResNet-16 lies in the introduction of residual connections,
which addresses the issues of gradient vanishing and model degradation during the
training of deep networks. This shortcut connection directly adds the input features to
the output features, enabling information to flow directly through the network facilitating
easier training and optimization.

Sensors 2024, 24, 6262 8 of 16

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16

Figure 4. FingerComb block.

The main innovation of ResNet-16 lies in the introduction of residual connections,
which addresses the issues of gradient vanishing and model degradation during the train-
ing of deep networks. This shortcut connection directly adds the input features to the out-
put features, enabling information to flow directly through the network facilitating easier
training and optimization.

In this study, an improved version of ResNet-16, called FingerNet, was achieved by
incorporating the FingerComb Block, as shown in Figure 5. The model’s parameters are
listed in Table 1. FingerNet takes 1 × 22 × 3-dimensional data as the input and, through
convolutional operations, yields a final 1 × 32-dimensional EMBEDDING.

Table 1. The architecture layer diagram of FingerNet.

Layer Name Filter Output Size
Input 1 × 22 × 3

FingerComb

𝟏 × 𝟐, 𝟑𝟐𝟏 × 𝟐, 𝟑𝟐 𝐬 = 𝟏, 𝐩 = 𝟎 𝐬 = 𝟏, 𝐩 = 𝟎൨ 𝟏 × 𝟑, 𝟑𝟐𝟏 × 𝟑, 𝟑𝟐 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨ 𝟏 × 𝟒, 𝟑𝟐𝟏 × 𝟒, 𝟑𝟐 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨

1 × 33 × 32

Conv2_x 𝟏 × 𝟑, 𝟑𝟐𝟏 × 𝟑, 𝟑𝟐 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨ × 𝟐 1 × 33 × 32

Conv3_x
𝟏 × 𝟑, 𝟔𝟒𝟏 × 𝟑, 𝟔𝟒 𝐬 = 𝟐, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨ 𝟏 × 𝟑, 𝟔𝟒𝟏 × 𝟑, 𝟔𝟒 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨

1 × 17 × 64

Conv4_x
𝟏 × 𝟑, 𝟏𝟐𝟖𝟏 × 𝟑, 𝟏𝟐𝟖 𝐬 = 𝟐, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨ 𝟏 × 𝟑, 𝟏𝟐𝟖𝟏 × 𝟑, 𝟏𝟐𝟖 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨

1 × 9 × 128

Figure 4. FingerComb block.

In this study, an improved version of ResNet-16, called FingerNet, was achieved by
incorporating the FingerComb Block, as shown in Figure 5. The model’s parameters are
listed in Table 1. FingerNet takes 1 × 22 × 3-dimensional data as the input and, through
convolutional operations, yields a final 1 × 32-dimensional EMBEDDING.

Table 1. The architecture layer diagram of FingerNet.

Layer Name Filter Output Size

Input 1 × 22 × 3

FingerComb

[
1 × 2, 32
1 × 2, 32

s = 1, p = 0
s = 1, p = 0

]
[

1 × 3, 32
1 × 3, 32

s = 1, p = 1
s = 1, p = 1

]
[

1 × 4, 32
1 × 4, 32

s = 1, p = 1
s = 1, p = 1

] 1 × 33 × 32

Conv2_x
[

1 × 3, 32
1 × 3, 32

s = 1, p = 1
s = 1, p = 1

]
× 2 1 × 33 × 32

Conv3_x

[
1 × 3, 64
1 × 3, 64

s = 2, p = 1
s = 1, p = 1

]
[

1 × 3, 64
1 × 3, 64

s = 1, p = 1
s = 1, p = 1

] 1 × 17 × 64

Conv4_x

[
1 × 3, 128
1 × 3, 128

s = 2, p = 1
s = 1, p = 1

]
[

1 × 3, 128
1 × 3, 128

s = 1, p = 1
s = 1, p = 1

] 1 × 9 × 128

Conv5_x

[
1 × 3, 256
1 × 3, 256

s = 2, p = 1
s = 1, p = 1

]
[

1 × 3, 256
1 × 3, 256

s = 1, p = 1
s = 1, p = 1

] 1 × 5 × 256

Avgpool 256 K = 3, s = 1, p = 1 1 × 1 × 256
FC (256, 128) 1 × 128
FC (128, 32) 1 × 32

Sensors 2024, 24, 6262 9 of 16

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16

Conv5_x
𝟏 × 𝟑, 𝟐𝟓𝟔𝟏 × 𝟑, 𝟐𝟓𝟔 𝐬 = 𝟐, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨ 𝟏 × 𝟑, 𝟐𝟓𝟔𝟏 × 𝟑, 𝟐𝟓𝟔 𝐬 = 𝟏, 𝐩 = 𝟏 𝐬 = 𝟏, 𝐩 = 𝟏൨

1 × 5 × 256

Avgpool 256 K = 3, s = 1, p = 1 1 × 1 × 256
FC (256, 128) 1 × 128
FC (128, 32) 1 × 32

Figure 5. Structure of FingerNet.

3.5. Loss Function
The Triple Loss function enhances the discriminability of gesture features by intro-

ducing the concept of triplets. Each triplet consists of an anchor sample (a), a positive
sample (p), and a negative sample (n). The objective of the Triple Loss is to minimize the
distance between the anchor sample and the positive sample while maximizing the dis-
tance between the anchor sample and the negative sample, with the addition of a margin
value to ensure increased dissimilarity. By optimizing the Triple Loss function, the net-
work is compelled to learn gesture feature embeddings with better discriminability. Triple

Figure 5. Structure of FingerNet.

3.5. Loss Function

The Triple Loss function enhances the discriminability of gesture features by intro-
ducing the concept of triplets. Each triplet consists of an anchor sample (a), a positive
sample (p), and a negative sample (n). The objective of the Triple Loss is to minimize the
distance between the anchor sample and the positive sample while maximizing the distance
between the anchor sample and the negative sample, with the addition of a margin value
to ensure increased dissimilarity. By optimizing the Triple Loss function, the network is
compelled to learn gesture feature embeddings with better discriminability. Triple Loss
performs well in addressing the issue of large intra-class variations, thus improving the
accuracy of gesture recognition. However, in practical application, Triple Loss is difficult
to train, and the model may struggle to converge. To overcome this, the training process
simultaneously employs the CrossEntropy loss function with Triple Loss to improve the
model’s convergence speed and gesture recognition performance. This approach balances
the optimization of intra-class similarity and inter-class dissimilarity.

Formula (15) represents the Triple Loss, where a denotes the anchor sample, p repre-
sents the positive sample, and n represents the negative sample. Formula (16) represents

Sensors 2024, 24, 6262 10 of 16

CrossEntropy loss, where m is the number of samples, Wj represents the jth weight in
the model parameters, yi is the true label for each sample, and ŷi is the model output.
Formula (17) represents the total loss, which is the combination of Triple Loss and CrossEn-
tropy Loss.

Lt = max{d(a, p)− d(a, n) + margin, 0} (15)

L(w) = − 1
m

m

∑
i=1

yi(ŷi) +
1
m

m

∑
i=1

(1 − yi) log
(

e
1
m Σm

j=1wj
)

(16)

L = Lt + L(w) (17)

4. Experimental Procedure and Results

In this section, we analyze the performance of the FingerNet model in the process of
gesture recognition through experiments. This model utilizes the RGDS dataset, which
we constructed ourselves. The dataset contained a total of 32 classes of gesture data, with
28 classes used as training data and the remaining four classes used for model validation.
The hardware and software environment for model training in this study are as shown in
Table 2. We built the FingerNet model using the PyTorch framework and trained it using
RTX 8000 GPU.

Table 2. Hardware and software platforms.

Type Type Specification

Operating system Window 11
CPU Xeon(R) Gold 5218
GPU NVIDIA Quadro RTX 8000

Deep learning framework Pytorch 1.13.0
Language Python 3.7.15
Memory 256 GB
CUDA 11.7
cudnn 8500

After the completion of the model’s construction, various training parameters needed
to be set before training, as shown in Table 3. The model was trained for a total of
500 epochs, and the margin was a parameter for the Triple Loss. Additionally, the
“min_tracking_confidence” is the minimum confidence threshold for hand tracking in
MediaPipe finger detection, while the “min_detection_confidence” represents the mini-
mum confidence threshold for hand detection. The “max_num_hands” parameter specifies
the maximum number of hands to be recognized in the input data.

Table 3. Model training parameters.

Type Parameter

epoch 500
BatchSize 256

margin 5
lr 0.2

min_tracking_confidence 0.8
min_detection_confidence 0.62

max_num_hands 1

After setting up the various training parameters, the model was trained, and Figure 6
shows the change in model training loss with respect to the training steps. Before 200k
steps, the model’s loss appears to be unstable but shows an overall convergence trend.
After 200k steps, the model’s loss mostly tends to approach zero; although there may be
some fluctuations in the process, the loss values are very small.

Sensors 2024, 24, 6262 11 of 16

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16

margin 5
lr 0.2

min_tracking_confidence 0.8
min_detection_confidence 0.62

max_num_hands 1

After setting up the various training parameters, the model was trained, and Figure
6 shows the change in model training loss with respect to the training steps. Before 200k
steps, the model’s loss appears to be unstable but shows an overall convergence trend.
After 200k steps, the model’s loss mostly tends to approach zero; although there may be
some fluctuations in the process, the loss values are very small.

Figure 6. Training process.

After training the model, it was tested using the remaining four classes of hand ges-
tures from the RGDS dataset as registered gestures. The model processed the data and
performed cluster analysis on the gestures. The test results are shown in Figure 7, where
the x-axis represents the 32 classes of hand gestures, and the y-axis represents the L2 dis-
tance. The figure contains four subplots, each representing the L2 distance between the
currently registered gesture and each class in the test data.

Figure 7. Test results box diagram. The parts marked in red are the gestures in this class that have
the smallest L2 distance compared to the other gestures.

For example, in the first subplot, the registered gesture is labeled as the 0th class.
From this plot, it can be observed that the L2 distance between the registered 0th class

Figure 6. Training process.

After training the model, it was tested using the remaining four classes of hand
gestures from the RGDS dataset as registered gestures. The model processed the data and
performed cluster analysis on the gestures. The test results are shown in Figure 7, where the
x-axis represents the 32 classes of hand gestures, and the y-axis represents the L2 distance.
The figure contains four subplots, each representing the L2 distance between the currently
registered gesture and each class in the test data.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16

margin 5
lr 0.2

min_tracking_confidence 0.8
min_detection_confidence 0.62

max_num_hands 1

After setting up the various training parameters, the model was trained, and Figure
6 shows the change in model training loss with respect to the training steps. Before 200k
steps, the model’s loss appears to be unstable but shows an overall convergence trend.
After 200k steps, the model’s loss mostly tends to approach zero; although there may be
some fluctuations in the process, the loss values are very small.

Figure 6. Training process.

After training the model, it was tested using the remaining four classes of hand ges-
tures from the RGDS dataset as registered gestures. The model processed the data and
performed cluster analysis on the gestures. The test results are shown in Figure 7, where
the x-axis represents the 32 classes of hand gestures, and the y-axis represents the L2 dis-
tance. The figure contains four subplots, each representing the L2 distance between the
currently registered gesture and each class in the test data.

Figure 7. Test results box diagram. The parts marked in red are the gestures in this class that have
the smallest L2 distance compared to the other gestures.

For example, in the first subplot, the registered gesture is labeled as the 0th class.
From this plot, it can be observed that the L2 distance between the registered 0th class

Figure 7. Test results box diagram. The parts marked in red are the gestures in this class that have the
smallest L2 distance compared to the other gestures.

For example, in the first subplot, the registered gesture is labeled as the 0th class. From
this plot, it can be observed that the L2 distance between the registered 0th class gesture and
other 0th class gestures are the smallest, indicating that there is a high intra-class similarity.
On the other hand, the distance between the registered gesture and gestures from other
classes is larger, indicating a greater inter-class dissimilarity.

Additionally, each class of gestures is well-clustered, showing high intra-class cohesion.
Therefore, when setting the threshold to 40, it is possible to completely distinguish between
gestures of the same class as the registered gesture and gestures from other classes. This
indicates that the FingerNet model is capable of effectively clustering and differentiating
between hand gestures based on the learned gesture embeddings.

After training the model, real-time hand gesture processing and displays were per-
formed using OpenCV to read images from the camera. The images were processed through
MediaPipe and then passed to FingerNet for hand gesture recognition. The results are
shown in Figure 8.

Sensors 2024, 24, 6262 12 of 16

Figure 8. Real-time gesture detection.

From this figure, it can be observed that after processing by FingerNet, the model
accurately detected the hand positions and hand gesture classes in real-time. Moreover, the
model was able to recognize new hand gesture classes through the registration process.

The real-time processing and recognition capabilities of FingerNet demonstrate its
effectiveness and practicality in hand gesture recognition applications. The model shows
promising performance in accurately identifying hand gestures and can be extended to
recognize a wide range of hand movements and poses.

In this paper, in order to further validate the effectiveness of the model method, we also
compared some existing models with the model proposed in this chapter on the AUTSL
dataset (Table 4), and the results are displayed in accuracy order in the table. Among
them, the baseline RGB accuracy comes from the CNN-FPM BiLSTM attention model
proposed by Sincan et al. [33], which extracts image features using CNN, fuses multi-scale
diffusion convolution through FPM, collects time-domain features using BiLSTM with the
attention mechanism, and finally performs time-domain pooling and gesture classifications.
The accuracy of LSTM, Transformer, ST-GCN, and SL-GCN methods comes from the
OpenHands framework proposed by Selvaraj et al. [34], which mainly uses pre-training
and self-supervised learning to improve the accuracy of the model. The remaining models
FE + LSTM, MViT-SLR, HWGAT, 3D-DCNN + ST-MGCN, SAM-SLR, and STF + LSTM are
from the corresponding papers [28,35–40]. These models reflect the best results from the
current AUTSL dataset. From the comparison results, it can be seen that the accuracy of the
method proposed in this paper reaches 0.953. Although not the best results on this dataset,
these models were able to effectively recognize large-scale gestures through multimodal
skeleton data.

Table 4. Comparison results between our method and existing methods on AUTSL.

Method Accuracy

Baseline RGB 0.425
Baseline RGB-D 0.632

LSTM 0.774
Transformer 0.810

ST-GCN 0.904
SL-GCN 0.919

FE + LSTM 0.934
MViT-SLR 0.957
HWGAT 0.958

3D-DCNN + ST-MGCN 0.984
SAM-SLR 0.985

STF + LSTM 0.986
FINGER-NET 0.953

Sensors 2024, 24, 6262 13 of 16

The sample recording in the AUTSL dataset is clear, the lighting is uniform, the frame
rate is high, and there is less dynamic blur, making it suitable for skeleton pose estimation.
It can accurately obtain finger positions and recognize gestures using graph convolution
methods. However, in some scenarios, the quality of the samples to be recognized is
relatively low, which has a significant impact on the estimation of body and hand skeletons,
limiting the accuracy of subsequent gesture recognition.

In addition, the video recording time in the ChaLearLAPISOGD gesture dataset is
relatively early, the frame rate is relatively low, and there are many samples that lack
lighting and blur, which makes skeleton estimation prone to containing many errors. We
also conducted comparative tests on the model. Table 5 shows the accuracy comparison
results of this method on the dataset.

Table 5. Comparison results between our method and existing methods on ChaLearn IsoGD.

Method Accuracy

Baseline 0.241
Zhu et al. [41] 0.509

Wang et al. [42] 0.555
Li et al. [43] 0.569

FINGER-NET 0.572

At the same time, we also conducted further research on another contribution of this
article, the registrable dataset RGDS. We tested the existing algorithm models and our
model on our dataset and compared them in the smaller-scale dataset. The accuracy is
shown in the following Table 6.

Table 6. Comparison results between our method and existing methods on RGDS.

Method Accuracy

LSTM 0.574
Transformer 0.610

Wang et al. [42] 0.706
Li et al. [43] 0.745
StepNet [44] 0.821

FINGER-NET 0.878

5. Results and Analysis

In this paper, we constructed a registerable gesture recognition dataset (RGDS) con-
taining 32 different gesture classes, each with 50 images, totaling 1600 gesture images.
We proposed a normalization method based on canonical transformations for gesture
data to facilitate feature extraction and combination. Additionally, we introduced the
FingerComb block for feature extraction and combination, which improved the robustness
of gesture features and accelerated model convergence. We made improvements to the
ResNet architecture to create the FingerNet model and tested it on the RGDS dataset to
evaluate the performance and feasibility of the proposed methods. A large number of
experiments show that this method has high accuracy in registered gesture recognition,
especially on the dataset we created ourselves with absolute accuracy. The advantage of
this is that it provides an effective solution for gesture interaction and operation in practical
application scenarios.

However, the current model in this article only focuses on the recognition of single ges-
tures when they can be registered and has weak recognition ability for gestures involving
multiple gestures or complex actions (such as gestures made with both hands simultane-
ously). Moreover, large-scale gesture recognition typically requires the inclusion of a wider
range of gesture samples, and the generalization ability and accuracy of improvement of
this model for large-scale gesture recognition are not very good. In the future, we plan to

Sensors 2024, 24, 6262 14 of 16

further promote and improve this model by achieving the registrable recognition of hand
gestures and enhancing the model’s ability to understand complex gestures.

Author Contributions: The authors confirm their contributions to the paper as follows: Concep-
tualization and design of the study: Y.M., H.J., N.D. and H.W.; Data collection: H.J.; Analysis and
interpretation of the results: N.D.; Drafting of the manuscript: Y.M. and H.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: For reasons (the study was not in the biomedical field, the
hand data are not identifiable, and the source of the hand data was only the authors of this study),
ethical review and approval was waived for this study.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is unavailable due to privacy restrictions.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study. And Haibo Jiang is employed by SIMITECH company. The company played no
role in the design of the study, the collection, analysis, or interpretation of data, the writing of the
manuscript, or the decision to publish the article.

References
1. Jiang, D.; Zheng, Z.; Li, G.; Sun, Y.; Kong, J.; Jiang, G.; Xiong, H.; Tao, B.; Xu, S.; Yu, H.; et al. Gesture Recognition Based on

Binocular Vision. Cluster Comput. 2019, 22, 13261–13271. [CrossRef]
2. Feng, Z.; Yang, B.; Zheng, Y.W.; Xu, T.; Tang, H.K. Hand Tracking Based on Behavioral Analysis for Users; China Science Publishing &

Media Ltd.: Beijing, China, 2013; Volume 24, pp. 2101–2116.
3. Rautaray, S.S.; Agrawal, A. Vision based hand gesture recognition for human computer interaction: A survey. Artif. Intell. Rev.

2015, 43, 1–54. [CrossRef]
4. Kaaniche, M.B.; Bremond, F. Recognizing gestures by learning local motion signatures of HOG descriptors. IEEE Trans. Pattern

Anal. Mach. Intell. 2012, 34, 2247–2258. [CrossRef] [PubMed]
5. Weissmann, J.; Salomon, R. Gesture recognition for virtual reality applications using data gloves and neural networks. In

Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, 10–16 July 1999; pp. 2043–2046.
6. Yan, S.; Shao, H.D.; Min, Z.S.; Peng, J.J.; Cai, B.P.; Liu, B. FGDAE: A new machinery anomaly detection method towards complex

operating conditions. Reliab. Eng. Syst. Saf. 2023, 236, 109319. [CrossRef]
7. Chen, M.Z.; Shao, H.D.; Dou, H.X.; Li, W.; Liu, B. Data augmentation and intelligent fault diagnosis of planetary gearbox using

ILoFGAN under extremely limited samples. IEEE Trans. Reliab. 2022, 72, 1029–1037. [CrossRef]
8. Wang, Z.J.; Li, Y.J.; Dong, L.; Li, Y.F.; Du, W.H. A RUL Prediction of Bearing Using Fusion Network through Feature Cross

Weighting. Meas. Sci. Technol. 2023, 34, 105908. [CrossRef]
9. Wang, T.Q.; Li, Y.D.; Hu, J.F.; Khan, A.; Liu, L.; Li, C.; Hashmi, A.; Ran, M. A survey on vision-based hand gesture recognition. In

Smart Multimedia; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11010,
pp. 219–231.

10. Wang, Y.; Zhang, J.; Qin, Y.; Chai, X. Gesture Recognition Method Based on Multi-feature Fusion. J. Syst. Simul. 2019, 31, 346–352.
11. Oikonomidis, I.; Kyriazis, N.; Argyros, A.; Hoey, J.; McKenna, S. Efficient model-based 3D tracking of hand articulations using

Kinect. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011; Volume 2. 11p.
12. Moeslund, T.B.; Hilton, A.; Krüger, V. A survey of advances in vision-based human motion capture and analysis. Comput. Vis.

Image Underst. 2006, 104, 90–126. [CrossRef]
13. Yedder, H.B.; Cardoen, B.; Hamarneh, G. Deep learning for biomedical image reconstruction: A survey. Artif. Intell. Rev. 2021, 54,

215–251. [CrossRef]
14. Suk, H.; Sin, B.; Lee, S. Hand Gesture Recognition Based on Dynamic Bayesian Network Framework. Pattern Recognit. 2010, 43,

3059–3072. [CrossRef]
15. Bécha Kaâniche, M.; Brémond, F. Gesture Recognition by Learning Local Motion Signatures. In Proceedings of the 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2745–2752.

16. Baligh, M.; Sabri, A. Arabic online handwriting recognition (AOHR): A survey. ACM Comput. Surv. 2017, 50, 33.
17. Neidle, C.; Thangali, A.; Sclaroff, S. Challenges in Development of the American Sign Language Lexicon Video Dataset (ASLLVD)

Corpus. In Proceedings of the 5th Workshop on the Representation and Processing of Sign Languages: Interactions between
Corpus and Lexicon, LREC 2012, Istanbul, Turkey, 27 May 2012.

https://doi.org/10.1007/s10586-018-1844-5
https://doi.org/10.1007/s10462-012-9356-9
https://doi.org/10.1109/TPAMI.2012.19
https://www.ncbi.nlm.nih.gov/pubmed/22997128
https://doi.org/10.1016/j.ress.2023.109319
https://doi.org/10.1109/TR.2022.3215243
https://doi.org/10.1088/1361-6501/acdf0d
https://doi.org/10.1016/j.cviu.2006.08.002
https://doi.org/10.1007/s10462-020-09861-2
https://doi.org/10.1016/j.patcog.2010.03.016

Sensors 2024, 24, 6262 15 of 16

18. Camgoz, N.C.; Hadfield, S.; Koller, O.; Ney, H.; Bowden, R. Neural Sign Language Translation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

19. Zhou, H.; Zhou, W.; Qi, W.; Pu, J.; Li, H. Improving Sign Language Translation with Monolingual Data by Sign Back-Translation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN,
USA, 20–25 June 2021.

20. Zhang, L.G.; Wu, J.Q. Hand Gesture Recognition Based on Hausdorff Distance. J. Image Graph. 2002, 7, 1144–1150.
21. Yang, X.W.; Feng, Z.Q.; Huang, Z.Z.; He, N.N. Gesture Recognition Based on Combining Main Direction of Gesture and

Hausdorff-like Distance. J. Comput.-Aided Des. Comput. Graph. 2016, 28, 75–81.
22. Zhu, J.Y.; Wang, X.Y.; Wang, W.X.; Dai, G.Z. Hand Gesture Recognition Based on Structure Analysis. Chin. J. Comput. 2012, 29,

2130–2137.
23. Xin, W.B.; Hao, H.M.; Bu, M.L.; Lan, Y.; Huang, J.H.; Xiong, X.Y. Static gesture real-time recognition method based on ShuffleNetv2-

YOLOv3 model. J. Zhejiang Univ. 2021, 55, 1815–1824.
24. Lin, H.I.; Hsu, M.H.; Chen, W.K. Human hand gesture recognition using a convolution neural network. In Proceedings of the 2014

IEEE International Conference on Automation Science and Engineering, New Taipei, Taiwan, 18–22 August 2014; pp. 1038–1043.
25. Wu, X.Y. A hand gesture recognition algorithm based on DC-CNNJ. Multimed. Tools Appl. 2020, 79, 91939205.
26. Wu, J.; Tian, Q.; Yue, J. Static gesture recognition based on residual dual attention and cross level feature fusion module. Comput.

Syst. Appl. 2022, 31, 111–119.
27. Jiang, S.; Sun, B.; Wang, L.; Bai, Y.; Li, K.; Fu, Y. Sign Language Recognition via Skeleton-Aware Multi-Model Ensemble. arXiv

2021, arXiv:2110.06161.
28. Papadimitriou, K.; Potamianos, G. Sign Language Recognition via Deformable 3D Convolutions and Modulated Graph Convo-

lutional Networks. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5.

29. Al-onazi, B.B.; Nour, M.K.; Alshahran, H.; Elfaki, M.A.; Alnfiai, M.M.; Marzouk, R.; Othman, M.; Sharif, M.M.; Motwakel, A.
Arabic Sign Language Gesture Classification Using Deer Hunting Optimization with Machine Learning Model. Comput. Mater.
Contin. 2023, 75, 3413–3429. [CrossRef]

30. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; Volume 7, pp. 815–823.

31. Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.L.; Yong, M.G.; Lee, J.; et al.
MediaPipe: A Framework for Building Perception Pipelines. arXiv 2019, arXiv:1906.08172.

32. Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.L.; Grundmann, M. MediaPipe Hands: On-Device
Real-Time Hand Tracking. arXiv 2020, arXiv:2006.10214.

33. Sincan, O.M.; Keles, H.Y. Autsl: A large scale multi-modal turkish sign language dataset and baseline methods. IEEE Access 2020,
8, 181340–181355. [CrossRef]

34. Selvaraj, P.; Nc, G.; Kumar, P.; Khapra, M. OpenHands: Making Sign Language Recognition Accessible with Pose-based Pretrained
Models across Languages. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin,
Ireland, 22–27 May 2022; Volume 1, pp. 2114–2133.

35. Ryumin, D.; Ivanko, D.; Ryumina, E. Audio-Visual Speech and Gesture Recognition by Sensors of Mobile Devices. Sensors 2023,
23, 2284. [CrossRef]

36. Jiang, S.; Sun, B.; Wang, L.; Bai, Y.; Li, K.; Fu, Y. Skeleton Aware Multi-modal Sign Language Recognition. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June
2021; pp. 3408–3418.

37. Patra, S.; Maitra, A.; Tiwari, M.; Kumaran, K.; Prabhu, S.; Punyeshwarananda, S.; Samanta, S. Hierarchical Windowed Graph
Attention Network and a Large Scale Dataset for Isolated Indian Sign Language Recognition. arXiv 2024, arXiv:2407.14224.

38. Maxim, N.; Leonid, V.; Ruslan, M.; Dmitriy, M.; Iuliia, Z. Fine-tuning of sign language recognition models: A technical report.
arXiv 2023, arXiv:2302.07693.

39. Ryumin, D.; Ivanko, D.; Axyonov, A. Cross-Language Transfer Learning Using Visual Information for Automatic Sign Gesture
Recognition. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-2/W3, 209–216. [CrossRef]

40. De Coster, M.; Van Herreweghe, M.; Dambre, J. Isolated sign recognition from RGB video using pose flow and self-attention. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3441–3450.

41. Zhu, G.; Zhang, L.; Mei, L.; Shao, J.; Song, J.; Shen, P. Large-scale Isolated Gesture Recognition using pyramidal 3Dconvolutional
networks. In Proceedings of the International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 19–24.

42. Wang, P.; Li, W.; Liu, S.; Gao, Z.; Tang, C.; Ogunbona, P. Large-scale isolated gesture recognition using convolutional neural
networks. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8
December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 7–12.

https://doi.org/10.32604/cmc.2023.035303
https://doi.org/10.1109/ACCESS.2020.3028072
https://doi.org/10.3390/s23042284
https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-209-2023

Sensors 2024, 24, 6262 16 of 16

43. Li, Y.; Miao, Q.; Tian, K.; Fan, Y.; Xu, X.; Li, R.; Song, J. Large-scale gesture recognition with a fusion of rgb-d data based on the
c3d model. In Proceedings of the International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 25–30.

44. Shen, X.; Zheng, Z.; Yang, Y. StepNet: Spatial-temporal Part-aware Network for Isolated Sign Language Recognition. ACM Trans.
Multimedia Comput. Commun. 2024, 226, 19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3656046

	Introduction
	Related Work
	Research Methodology
	Gesture Recognition Process
	Data Preparation
	Data Preprocessing
	Model Construction
	Loss Function

	Experimental Procedure and Results
	Results and Analysis
	References

